CS 497: Electronic Market Design

Kate Larson

David R. Cheriton School of Computer Science University of Waterloo

Outline

- 1 Introduction
- 2 Game Theory
- Mechanism Design

- Kate Larson
 - Faculty Member in CS
 - Member of the AI research group
- Research Interests: Multiagent Systems
 - Strategic Reasoning
 - bounded rationality/limited resources
 - Electronic market design

- Growth in settings where there are multiple self-interested interacting parties
 - Networks
 - Electronic markets
 - Game playing...
- To act optimally, participants must take into account how other agents are going to act
- We want to be able to
 - Understand the ways in which agents will interact and behave
 - Design systems so that agents behave the way we would like

- Growth in settings where there are multiple self-interested interacting parties
 - Networks
 - Electronic markets
 - Game playing...
- To act optimally, participants must take into account how other agents are going to act
- We want to be able to
 - Understand the ways in which agents will interact and behave
 - Design systems so that agents behave the way we would like

- Growth in settings where there are multiple self-interested interacting parties
 - Networks
 - Electronic markets
 - Game playing...
- To act optimally, participants must take into account how other agents are going to act
- We want to be able to
 - Understand the ways in which agents will interact and behave
 - Design systems so that agents behave the way we would like

Two Communities

Economics

- Traditional emphasis on game theoretic rationality
- Describing how agents should behave
- Multiple self-interested agents

Computer Science

- Traditional emphasis on computational and informational constraints
- Building agents
- Individual or cooperative agents

Two Communities

Economics

- Traditional emphasis on game theoretic rationality
- Describing how agents should behave
- Multiple self-interested agents

Computer Science

- Traditional emphasis on computational and informational constraints
- Building agents
- Individual or cooperative agents

New Research Problems

- How do we use game theory and mechanism design in computer science settings?
- How do we resolve conflicts between game-theoretic and computational constraints?
- Development of new theories, methodologies and models

New Research Area

Explosion of research in the area (Algorithmic game theory, computational mechanism design, Distributed algorithmic mechanism design, computational game theory,...)

- Papers appearing in AAAI, AAMAS, UAI, NIPS, PODC, SIGCOMM, INFOCOMM, SODA, STOC, FOCS, ...
- Papers by CS researchers appearing in Games and Economic Behavior, Journal of Economic Theory, Econometrica,...
- Numerous workshops and meetings,...

Today's Lecture

Today I will provide an overview of some key game theory and mechanism design concepts:

- What is a game?
- What is a solution concept for a game?
- What is a mechanism?

Self-Interested Agents

We are interested in **self-interested** agents.

It does not mean that

- they want to harm other agents
- they only care about things that benefit them

It means that

 the agent has its own description of states of the world that it likes, and that its actions are motivated by this description

Self-Interested Agents

We are interested in **self-interested** agents.

It does not mean that

- they want to harm other agents
- they only care about things that benefit them

It means that

 the agent has its own description of states of the world that it likes, and that its actions are motivated by this description

Self-Interested Agents

We are interested in **self-interested** agents.

It does not mean that

- they want to harm other agents
- they only care about things that benefit them

It means that

 the agent has its own description of states of the world that it likes, and that its actions are motivated by this description

The study of games!

- Bluffing in poker
- What move to make in chess
- How to play Rock-Scissors-Paper

Also study of auction design, strategic deterrence, election laws, coaching decisions, routing protocols,...

The study of games!

- Bluffing in poker
- What move to make in chess
- How to play Rock-Scissors-Paper

Also study of auction design, strategic deterrence, election laws, coaching decisions, routing protocols,...

Game theory is a formal way to analyze **interactions** among a **group** of **rational** agents who behave **strategically**.

Game theory is a formal way to analyze **interactions** among a **group** of **rational** agents who behave **strategically**.

Group: Must have more than one decision maker

Otherwise you have a decision problem, not a game

Solitaire is not a game.

Game theory is a formal way to analyze **interactions** among a **group** of **rational** agents who behave **strategically**.

