Using Software Architecture to
Aid in the Feature Interaction
Problem

Ann Zimmer
School of Computer Science
University of Waterloo

Features and Services

A IS a basic system, which
provides standalone functionality. (i.e.
basic phone service)

A provides extra functionality to
an existing service or feature, it can not
be used on its own. (i.e. voice mail)

Feature Interaction

A Occurs when two or
more features run simultaneously in a system
and cause uncertain output. (i.e. the
execution of one feature interferes with the
output of another.)

We will consider feature interactions to occur
In 2 situations:

= A feature adds a predicate that another feature
has removed (or vise versa)

= A feature tries to modify an unique identifier. For

example a user can only hear one output message
at a time.

Feature Interaction

Call Waiting Verses Voice Mall

= Call Waiting(CW): when user A subscribes to
CW and is on the phone, a CW tone is issued
to alert A of another incoming call.

= Voice Mail(VM): when' A subscribes to VM and
IS on the phone, any incoming calls are
forwarded to a voice messaging system.

What happens when A subscribes to both
CW and VM?

CW verse VM

= Call Waiting

if

ang state(POI'S voice ¢'t 0)
an

no)t)(state(CW: ringback: = t

0

and not (= c2 c)

and not (cw_hold (*t))
and CIW(t)

then

and +connection(c2 t)
and + state(CW active c c2)
and +CW_hold(c2 t)

= Voice Mail

if

and connection(c2 t)
and (not (=c2c))
and VM(t)

then

and -connection(c t)
and
+msg(redirect o c t vm)

Feature Interaction:
Call Waiting verses Voice Malil

mm

Redirect Call
to Mailbox

Outline

Telephony and Architecture

COURT:Co-Ordinating User-preferences
at Run-Time

s Coordination Model/Blackboard

s Feature interaction resolution
s Overview of benefits

DFC: Distributed Feature Composition
s Pipe and Filter' Architecture

s Feature interaction resolution

s Overview of benefits

Current Telephony Architecture

“Million if statements” — each feature is
aware of all other features and resolution
IS hard-coded using if statements.

We want to move away from this

resolution strategy to allow for quicker
development of new features.

Software Architecture

Many of the existing methods to solve the
feature interaction problem focus on changes to
the system’s architecture, which could help
prevent or resolve certain types of feature
Interaction problems.
The different choices for architectural design can
iInfluence the difficultly of solving the feature
interaction problem.

= Pipe and Filter (DFC)

= Coordination Models (COURT)

Previous Research: COURT

COURT: Co-Ordinating User-preferences at
Run-Time

Features are developed modularly
(separation of concerns), so that each
feature runs independently of the core
system, without any knowledge of other
features.

Coordination Model

“A coordination model is the glue that
binds separate activities into an ensemble
[Gelernter and Carriero]

= Blackboard

= Client-Server

Coordination models are used to monitor
processes in parallel and distributive
systems

4/

Blackboard

Two components:
= A central data store
= Collection of independent components.

The components work on the information
found in the data store.

Also known as a repository.

COURT

COURT = Co-Ordinating User-preferences
at Run-Time.

COURT's purpose is to support modular
design of features and' to resolve
Interactions as they occur.

Features are developed independently and
extend the functionality of the core
system.

COURT Components

Independent feature
modules Database of the

current system state

FIM _ FIM is designed to resolve
|nteraCt|0_n & interactions according to a
Resolution given technique

COURT Features

A feature is e
represented as a prois A
set of rules that are if guard condition

; - (predicate on facts)
applied at different ol R

StageS- {:add or r’}emque_ facts)

dSSEFT CoNnstralncs
EaCh rU_Ie haS guard (predicates onrfalcts)
and action retract constraints
conditions.

