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Introduction

Growth in settings where there are multiple self-interested
interacting parties

Networks
Electronic markets
Game playing...

To act optimally, participants must take into account how
other agents are going to act
We want to be able to

Understand the ways in which agents will interact and
behave
Design systems so that agents behave the way we would
like
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Two Communities

Economics

Traditional emphasis on
game theoretic rationality

Describing how agents
should behave

Multiple self-interested
agents

Computer Science

Traditional emphasis on
computational and
informational constraints

Building agents

Individual or cooperative
agents
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New Research Problems

How do we use game theory and mechanism design in
computer science settings?

How do we resolve conflicts between game-theoretic and
computational constraints?

Development of new theories, methodologies and models
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New Research Area

Explosion of research in the area (Algorithmic game theory,
computational mechanism design, Distributed algorithmic
mechanism design, computational game theory,...)

Papers appearing in AAAI, AAMAS, UAI, NIPS, PODC,
SIGCOMM, INFOCOMM, SODA, STOC, FOCS, ...

Papers by CS researchers appearing in Games and
Economic Behavior, Journal of Economic Theory,
Econometrica,...

Numerous workshops and meetings,...
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Today’s Lecture

Today I will provide an overview of some key game theory and
mechanism design concepts:

What is a game?

What is a solution concept for a game?

What is a mechanism?

Kate Larson CS 497



Introduction
Game Theory

Mechanism Design

Self-Interested Agents

We are interested in self-interested agents.

It does not mean that

they want to harm other agents

they only care about things that benefit them

It means that

the agent has its own description of states of the world that
it likes, and that its actions are motivated by this description
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What is game theory?

The study of games!

Bluffing in poker

What move to make in chess

How to play Rock-Scissors-Paper

Also study of auction design,
strategic deterrence, election
laws, coaching decisions,
routing protocols,...
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Game theory is a formal way to analyze interactions among a
group of rational agents who behave strategically .

Kate Larson CS 497



Introduction
Game Theory

Mechanism Design

What is game theory?
Game theory is a formal way to analyze interactions among a
group of rational agents who behave strategically .

Group: Must have more than one decision maker
Otherwise you have a decision problem, not a game

Solitaire is not
a game.
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What is game theory?

Game theory is a formal way to analyze interactions among a
group of rational agents who behave strategically .

Interaction: What one agent does directly affects at least one
other agent

Strategic: Agents take into account that their actions influence
the game

Rational: An agent chooses its best action (maximizes its
expected utility)
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Normal Form
aka Strategic Form

A normal form game is defined by

Finite set of agents (or players) N, |N| = n
Each agent i has an action space Ai

Ai is non-empty and finite

Outcomes are defined by action profiles (a = (a1, . . . , an)
where ai is the action taken by agent i

Notation: a−i = (a1, . . . , ai−1, ai+1, an) and a = (ai , a−i)

Each agent has a utility function ui : A1 × . . . × An 7→ R

Kate Larson CS 497
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Examples

Prisoners’ Dilemma

C D

C -1,-1 -4,0
D 0,-4 -3,-3

Pure coordination game
∀ action profiles
a ∈ A1 × . . . × An and ∀i , j ,
ui(a) = uj(a).

L R

L 1,1 0,0
R 0,0 1,1

Agents do not have conflicting
interests. Their sole challenge
is to coordinate on an action
which is good for all.
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Zero-sum games

∀a ∈ A1 × A2, u1(a) + u2(a) = 0. That is, one player gains at
the other player’s expense.

Matching Pennies

H T

H 1,-1 -1, 1
T -1,1 1,-1

H T

H 1 -1
T -1 1

Given the utility of one agent,
the other’s utility is known.
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More Examples

Most games have elements of both cooperation and
competition.

BoS

H S

H 2,1 0,0
S 0,0 1,2

Hawk-Dove

D H

D 3,3 1,4
H 4,1 0,0
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Strategies

Notation: Given set X , let ∆X be the set of all probability
distributions over X .

Definition

A strategy si is a probability distribution over Ai . si(ai) is the
probability action ai will be played by mixed strategy si .