Interaction: What one agent does directly affects at least one other agent

Strategic: Agents take into account that their actions influence the game

Rational: An agent chooses its best action (maximizes its expected utility)

Normal Form

aka Strategic Form

A normal form game is defined by

- Finite set of agents (or players) N, |N| = n
- Each agent i has an action space Ai
 - A_i is non-empty and finite
- Outcomes are defined by action profiles $(a = (a_1, ..., a_n))$ where a_i is the action taken by agent i
 - Notation: $a_{-i} = (a_1, \dots, a_{i-1}, a_{i+1}, a_n)$ and $a = (a_i, a_{-i})$
- Each agent has a utility function $u_i : A_1 \times ... \times A_n \mapsto \mathbb{R}$

Examples

Prisoners' Dilemma

	С	D
С	-1,-1	-4,0
D	0,-4	-3,-3

Pure coordination game ∀ action profiles a ∈ A · × · × A · and ∀ i · i

$a \in A_1$	× ×	A_n	and	$\forall i, j,$
$u_i(a) =$	$u_j(a)$.			

	L	R
L	1,1	0,0
R	0,0	1,1

Agents do not have conflicting interests. Their sole challenge is to coordinate on an action which is good for all.

Examples

Prisoners' Dilemma

	С	D
С	-1,-1	-4,0
D	0,-4	-3,-3

Pure coordination game

 \forall action profiles $a \in A_1 \times \ldots \times A_n$ and $\forall i, j, u_i(a) = u_i(a)$.

	L	R
L	1,1	0,0
R	0,0	1,1

Agents do not have conflicting interests. Their sole challenge is to coordinate on an action which is good for all.

Zero-sum games

 $\forall a \in A_1 \times A_2$, $u_1(a) + u_2(a) = 0$. That is, one player gains at the other player's expense.

Matching Pennies

	Н	Т
Н	1,-1	-1, 1
Т	-1,1	1,-1

	Н	Τ
Н	1	-1
Т	-1	1

Given the utility of one agent, the other's utility is known.

More Examples

Most games have elements of both cooperation and competition.

BoS

	Н	ഗ
Н	2,1	0,0
S	0,0	1,2

Hawk-Dove

	D	Н
D	3,3	1,4
Н	4,1	0,0

More Examples

Most games have elements of both cooperation and competition.

BoS

	Н	S
Н	2,1	0,0
S	0,0	1,2

Hawk-Dove

	D	Η
D	3,3	1,4
Н	4,1	0,0

Strategies

Notation: Given set X, let ΔX be the set of all probability distributions over X.

Definition

A strategy s_i is a probability distribution over A_i . $s_i(a_i)$ is the probability action a_i will be played by mixed strategy s_i .

Definitior

A pure strategy, s_i , is a strategy such that there exists an action $a_j \in A_i$ and $s_i(a_j) = 1$. We often use $s_i = a_j$ to denote a pure strategy.

Strategies

Notation: Given set X, let ΔX be the set of all probability distributions over X.

Definition

A strategy s_i is a probability distribution over A_i . $s_i(a_i)$ is the probability action a_i will be played by mixed strategy s_i .

Definition

A pure strategy, s_i , is a strategy such that there exists an action $a_j \in A_i$ and $s_i(a_j) = 1$. We often use $s_i = a_j$ to denote a pure strategy.

Expected Utility

The expected utility of agent *i* given strategy profile *s* is

$$u_i(s) = \sum_{a \in A} u_i(a) \prod_{j=1}^n s_j(a_j)$$

Example

C D
C -1,-1 -4,0
D 0 -4 -3 -3

Given strategy profile

$$s = ((\frac{1}{2}, \frac{1}{2}), (\frac{1}{10}, \frac{9}{10}))$$

$$u_1 = -1(\frac{1}{2})(\frac{1}{10}) - 4(\frac{1}{2})(\frac{9}{10}) - 3(\frac{1}{2})(\frac{9}{10}) = -3.2$$

$$u_2 = -1(\frac{1}{2})(\frac{1}{10}) - 4(\frac{1}{2})(\frac{1}{10}) - 3(\frac{1}{2})(\frac{9}{10}) = -1.6$$

Best-response

Given a game, what strategy should an agent choose? We first consider only pure strategies.

Definition

Given a_{-i} , the best-response for agent i is $a_i \in A_i$ such that

$$u_i(a_i^*, a_{-i}) \geq u_i(a_i', a_{-i}) \forall a_i' \in A_i$$

Note that the best response may not be unique. A best-response set is

$$B_i(a_{-i}) = \{a_i \in A_i | u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i}) \forall a_i' \in A_i\}$$

Nash Equilibrium

Definition

A profile a^* is a Nash equilibrium if $\forall i$, a_i^* is a best response to a_{-i}^* . That is

$$\forall i u_i(a_i^*, a_{-i}^*) \geq u_i(a_i', a_{-i}^*) \ \forall a_i' \in A_i$$

