
architracer
a render of a model of an architectural model

CS 488 A5 Demo Document

Zhehong (Jack) Zhou

20390479

z43zhou



Zhou 2 of 14

Contents

Objective 1: Adaptive antialiasing (AAA) 3

Objective 2: Reflections 4

Objective 3: Refractions 5

Objective 4: Phong shading 6

Objective 5: Primitives 7

Objective 6: Texture mapping 7

Objective 7: Bump mapping 8

Objective 8 and 9: Photon mapping 9

Objective 10: Architectural scene 11

Bonus objective 1: Multithreading 13

Bonus objective 2: Soft shadows 14



Zhou 3 of 14

Objective 1: Adaptive antialiasing (AAA)

Figure 1: Edge detection using a threshold value on any of the colours, showing no antialiasing
(top), edge detection (middle), and 2x AAA (bottom).

The Sobel-Feldman operator is used for edge detection. We perform adaptive antialiasing by
only resampling the points where any one of the three colour transitions are over some threshold.
This results in a massive speed-up with minimal visual trade-offs.

Table 1: Timing comparisons of AAA vs. raw SSAA for modified scene files on an i5-5257U with
2c/4t, with multithreading enabled. Times taken are single trials.

File AA samples AA type Time taken (s) Speed-up ratio

nonhier.lua 3x
AAA 1.995 2.79
SSAA 5.557 1.00

sample.lua 2x
AAA 97.78 1.60
SSAA 156.26 1.00



Zhou 4 of 14

Objective 2: Reflections

Figure 2: Comparison between renders with no reflections (top) and multiplicative reflections
turned on, all materials using reflectivity 0.6 (bottom).



Zhou 5 of 14

Objective 3: Refractions

Figure 3: Comparison between renders with no refractions (top) and multiplicative refractions
turned on for the spheres comprising the “488”, using refractivity 0.9 and refractive
index 1.2 (bottom).



Zhou 6 of 14

Objective 4: Phong shading

Figure 4: Comparison between renders using face-wise triangle normals (left two) and with
Phong shading (right two).

Phong shading is implemented by performing Barycentric interpolation of the vertex normals at
the collision point. Note that this requires the modelling software to export the obj file using
smooth normals rather than face normals as the vertex normals. If faces are specified without
normals, regular triangle normals are used.



Zhou 7 of 14

Objective 5: Primitives

Figure 5: Sample render modified to use cylinder and cone primitives.

Objective 6: Texture mapping

Figure 6: Texture-mapped dice with 0.1 reflectivity.

Texture maps are done using vertex texture values included in the obj file. They are generated
by Blender using its UV-mapping system, which allows for precisely-mapped textures.



Zhou 8 of 14

Objective 7: Bump mapping

Figure 7: Bump map applied to the left die with lighting in two locations to show texture.

Bump mapping is applied using a height map. We use some pre-defined delta value (in this case,
0.001) and compute a changed normal vector. We then calculate the transformation between
the original normal and the changed normal and apply it to the normal of the collision.



Zhou 9 of 14

Objective 8 and 9: Photon mapping

Figure 8: Photon mapping with k = 1 nearest neighbour at 100000 photons and modified lighting
to show photon casting and caustics. Note that the final version does not allow photons
that did not go through another surface to be absorbed.

Figure 9: Photon mapping with k = 30 nearest neighbours at 100000 photons and standard
lighting to show photon gathering.



Zhou 10 of 14

Figure 10: Each step of the photon-mapping process: before (top-left), caustics photons (top-
right), global illumination photons (bottom-left), sampled and finished (bottom-
right).

The nanoflann library was used for nearest-neighbour search. It uses kD-trees internally.

A fixed number of photons are cast from each point light source with a random direction, one
set for global illumination and one set for caustics. Upon collision with a surface, a Russian
roulette Monte Carlo simulation is used to determine how the photon travels. Because I chose to
use these only for indirect lighting and caustics, I restricted the requirements for absorption as
follows, where L is light, D is a diffuse surface, S is a specular surface, Rl is a reflective surface,
Rr is a refractive surface, and + is at least 1:

– Indirect lighting (global illumination): L(D—S)+D.

– Caustics: L(Rl—Rr)+D.

The reason for this is that it reduces splotchiness overall, and I get to keep regular Phong
lighting. If a photon fails to collide or is absorbed before meeting the requirements, it is treated
as a colourless photon. A photon’s reflective and refractive behaviour make use of the surface’s
material kd, ks, texture colour, reflectivity, and refractivity.



Zhou 11 of 14

Objective 10: Architectural scene

Figure 11: Early render to determine scene contents (above) and final composition (below).



Zhou 12 of 14

Figure 12: Early final render, comparing no photon mapping (left) and with photon mapping
enabled (right). Note the bright caustic spots around the cows and on the grass.

Adaptive antialiasing was used at 2x for the scene. Reflections are enabled for the windows,
cows, and coloured walls. Refractions are present for the pillars. Phong shading is used for the
globe and cows. Both the cylinder and cone were used (cylindrical pillars, cone below globe).
Building, globe, and ground are texture-mapped and bump-mapped. Photon mapping is used
for both global illumination as well as some caustics. Soft shadows are present with 1 degree of
jitter and 20 lighting rays per regular lighting ray.



Zhou 13 of 14

Figure 13: The final render. Took just over 547 minutes (9:07) on an i5-5257U processor multi-
threaded with four threads, with 2x AAA and soft shadows enabled.

Bonus objective 1: Multithreading

Table 2: Timing comparisons vs. single-threaded for modified simple-cows.lua on an i5-5257U
with 2c/4t. Times taken are average of four trials.

Threads Time taken (s) Speed-up ratio Thread efficiency

1 29.495 1.0 100%
2 14.927 1.98 98.8%
3 14.171 2.08 69.4%
4 13.749 2.15 53.6%
8 13.960 2.11 26.4%
16 14.113 2.09 13.1%

We see that the threading efficiency occurs with two threads, which corresponds to the two
physical cores in the CPU. The maximum speed-up is seen with four threads, which corresponds
to the four hyperthreaded logical cores of the CPU. Beyond four threads, the time required
to synchronize and task switch actually slow the performance down. Note that in the final
implementation, the ray tracer will either use the C++-detected number of logical cores as
threads, if present, or fall back to four.



Zhou 14 of 14

Bonus objective 2: Soft shadows

Figure 14: Monte Carlo soft shadows with 5◦ jitter, using, in order, 10, 50, and 5000 lighting
rays per original lighting ray.

The rendering times increase more than linearly with soft shadow count due to adaptive an-
tialiasing. It was found experimentally that 1◦ jitter with 40 lighting rays per original lighting
ray gave reasonable results at lower resolutions with sufficient fidelity. This is the setting that
will be used in the final render.


	Objective 1: Adaptive antialiasing (AAA)
	Objective 2: Reflections
	Objective 3: Refractions
	Objective 4: Phong shading
	Objective 5: Primitives
	Objective 6: Texture mapping
	Objective 7: Bump mapping
	Objective 8 and 9: Photon mapping
	Objective 10: Architectural scene
	Bonus objective 1: Multithreading
	Bonus objective 2: Soft shadows