Definition
A pure strategy, si , is a strategy such that there exists an action
aj ∈ Ai and si(aj) = 1. We often use si = aj to denote a pure
strategy.
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Expected Utility
The expected utility of agent i given strategy profile s is

ui(s) =
∑

a∈A

ui(a)Πn
j=1sj(aj)

Example

C D

C -1,-1 -4,0
D 0, -4 -3,-3

Given strategy profile
s = ((1

2 , 1
2), ( 1

10 , 9
10))

u1 = −1(
1

2
)(

1

10
) − 4(

1

2
)(

9

10
) − 3(

1

2
)(

9

10
) = −3.2

u2 = −1(
1

2
)(

1

10
) − 4(

1

2
)(

1

10
) − 3(

1

2
)(

9

10
) = −1.6
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Best-response

Given a game, what strategy should an agent choose?
We first consider only pure strategies.

Definition

Given a−i , the best-response for agent i is ai ∈ Ai such that

ui(a
∗
i , a−i) ≥ ui(a

′
i , a−i)∀a′

i ∈ Ai

Note that the best response may not be unique.
A best-response set is

Bi(a−i) = {ai ∈ Ai |ui(ai , a−i) ≥ ui(a
′
i , a−i)∀a′

i ∈ Ai}

Kate Larson CS 497



Introduction
Game Theory

Mechanism Design

Nash Equilibrium

Definition

A profile a∗ is a Nash equilibrium if ∀i , a∗
i is a best response to

a∗
−i . That is

∀iui(a
∗
i , a∗

−i) ≥ ui(a
′
i , a∗

−i) ∀a′
i ∈ Ai

Equivalently, a∗ is a Nash equilibrium if ∀i

a∗
i ∈ B(a∗

−i)

Kate Larson CS 497
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PD
C D

C -1,-1 -4,0
D 0,-4 -3,-3

BoS
H T

H 2,1 0,0
T 0,0 1,2
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Nash Equilibria

We need to extend the definition of a Nash equilibrium.
Strategy profile s∗ is a Nash equilibrium is for all i

ui(s
∗
i , s∗

−i) ≥ ui(s
′
i , s∗

−i) ∀s′
i ∈ Si

Similarly, a best-response set is

B(s−i) = {si ∈ Si |ui(si , s−i ) ≥ ui(s
′
i , s−i)∀s′

i ∈ Si}
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Existence of Nash Equilibria

Theorem (Nash, 1950)

Every finite normal form game has a Nash equilibrium.

Nobel Prize in Economics
(1994)
Shared with Harsanyi and
Selten.
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Proof

Beyond scope of course of todays lecture.

Basic idea: Define set X to be all mixed strategy profiles.
Show that it has nice properties (compact and convex).
Define f : X 7→ 2X to be the best-response set function, i.e.
given s, f (s) is the set all strategy profiles s′ = (s′

1, . . . , s′
n) such

that s′
i is i ’s best response to s′

−i .
Show that f satisfies required properties of a fixed point
theorem (Kakutani’s or Brouwer’s).
Then, f has a fixed point, i.e. there exists s such that f (s) = s.
This s is mutual best-response – NE!
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Interpretations of Nash Equilibria

Consequence of rational inference

Focal point

Self-enforcing agreement

Stable social convention

...
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The existence proof is non-constructive.

For some games we can find equilibria easily:

Zero-sum games can be represented by a linear program

For arbitrary games, the problem is PPAD-complete. (What
does this mean?)

2-player games have the same complexity as k-player
games and finding fixed points

There is some evidence that no efficient solutions exist for
such problems

Finding equilibria with certain properties is often NP-hard.
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Finding Nash Equilibria

Games can be represented as LCPs
Lemke-Howson algorithm

Reduce games by removing (dominated) strategies
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Finding Nash Equilibria
Games descriptions can be abstracted

Currently do this in poker playing programs
Take advantage in underlying structure of the agents’
interactions

Graphical Games (Kearns et al) and Action-Graph Games
(Bhat et al)

Kate Larson CS 497
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Other Solution Concepts

Often Nash is too weak a solution concept

Implicit knowledge (and common knowledge) assumptions

Fragile

Multiple Nash equilibria (does not always remove
“unreasonable” outcomes)

Other solution concepts

Dominant strategy equilibria

Subgame perfect equilibria

Bayes-Nash equilibria

etc.
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Mechanism Design
Game Theory asks

Given a game, what should rational agents do?
Mechanism Design asks

Given rational agents, what sort of game should we
design?
Can we guarantee that agents will reach an outcome with
the properties we want

maximize social welfare, maximize revenue, fairness
criteria,...
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Example

3

A F

3

2

2
1

5
2

1

C

B D

E

cost

We want to find the least-cost route from S to T .