Equivalently, a* is a Nash equilibrium if ∀i

$$a_i^* \in B(a_{-i}^*)$$

Examples

BoS		
HT		
Н	2,1	0,0
Т	0.0	1.2

viatching Pennies				
	Н	Т		
Н	1,-1	-1,1		
Т	1 1	1 1		

Nash Equilibria

We need to extend the definition of a Nash equilibrium. Strategy profile s^* is a Nash equilibrium is for all i

$$u_i(s_i^*, s_{-i}^*) \geq u_i(s_i', s_{-i}^*) \ \forall s_i' \in S_i$$

Similarly, a best-response set is

$$B(s_{-i}) = \{s_i \in S_i | u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i}) \forall s_i' \in S_i\}$$

Examples

BoS		
	Н	Т
Н	2,1	0,0
Т	0,0	1,2

viatching Pennies			
	Н	Т	
Н	1,-1	-1,1	
Т	_1 1	1 _1	

Existence of Nash Equilibria

Theorem (Nash, 1950)

Every finite normal form game has a Nash equilibrium.

Nobel Prize in Economics (1994)
Shared with Harsanyi and Selten.

Proof

Beyond scope of course of todays lecture.

Basic idea: Define set *X* to be all mixed strategy profiles.

Show that it has nice properties (compact and convex).

Define $f: X \mapsto 2^X$ to be the best-response set function, i.e.

given s, f(s) is the set all strategy profiles $s' = (s'_1, \ldots, s'_n)$ such

that s'_i is i's best response to s'_{-i} .

Show that *f* satisfies required properties of a fixed point theorem (Kakutani's or Brouwer's).

Then, f has a fixed point, i.e. there exists s such that f(s) = s.

This s is mutual best-response – NE!

Interpretations of Nash Equilibria

- Consequence of rational inference
- Focal point
- Self-enforcing agreement
- Stable social convention
- ...

For some games we can find equilibria easily:

Zero-sum games can be represented by a linear program

For arbitrary games, the problem is PPAD-complete. (What does this mean?)

- 2-player games have the same complexity as k-player games and finding fixed points
- There is some evidence that no efficient solutions exist for such problems

For some games we can find equilibria easily:

Zero-sum games can be represented by a linear program

For arbitrary games, the problem is PPAD-complete. (What does this mean?)

- 2-player games have the same complexity as k-player games and finding fixed points
- There is some evidence that no efficient solutions exist for such problems

For some games we can find equilibria easily:

Zero-sum games can be represented by a linear program

For arbitrary games, the problem is PPAD-complete. (What does this mean?)

- 2-player games have the same complexity as k-player games and finding fixed points
- There is some evidence that no efficient solutions exist for such problems

For some games we can find equilibria easily:

Zero-sum games can be represented by a linear program

For arbitrary games, the problem is PPAD-complete. (What does this mean?)

- 2-player games have the same complexity as k-player games and finding fixed points
- There is some evidence that no efficient solutions exist for such problems

Finding Nash Equilibria

- Games can be represented as LCPs
 - Lemke-Howson algorithm
- Reduce games by removing (dominated) strategies

Finding Nash Equilibria

- Games can be represented as LCPs
 - Lemke-Howson algorithm
- Reduce games by removing (dominated) strategies

Finding Nash Equilibria

- Games descriptions can be abstracted
 - Currently do this in poker playing programs
- Take advantage in underlying structure of the agents' interactions
 - Graphical Games (Kearns et al) and Action-Graph Games (Bhat et al)

Other Solution Concepts

Often Nash is too weak a solution concept

- Implicit knowledge (and common knowledge) assumptions
- Fragile
- Multiple Nash equilibria (does not always remove "unreasonable" outcomes)

Other solution concepts

- Dominant strategy equilibria
- Subgame perfect equilibria
- Bayes-Nash equilibria
- etc.

Other Solution Concepts

Often Nash is too weak a solution concept

- Implicit knowledge (and common knowledge) assumptions
- Fragile
- Multiple Nash equilibria (does not always remove "unreasonable" outcomes)

Other solution concepts

- Dominant strategy equilibria
- Subgame perfect equilibria
- Bayes-Nash equilibria
- etc.

Mechanism Design

Game Theory asks

• Given a game, what should rational agents do?

Mechanism Design asks

- Given rational agents, what sort of game should we design?
- Can we guarantee that agents will reach an outcome with the properties we want
 - maximize social welfare, maximize revenue, fairness criteria....