COURT Database

= Sample predicates

User(bob)
User(jamie)

= Feature (Voice Mail)

it state(TCM allocate c't 0)
and connection(c2 t)

and (not (= c2c)) User(sally)
and VM(t) \/M((bob)

then CW(bob)

-State(TCM allocate.c't 0) SWC(sally)
and -connection(c t) Constraint(OCS sally bob)

and +msg(redirect o ¢ t'vm .
g() connection(1 sally)

connection(1 jamie)

COURT Architecture

1) Features read
world variables

2) Enabled Features 5) Features
forward actions 3 URTféads _
to COURT) arg applied

n constraints

\ 4

FIM 4) Features
are approved

Interaction &
Resolution

COURT Process

Identifies the set of rules in the system.

Read the current world.
Identify which rules have their guard

conditions satisfied.

Analyze this set of rules for feature
interactions.

Resolve interactions.
Determine the next world.

Feature Interaction
Resolution

Features are applied in order of priority
After each feature is applied the

resulting world is tested for interactions
If an interaction is found the feature is
rolled back and will not be executed.

Example: CW vs. 3WC

C2[- voice\, 2 yVvoice

Cw_tone

%

COURT advantages

Separation of Concerns
Less Coupling
Features can be added by outside parties.

Reduce rewriting of existing features.
System will run consistently
Ability to allow user defined features

Current Research: Distributed
Feature Composition (DFC)

We have recently started working on a
research project in association with
AT&T. Work on the feature interaction

problem is being explored with respect
to DFC.

DFC is the virtual architecture used by
AT&T, where each feature is
Implemented as an independent feature
box.

Pipe and Filter

In a pipe and filter system there are two
main types of components that are

responsible for reading and transforming
data.

s Pipe: Is responsible for passing information
from one filter to another.

= Filter: Is responsible for reading in data and
transforming the information before passing
along the modified information.

DFC Components

End
device

DFC Features

Each feature module is designed
independently.

A feature module can be a source feature,

a target feature, or both.

The feature responds to the incoming
signals and can modify, absorbs, or pass
the incoming signal along. New signals
may also be generated.

DFC Network

The networks responsibility: in DFC is to

determine which; feature modules appear
in the call set-up.

Some global information may also be
stored in the network database.

DFC Architecture

Source-side Target-side

End E mod E mod End
B : —>
device il ; 2 device

fFeatures are run in seqguence

Feature Interaction Resolution

Most feature interaction resolution is
applied automatically, and is determined
by the order of the feature modules in the
call seguence.

Hence, feature resolution in DFC mimics a
priority resolution strategy.

Example: CW vs. 3WC

Source-side

E mod

o1 : Target-side
CW 3WC Device

> ——

B

Source-side

Device E mod

C sl -
A and B arein a

call, C calls B.

Example: CW vs. 3WC

Source-side

E mod

o1 : Target-side
SWC Device

B

Source-side

Device E mod

C 51 <) Switch &

Aand B arein a activate
I n
call, C calls B. 2 cal

DFC Advantages

Non-linear calls are easy to set-up and
handle.

Model checking individual features and
interactions between features is often
possible because of the feature’s design.

= For example, SPIN has been used by Jackson
and Zave to test for interactions in DFC.

DFC vs. COURT

What are the difference between using a
client-server design and a pipe and filter

design

for solving feature interactions?

= Limited testing of possible resolution
strategies in DFC.

= COU
and t
calcu

RT has more possibilities for computation
nerefore is more complex and

ations may slow down connections.

DFC VS. COU RT continued

Coupling
= In COURT coupling based on the states of the
system.

= In DFC coupling is based on shared reactions
to signals.

Separation of' Concerns

= Features in both COURT and DFC are written
independently of each other.

Address Translation:

Aliasing, another problem in Telephony

Address translation occurs when a feature
changes the source or destination address of a
call.

Address translation causes many feature
interactions (call forward vs. call forward).

In DFC, Ideal address translation is done by
adding additional constraints to the DFC
architecture and feature modules that can
prevent these types of interactions.

Conclusion

Researchers are still exploring the many
different ways software architecture can
be used to resolve the feature interaction
problem.