Costs are private information – we do not know them

We do know that agents (nodes) are interested in
maximizing revenue

How can we use this to figure out the least-cost route?
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Fundamentals

Set of possible outcomes O
Set of agents N, |N| = n

Each agent i has type θi ∈ Θi

Type captures all private information that is relevant to the
agent’s decision making

Utility ui(o, θi) over outcome o ∈ O
Recall: goal is to implement some system wide solution

Captured by a social choice function

f : Θ1 × . . . × Θn → O

where f (θ1, . . . , θn) = o is a collective choice
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Examples of Social Choice Functions

Voting:
Choose a candidate among a group

Public project:
Decide whether to build a swimming pool whose cost must
be funded by the agents themselves

Allocation:
Allocate a single, indivisible item to one agent in a group
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Mechanisms

Recall that we want to implement a social choice function

Need to know agents’ preferences

They may not reveal them to us truthfully

Example:

One item to allocate, and want to give it to agent who
values it the most

If we just ask agents to tell us their true preferences, they
may lie

I want the bear!

I want it more!
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Mechanism Design Problem

By having agents interact through an institution we might
be able to solve the problem

Mechanism:
M = (S1, . . . , Sn, g(·))

where
Si is the strategy space of agent i
g : S1 × . . . × Sn → O is the outcome function
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Implementation

Definition

A mechanism M = (S1, . . . , Sn, g(·)) implements social choice
function f (Θ) if there is an equilibrium strategy profile

s∗ = (s∗
1(θ1), . . . , s∗

n(θn))

of the game induced by M such that

g(s∗
1(θ1), . . . , s∗

n(θn)) = f (θ1, . . . , θn)

for all
(θ1, . . . , θn) ∈ Θ1 × . . . × Θn
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Implementation
We did not specify the type of equilibrium in the definition

Nash

ui(g(s∗
i (θi), s∗

−i (θ−i)), θi ) ≥ ui(g(s′
i (θi), s∗

−i(θ−i)), θi)

∀i ,∀θi ,∀s′
i 6= s∗

i

Bayes-Nash

E [ui(g(s∗
i (θi), s∗

−i (θ−i)), θi )] ≥ E [ui(g(s′
i (θi), s∗

−i (θ−i)), θi )]

∀i ,∀θi ,∀s′
i 6= s∗

i

Dominant

ui(g(s∗
i (θi), s∗

−i (θ−i)), θi ) ≥ ui(g(s′
i (θi), s∗

−i(θ−i)), θi)

∀i ,∀θi ,∀s′
i 6= s∗

i ,∀s−i
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Direct Mechanisms

Definition

A direct mechanism is a mechanism where

Si = Θi for all i

and
g(θ) = f (θ) for all θ ∈ Θ1 × . . . × Θn
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Incentive Compatibility

Definition

A direct mechanism is incentive compatible if it has an
equilibrium s∗ where

s∗
i (θi) = θi

for all θi ∈ Θi and for all i . That is, truth-telling by all agents is
an equilibrium.

Definition

A direct mechanism is strategy-proof if it is incentive
compatible and the equilibrium is a dominant strategy
equilibrium.
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for all θi ∈ Θi and for all i . That is, truth-telling by all agents is
an equilibrium.

Definition

A direct mechanism is strategy-proof if it is incentive
compatible and the equilibrium is a dominant strategy
equilibrium.
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Revelation Principle

Theorem

Suppose there exists a mechanism M = (S1, . . . , Sn, g(·)) that
implements social choice function f in dominant strategies.
Then there is a direct strategy-proof mechanism M ′ which also
implements f .
[Gibbard 73; Green & Laffont 77; Myerson 79]

“The computations that go on within the mind of any
bidder in the nondirect mechanism are shifted to
become part of the mechanism in the direct
mechanism.”
[McAfee & McMillan 87]
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Revelation Principle: Intuition
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Theoretical Implications

Literal interpretation: Need only study direct
mechanisms

A modeler can limit the search for an optimal mechanism to
the class of direct IC mechanisms
If no direct mechanism can implement social choice
function f then no mechanism can
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“Fancy” mechanisms are unnecessary
Any outcome implemented by a mechanism with complex
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BUT Lots of mechanisms used in practice are not direct and
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Gibbard-Satterthwaite Impossibility

Theorem
Assume that

O is finite and |O| ≥ 3,

each o ∈ O can be achieved by SCF f for some θ, and

Θ includes all possible strict orderings over O.