Example

- We want to find the least-cost route from S to T.
- Costs are private information we do not know them
- We do know that agents (nodes) are interested in maximizing revenue
- How can we use this to figure out the least-cost route?

- Set of possible outcomes O
- Set of agents N, |N| = n
 - Each agent *i* has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevant to the agent's decision making
- Utility $u_i(o, \theta_i)$ over outcome $o \in O$
- Recall: goal is to implement some system wide solution
 - Captured by a social choice function

$$f:\Theta_1\times\ldots\times\Theta_n\to O$$

- Set of possible outcomes O
- Set of agents N, |N| = n
 - Each agent *i* has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevant to the agent's decision making
- Utility $u_i(o, \theta_i)$ over outcome $o \in O$
- Recall: goal is to implement some system wide solution
 - Captured by a social choice function

$$f:\Theta_1\times\ldots\times\Theta_n\to O$$

- Set of possible outcomes O
- Set of agents N, |N| = n
 - Each agent *i* has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevant to the agent's decision making
- Utility $u_i(o, \theta_i)$ over outcome $o \in O$
- Recall: goal is to implement some system wide solution
 - Captured by a social choice function

$$f:\Theta_1\times\ldots\times\Theta_n\to O$$

- Set of possible outcomes O
- Set of agents N, |N| = n
 - Each agent *i* has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevant to the agent's decision making
- Utility $u_i(o, \theta_i)$ over outcome $o \in O$
- Recall: goal is to implement some system wide solution
 - Captured by a social choice function

$$f:\Theta_1\times\ldots\times\Theta_n\to O$$

- Set of possible outcomes O
- Set of agents N, |N| = n
 - Each agent *i* has type $\theta_i \in \Theta_i$
 - Type captures all private information that is relevant to the agent's decision making
- Utility $u_i(o, \theta_i)$ over outcome $o \in O$
- Recall: goal is to implement some system wide solution
 - Captured by a social choice function

$$f: \Theta_1 \times \ldots \times \Theta_n \to O$$

Examples of Social Choice Functions

- Voting:
 - Choose a candidate among a group
- Public project:
 - Decide whether to build a swimming pool whose cost must be funded by the agents themselves
- Allocation:
 - Allocate a single, indivisible item to one agent in a group

Examples of Social Choice Functions

- Voting:
 - Choose a candidate among a group
- Public project:
 - Decide whether to build a swimming pool whose cost must be funded by the agents themselves
- Allocation:
 - Allocate a single, indivisible item to one agent in a group

Examples of Social Choice Functions

- Voting:
 - Choose a candidate among a group
- Public project:
 - Decide whether to build a swimming pool whose cost must be funded by the agents themselves
- Allocation:
 - Allocate a single, indivisible item to one agent in a group

Mechanisms

Recall that we want to implement a social choice function

- Need to know agents' preferences
- They may not reveal them to us truthfully

Example:

- One item to allocate, and want to give it to agent who values it the most
- If we just ask agents to tell us their true preferences, they may lie

I want the bear!

I want it more!

Mechanism Design Problem

- By having agents interact through an institution we might be able to solve the problem
- Mechanism:

$$M = (S_1, \ldots, S_n, g(\cdot))$$

where

- S_i is the strategy space of agent i
- $g: S_1 \times ... \times S_n \rightarrow O$ is the outcome function

Mechanism Design Problem

- By having agents interact through an institution we might be able to solve the problem
- Mechanism:

$$M = (S_1, \ldots, S_n, g(\cdot))$$

where

- S_i is the strategy space of agent i
- $g: S_1 \times ... \times S_n \rightarrow O$ is the outcome function

Definition

A mechanism $M = (S_1, ..., S_n, g(\cdot))$ implements social choice function $f(\Theta)$ if there is an equilibrium strategy profile

$$s^* = (s_1^*(\theta_1), \dots, s_n^*(\theta_n))$$

of the game induced by M such that

$$g(s_1^*(\theta_1),\ldots,s_n^*(\theta_n))=f(\theta_1,\ldots,\theta_n)$$

for all

$$(\theta_1,\ldots,\theta_n)\in\Theta_1\times\ldots\times\Theta_n$$

We did not specify the type of equilibrium in the definition

Nash

$$u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \geq u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Bayes-Nash

$$E[u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)] \ge E[u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)]$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Dominant

$$u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \ge u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*, \forall s_{-i}$$

We did not specify the type of equilibrium in the definition

Nash

$$u_i(g(s_i^*(\theta_i),s_{-i}^*(\theta_{-i})),\theta_i) \geq u_i(g(s_i'(\theta_i),s_{-i}^*(\theta_{-i})),\theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Bayes-Nash

$$E[u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)] \ge E[u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)]$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Dominant

$$u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \ge u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*, \forall s_i$$

We did not specify the type of equilibrium in the definition

Nash

$$u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \geq u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Bayes-Nash

$$E[u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)] \ge E[u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)]$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*$$

Dominant

$$u_i(g(s_i^*(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i) \ge u_i(g(s_i'(\theta_i), s_{-i}^*(\theta_{-i})), \theta_i)$$

$$\forall i, \forall \theta_i, \forall s_i' \neq s_i^*, \forall s_{-i}$$

Direct Mechanisms

Definition

A direct mechanism is a mechanism where

$$S_i = \Theta_i$$
 for all i

and

$$g(\theta) = f(\theta)$$
 for all $\theta \in \Theta_1 \times \ldots \times \Theta_n$

Incentive Compatibility

Definition

A direct mechanism is **incentive compatible** if it has an equilibrium s* where

$$s_i^*(\theta_i) = \theta_i$$

for all $\theta_i \in \Theta_i$ and for all i. That is, truth-telling by all agents is an equilibrium.

Definition

A direct mechanism is **strategy-proof** if it is incentive compatible and the equilibrium is a dominant strategy equilibrium.

Incentive Compatibility

Definition

A direct mechanism is **incentive compatible** if it has an equilibrium s* where

$$s_i^*(\theta_i) = \theta_i$$

for all $\theta_i \in \Theta_i$ and for all i. That is, truth-telling by all agents is an equilibrium.

Definition

A direct mechanism is **strategy-proof** if it is incentive compatible and the equilibrium is a dominant strategy equilibrium.

Revelation Principle

Theorem

Suppose there exists a mechanism $M = (S_1, \dots, S_n, g(\cdot))$ that implements social choice function f in dominant strategies. Then there is a direct strategy-proof mechanism M' which also implements f.

[Gibbard 73; Green & Laffont 77; Myerson 79]

"The computations that go on within the mind of any bidder in the nondirect mechanism are shifted to become part of the mechanism in the direct mechanism."

[McAfee & McMillan 87]

Revelation Principle

Theorem

Suppose there exists a mechanism $M = (S_1, ..., S_n, g(\cdot))$ that implements social choice function f in dominant strategies. Then there is a direct strategy-proof mechanism M' which also implements f.

[Gibbard 73; Green & Laffont 77; Myerson 79]

"The computations that go on within the mind of any bidder in the nondirect mechanism are shifted to become part of the mechanism in the direct mechanism."

[McAfee & McMillan 87]

Revelation Principle: Intuition

Literal interpretation: Need only study direct mechanisms

- A modeler can limit the search for an optimal mechanism to the class of direct IC mechanisms
- If no direct mechanism can implement social choice function f then no mechanism can
- Useful because the space of possible mechanisms is huge

- Literal interpretation: Need only study direct mechanisms
 - A modeler can limit the search for an optimal mechanism to the class of direct IC mechanisms
 - If no direct mechanism can implement social choice function f then no mechanism can
 - Useful because the space of possible mechanisms is huge

- Literal interpretation: Need only study direct mechanisms
 - A modeler can limit the search for an optimal mechanism to the class of direct IC mechanisms
 - If no direct mechanism can implement social choice function f then no mechanism can
 - Useful because the space of possible mechanisms is huge

- Literal interpretation: Need only study direct mechanisms
 - A modeler can limit the search for an optimal mechanism to the class of direct IC mechanisms
 - If no direct mechanism can implement social choice function f then no mechanism can
 - Useful because the space of possible mechanisms is huge

Practical Implications

- Incentive-compatibility is "free"
 - Any outcome implemented by mechanism M can be implemented by incentive-compatible mechanism M'
- "Fancy" mechanisms are unnecessary
 - Any outcome implemented by a mechanism with complex strategy space S can be implemented by a direct mechanism

BUT Lots of mechanisms used in practice are not direct and incentive-compatible!

Practical Implications

- Incentive-compatibility is "free"
 - Any outcome implemented by mechanism M can be implemented by incentive-compatible mechanism M'
- "Fancy" mechanisms are unnecessary
 - Any outcome implemented by a mechanism with complex strategy space S can be implemented by a direct mechanism

BUT Lots of mechanisms used in practice are not direct and incentive-compatible!