Then f is implementable in dominant strategies (strategy-proof)
if and only if it is dictatorial.

Definition

SCF f is dictatorial if there is an agent i such that for all θ

f (θ) ∈ {o ∈ O|ui(o, θi) ≥ ui(o
′, θi)∀o′ ∈ O}
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Circumventing Gibbard-Satterthwaite
Use a weaker equilibrium concept
Design mechanisms where computing a beneficial
manipulation is hard

Randomization
Restrict the structure of agents’ preferences
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Quasi-linear preferences

Outcome o = (x , t1, . . . , tn)

x is a “project choice”
ti ∈ R are transfers (money)

Utility function of agent i

ui(o, θi) = vi(x , θi) − ti

Quasi-linear mechanism

M = (S1, . . . , Sn, g(·))

where
g(·) = (x(·), t1(·), . . . , tn(·))
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Social Choice Functions and Quasi-linearity
SCF is efficient if for all θ

n
∑

i=1

vi(x(θ), θi) ≥
n

∑

i=1

vi(x
′(θ), θi)∀x ′(θ)

This is also known as social welfare maximizing
SCF is budget-balanced if

n
∑

i=1

ti(θ) = 0

Weakly budget-balanced if

n
∑

i=1

ti(θ) ≥ 0
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Groves Mechanisms [Groves 73]

A Groves mechanism M = (S1, . . . , Sn, (x , t1, . . . , tn)) is
defined by

Choice rule

x∗(θ) = arg max
x

∑

i

vi(x , θi)

Transfer rules

ti(θ) = hi(θ−i) −
∑

j 6=i

vj(x
∗(θ), θj)

where hi(·) is an (arbitrary) function that does not depend
on the reported type θ′i of agent i .
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Groves Mechanisms

Theorem

Groves mechanisms are strategy-proof and efficient.

We have gotten around Gibbard-Satterthwaite.
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Proof

Agent i ’s utility for strategy θ̂i , given θ̂−i from agents j 6= i is

ui(θ̂i) = vi(x
∗(θ̂, θi)) − ti(θ̂)

= vi(x
∗(θ̂, θi)) +

∑

j 6=i

vj(x
∗(θ̂, θ̂j) − hi(θ̂−i)

Ignore hi(θ̂−i) and notice x∗(θ̂) = arg maxx
∑

i vi (x , θ̂i)
i.e it maximizes the sum of reported values. Therefore, agent i
should announce θ̂i = θi to maximize its own payoff.

Thm: Groves mechanisms are unique (up to hi(θ−i)).
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Vickrey-Clarke-Groves Mechanism
aka Clarke mechanism, aka Pivotal mechanism

Implement efficient outcome

x∗ = arg max
x

∑

i

vi(x , θi)

Compute transfers

ti(θ) =
∑

j 6=i

vj(x
−i , θj) −

∑

j 6=i

vj(x
∗, θj)

where x−i = arg maxx
∑

j 6=i vj(x , θj)

VCG are efficient and strategy-proof.
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VCG Mechanism

Agent’s equilibrium utility is

ui((x
∗, t), θi) = vi (x

∗, θi) −





∑

j 6=i

vj(x
−i , θj) −

∑

j 6=i

vj(x
∗, θj)





=
n

∑

j=1

vj(x
∗, θj) −

∑

j 6=i

vj(x
−i , θj)

= marginal contribution to the welfare of the system
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VCG Example

3

A F

3

2

2
1

5
2

1

C

B D

E

cost

What outcome will be chosen by M? path ABEF
How much will AC have to pay?

The shortest path taking its declaration into account has a
length of 5, and imposes a cost of -5 on agents other than it
(since it does not involve it). Likewise, the shortest path
without AC’s declaration also has a length of 5. Thus, AC’s
payment is PAC = (−5) − (−5) = 0
This is what we expected since AC is not pivotal
Likewise, BD, CE , CF and DF will all pay zero.
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