Practical Implications

- Incentive-compatibility is "free"
 - Any outcome implemented by mechanism M can be implemented by incentive-compatible mechanism M'
- "Fancy" mechanisms are unnecessary
 - Any outcome implemented by a mechanism with complex strategy space S can be implemented by a direct mechanism

BUT Lots of mechanisms used in practice are not direct and incentive-compatible!

Quick Review

We now know

- What a mechanism is
- What it means for a SCF to be dominant-strategy implementable
- Revelation Principle

We do not yet know

What types of SCF are dominant-strategy implementable

Quick Review

We now know

- What a mechanism is
- What it means for a SCF to be dominant-strategy implementable
- Revelation Principle

We do not yet know

What types of SCF are dominant-strategy implementable

Gibbard-Satterthwaite Impossibility

Theorem

Assume that

- O is finite and $|O| \ge 3$,
- each $o \in O$ can be achieved by SCF f for some θ , and
- ⊖ includes all possible strict orderings over O.

Then f is implementable in dominant strategies (strategy-proof) if and only if it is dictatorial.

Definition

SCF f is dictatorial if there is an agent i such that for all 6

$$f(\theta) \in \{o \in O | u_i(o, \theta_i) \ge u_i(o', \theta_i) \forall o' \in O\}$$

Gibbard-Satterthwaite Impossibility

Theorem

Assume that

- O is finite and $|O| \ge 3$,
- each $o \in O$ can be achieved by SCF f for some θ , and
- ⊖ includes all possible strict orderings over O.

Then f is implementable in dominant strategies (strategy-proof) if and only if it is dictatorial.

Definition

SCF f is **dictatorial** if there is an agent i such that for all θ

$$f(\theta) \in \{o \in O | u_i(o, \theta_i) \ge u_i(o', \theta_i) \forall o' \in O\}$$

Circumventing Gibbard-Satterthwaite

- Use a weaker equilibrium concept
- Design mechanisms where computing a beneficial manipulation is hard
- Randomization
- Restrict the structure of agents' preferences

Quasi-linear preferences

- Outcome $o = (x, t_1, \dots, t_n)$
 - x is a "project choice"
 - $t_i \in \mathbb{R}$ are transfers (money)
- Utility function of agent i

$$u_i(o, \theta_i) = v_i(x, \theta_i) - t_i$$

Quasi-linear mechanism

$$M = (S_1, \ldots, S_n, g(\cdot))$$

where

$$g(\cdot) = (x(\cdot), t_1(\cdot), \dots, t_n(\cdot))$$

Quasi-linear preferences

- Outcome $o = (x, t_1, \dots, t_n)$
 - x is a "project choice"
 - $t_i \in \mathbb{R}$ are transfers (money)
- Utility function of agent i

$$u_i(o, \theta_i) = v_i(x, \theta_i) - t_i$$

Quasi-linear mechanism

$$M = (S_1, \ldots, S_n, g(\cdot))$$

where

$$g(\cdot) = (x(\cdot), t_1(\cdot), \dots, t_n(\cdot))$$

Quasi-linear preferences

- Outcome $o = (x, t_1, \dots, t_n)$
 - x is a "project choice"
 - $t_i \in \mathbb{R}$ are transfers (money)
- Utility function of agent i

$$u_i(o, \theta_i) = v_i(x, \theta_i) - t_i$$

Quasi-linear mechanism

$$M = (S_1, \ldots, S_n, g(\cdot))$$

where

$$g(\cdot) = (x(\cdot), t_1(\cdot), \dots, t_n(\cdot))$$

Social Choice Functions and Quasi-linearity

• SCF is **efficient** if for all θ

$$\sum_{i=1}^{n} v_i(\mathbf{x}(\theta), \theta_i) \geq \sum_{i=1}^{n} v_i(\mathbf{x}'(\theta), \theta_i) \forall \mathbf{x}'(\theta)$$

This is also known as social welfare maximizing

SCF is budget-balanced if

$$\sum_{i=1}^n t_i(\theta) = 0$$

Weakly budget-balanced if

$$\sum_{i=1}^n t_i(\theta) \ge 0$$

Social Choice Functions and Quasi-linearity

• SCF is **efficient** if for all θ

$$\sum_{i=1}^{n} v_i(\mathbf{x}(\theta), \theta_i) \geq \sum_{i=1}^{n} v_i(\mathbf{x}'(\theta), \theta_i) \forall \mathbf{x}'(\theta)$$

This is also known as social welfare maximizing

SCF is budget-balanced if

$$\sum_{i=1}^n t_i(\theta) = 0$$

Weakly budget-balanced if

$$\sum_{i=1}^n t_i(\theta) \geq 0$$

Groves Mechanisms [Groves 73]

A **Groves mechanism** $M = (S_1, ..., S_n, (x, t_1, ..., t_n))$ is defined by

Choice rule

$$x^*(\theta) = \arg\max_{x} \sum_{i} v_i(x, \theta_i)$$

Transfer rules

$$t_i(\theta) = h_i(\theta_{-i}) - \sum_{j \neq i} v_j(x^*(\theta), \theta_j)$$

where $h_i(\cdot)$ is an (arbitrary) function that does not depend on the reported type θ'_i of agent i.

Groves Mechanisms [Groves 73]

A Groves mechanism $M = (S_1, ..., S_n, (x, t_1, ..., t_n))$ is defined by

Choice rule

$$x^*(\theta) = \arg\max_{x} \sum_{i} v_i(x, \theta_i)$$

Transfer rules

$$t_i(\theta) = h_i(\theta_{-i}) - \sum_{j \neq i} v_j(x^*(\theta), \theta_j)$$

where $h_i(\cdot)$ is an (arbitrary) function that does not depend on the reported type θ'_i of agent i.

Groves Mechanisms [Groves 73]

A **Groves mechanism** $M = (S_1, ..., S_n, (x, t_1, ..., t_n))$ is defined by

Choice rule

$$x^*(\theta) = \arg\max_{x} \sum_{i} v_i(x, \theta_i)$$

Transfer rules

$$t_i(\theta) = h_i(\theta_{-i}) - \sum_{i \neq i} v_j(x^*(\theta), \theta_j)$$

where $h_i(\cdot)$ is an (arbitrary) function that does not depend on the reported type θ'_i of agent i.

Groves Mechanisms

Theorem

Groves mechanisms are strategy-proof and efficient.

We have gotten around Gibbard-Satterthwaite.

Proof

Agent *i*'s utility for strategy $\hat{\theta}_i$, given $\hat{\theta}_{-i}$ from agents $j \neq i$ is

$$u_{i}(\hat{\theta}_{i}) = v_{i}(\mathbf{x}^{*}(\hat{\theta}, \theta_{i})) - t_{i}(\hat{\theta})$$

$$= v_{i}(\mathbf{x}^{*}(\hat{\theta}, \theta_{i})) + \sum_{j \neq i} v_{j}(\mathbf{x}^{*}(\hat{\theta}, \hat{\theta}_{j}) - h_{i}(\hat{\theta}_{-i}))$$

Ignore $h_i(\hat{\theta}_{-i})$ and notice $x^*(\hat{\theta}) = \arg\max_x \sum_i v_i(x,\hat{\theta}_i)$ i.e it maximizes the sum of reported values. Therefore, agent i should announce $\hat{\theta}_i = \theta_i$ to maximize its own payoff.

Thm: Groves mechanisms are unique (up to $h_i(\theta_{-i})$).

Vickrey-Clarke-Groves Mechanism

aka Clarke mechanism, aka Pivotal mechanism

Implement efficient outcome

$$x^* = \arg\max_{x} \sum_{i} v_i(x, \theta_i)$$

Compute transfers

$$t_i(\theta) = \sum_{j \neq i} v_j(x^{-i}, \theta_j) - \sum_{j \neq i} v_j(x^*, \theta_j)$$

where
$$x^{-i} = \arg\max_{x} \sum_{j \neq i} v_j(x, \theta_j)$$

VCG are efficient and strategy-proof.

Vickrey-Clarke-Groves Mechanism

aka Clarke mechanism, aka Pivotal mechanism

Implement efficient outcome

$$x^* = \arg\max_{x} \sum_{i} v_i(x, \theta_i)$$

Compute transfers

$$t_i(\theta) = \sum_{j \neq i} v_j(\mathbf{x}^{-i}, \theta_j) - \sum_{j \neq i} v_j(\mathbf{x}^*, \theta_j)$$

where
$$x^{-i} = arg \max_{x} \sum_{j \neq i} v_j(x, \theta_j)$$

VCG are efficient and strategy-proof.

VCG Mechanism

Agent's equilibrium utility is

$$u_i((x^*, t), \theta_i) = v_i(x^*, \theta_i) - \left[\sum_{j \neq i} v_j(x^{-i}, \theta_j) - \sum_{j \neq i} v_j(x^*, \theta_j) \right]$$

$$= \sum_{j=1}^n v_j(x^*, \theta_j) - \sum_{j \neq i} v_j(x^{-i}, \theta_j)$$

$$= \text{marginal contribution to the welfare of the system}$$

- What outcome will be chosen by M? path ABEF
- How much will AC have to pay?
 - The shortest path taking its declaration into account has a length of 5, and imposes a cost of -5 on agents other than it (since it does not involve it). Likewise, the shortest path without AC's declaration also has a length of 5. Thus, AC's payment is $P_{AC} = (-5) (-5) = 0$
 - This is what we expected since AC is not pivotal
 - Likewise, BD, CE, CF and DF will all pay zero.

- What outcome will be chosen by M? path ABEF
- How much will AC have to pay?
 - The shortest path taking its declaration into account has a length of 5, and imposes a cost of -5 on agents other than it (since it does not involve it). Likewise, the shortest path without AC's declaration also has a length of 5. Thus, AC's payment is $P_{AC} = (-5) (-5) = 0$
 - This is what we expected since AC is not pivotal
 - Likewise, BD, CE, CF and DF will all pay zero.

- What outcome will be chosen by M? path ABEF
- How much will AC have to pay?
 - The shortest path taking its declaration into account has a length of 5, and imposes a cost of -5 on agents other than it (since it does not involve it). Likewise, the shortest path without AC's declaration also has a length of 5. Thus, AC's payment is $P_{AC} = (-5) (-5) = 0$
 - This is what we expected since AC is not pivotal
 - Likewise, BD, CE, CF and DF will all pay zero.

- What outcome will be chosen by M? path ABEF
- How much will AC have to pay?
 - The shortest path taking its declaration into account has a length of 5, and imposes a cost of -5 on agents other than it (since it does not involve it). Likewise, the shortest path without AC's declaration also has a length of 5. Thus, AC's payment is $P_{AC} = (-5) (-5) = 0$
 - This is what we expected since AC is not pivotal
 - Likewise, BD, CE, CF and DF will all pay zero.

• How much will AB pay?

- The shortest path taking AB's declaration into account has a length of 5, and imposes a cost of 2 on other agents.
- The shortest path without AB is ACEF, which has cost of 6.
- Thus $P_{AB} = (-6) (-2) = -4$.

- How much will AB pay?
 - The shortest path taking AB's declaration into account has a length of 5, and imposes a cost of 2 on other agents.
 - The shortest path without AB is ACEF, which has cost of 6.
 - Thus $P_{AB} = (-6) (-2) = -4$.

- How much will *BE* pay? $p_{BE} = (-6) (-4) = -2$
- How much will *EF* pay? $p_{EF} = (-7) (-4) = -3$
 - EF and BE have the same costs but are paid different amounts. Why?
 - EF has more market power for the other agents, the situation without EF is worse than the situation without BE.

- How much will BE pay? $p_{BE} = (-6) (-4) = -2$
- How much will *EF* pay? $p_{EF} = (-7) (-4) = -3$
 - EF and BE have the same costs but are paid different amounts. Why?
 - EF has more market power for the other agents, the situation without EF is worse than the situation without BE.

- How much will BE pay? $p_{BE} = (-6) (-4) = -2$
- How much will *EF* pay? $p_{EF} = (-7) (-4) = -3$
 - EF and BE have the same costs but are paid different amounts. Why?
 - *EF* has more *market power* for the other agents, the situation without *EF* is worse than the situation without *BE*.

- How much will BE pay? $p_{BE} = (-6) (-4) = -2$
- How much will *EF* pay? $p_{EF} = (-7) (-4) = -3$
 - EF and BE have the same costs but are paid different amounts. Why?
 - EF has more market power for the other agents, the situation without EF is worse than the situation without BE.

- How much will BE pay? $p_{BF} = (-6) (-4) = -2$
- How much will *EF* pay? $p_{EF} = (-7) (-4) = -3$
 - EF and BE have the same costs but are paid different amounts. Why?
 - EF has more market power for the other agents, the situation without EF is worse than the situation without BE

- How much will BE pay? $p_{BF} = (-6) (-4) = -2$
- How much will *EF* pay? $p_{EF} = (-7) (-4) = -3$
 - EF and BE have the same costs but are paid different amounts. Why?
 - EF has more market power for the other agents, the situation without EF is worse than the situation without BE.

