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Auctions

Methods for allocating goods, tasks, resources,...
Participants

auctioneer
bidders

Enforced agreement between auctioneer and the winning
bidder(s)

Easily implementable (e.g. over the Internet)
Conventions

Auction: one seller and multiple buyers
Reverse auction: one buyer and multiple sellers
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Auction Settings

Private value: the value of the good depends only on the
agent’s own preferences

e.g a cake that is not resold of showed off

Common value: an agent’s value of an item is determined
entirely by others’ values (valuation of the item is identical
for all agents)

e.g. treasury bills

Correlated value (interdependent value): agent’s value
for an item depends partly on its own preferences and
partly on others’ value for it

e.g. auctioning a transportation task when bidders can
handle it or reauction it to others
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Four Common Auctions

English auction

First-price, sealed-bid auction

Dutch auction

Vickrey auction
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English auction
aka first-price open-cry auction

Protocol: Each bidder is free to raise their bid. When no
bidder is willing to raise, the auction ends and the highest
bidder wins. Highest bidder pays its last bid.

Strategy: Series of bids as a function of agent’s private
value, prior estimates of others’ valuations, and past bids

Best strategy:
Variations:

Auctioneer controls the rate of increase
Open-exit: Bidders have to openly declare exit with no
re-entering possibilities

Kate Larson CS 497



First-price sealed-bid auction

Protocol: Each bidder submits one bid without knowing
others’ bids. The highest bidder wins the item at the price
of it’s bid

Strategy: Bid as a function of agent’s private value and its
prior estimates of others’ valuations

Best strategy:
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Example

Assume there are 2 agents (1 and 2) with values v1, v2 drawn
uniformly from [0, 1]. Utility of agent i if it bids bi and wins is
ui = vi − bi .
Assume that agent 2’s bidding strategy is b2(v2) = v2/2. How
should 1 bid? (i.e. what is b(v1) = z?).

U1 =

∫ 2z

z=0
(v1 − z)dz = (v1 − z)2z = 2zv1 − 2z2

Note: given z = b2(v2) = v2/2, 1 only wins if v2 < 2z
Therefore,

arg max
z

[2zv1 − 2z2] = v1/2

Similar argument for agent 2, assuming b1(v1) = v1/2.
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Example

Assume that there are 2 risk-neutral bidders, 1 and 2.

Agent 1 knows that 2’s value is 0 or 100 with equal
probability

1’s value of 400 is common knowledge

What is a Nash equilibrium?
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Dutch (Aalsmeer) flower auction
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Dutch auction
Descending auction

Protocol: Auctioneer continuously lowers the price until a
bidder takes the item at the current price

Strategy: Bid as a function of agent’s private value and
prior estimates of others’ valuations

Best strategy:

Dutch flower market, Ontario tobacco auctions, Filene’s
basement,...
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Vickrey Auction
aka Second price, sealed bid auction

Protocol: Each bidder submits one bid without knowing
the others’ bids. The highest bidder wins and pays an
amount equal to the second highest bid.

Strategy: Bid as a function of agent’s private value and its
prior estimates of others’ valuations.

Best strategy:

Widely advocated for computational multiagent systems

Old (Vickrey 1961) but not widely used by humans
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Vickrey auction

The Vickrey auction is a special case of the Clarke Tax.
Who pays?

The bidder who takes the item away from the others
(making the others worse off)
Others pay nothing

How much does the winner pay?
The declared value that the good would have had for the
others had the winner stayed home (second highest bid)

Kate Larson CS 497



Vickrey auction

The Vickrey auction is a special case of the Clarke Tax.
Who pays?

The bidder who takes the item away from the others
(making the others worse off)
Others pay nothing

How much does the winner pay?
The declared value that the good would have had for the
others had the winner stayed home (second highest bid)

Kate Larson CS 497



Vickrey auction

The Vickrey auction is a special case of the Clarke Tax.
Who pays?

The bidder who takes the item away from the others
(making the others worse off)
Others pay nothing

How much does the winner pay?
The declared value that the good would have had for the
others had the winner stayed home (second highest bid)

Kate Larson CS 497



Vickrey auction

The Vickrey auction is a special case of the Clarke Tax.
Who pays?

The bidder who takes the item away from the others
(making the others worse off)
Others pay nothing

How much does the winner pay?
The declared value that the good would have had for the
others had the winner stayed home (second highest bid)

Kate Larson CS 497



Results for Private Value Auctions

Dutch and first-price sealed-bid auctions are strategically
equivalent
For risk neutral agents, Vickrey and English auctions are
strategically equivalent

Dominant strategies

All four auctions allocate item efficiently
Assuming no reservation price for the auctioneer
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Revenue

Theorem (Revenue Equivalence)

Suppose that

values are independently and identically distributed and

all bidders are risk neutral.

Then any symmetric and increasing equilibrium of any standard
auction, such that the expected payment of a bidder with value
zero is zero, yields the same expected revenue.

Revenue equivalence fails to hold if agents are not risk neutral.

Risk averse bidders: Dutch, first-price ≥ Vickrey, English

Risk seeking bidders: Dutch, first-price ≤ Vickrey, English

Kate Larson CS 497



Revenue

Theorem (Revenue Equivalence)

Suppose that

values are independently and identically distributed and

all bidders are risk neutral.

Then any symmetric and increasing equilibrium of any standard
auction, such that the expected payment of a bidder with value
zero is zero, yields the same expected revenue.

Revenue equivalence fails to hold if agents are not risk neutral.

Risk averse bidders: Dutch, first-price ≥ Vickrey, English

Risk seeking bidders: Dutch, first-price ≤ Vickrey, English

Kate Larson CS 497



Revenue

Theorem (Revenue Equivalence)

Suppose that

values are independently and identically distributed and

all bidders are risk neutral.

Then any symmetric and increasing equilibrium of any standard
auction, such that the expected payment of a bidder with value
zero is zero, yields the same expected revenue.

Revenue equivalence fails to hold if agents are not risk neutral.

Risk averse bidders: Dutch, first-price ≥ Vickrey, English

Risk seeking bidders: Dutch, first-price ≤ Vickrey, English

Kate Larson CS 497



eBay
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eBay

Kate Larson CS 497



Sniping
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eBay

Kate Larson CS 497



Sponsored Search
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Sponsored Search

Slot 1

Slot 2

Slot 3

Slot 4

<Keyword>

1 Advertisers are ranked and
assigned slots based on
the ranking.

2 If an ad is clicked on, only
then does the advertiser
pay.
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Sponsored Search

Rank-by-relevance

Assign slots in order of (bid)(quality score)

Bidder Bid Quality Score
A 1.50 0.5
B 1.00 0.9
C 0.75 1.5

Ranking
C (1.25)
B (0.9)
A (0.75)
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Sponsored Search

A bidder only pays when its ad is clicked on
How much does it pay?

The lowest price it could have bid and still maintained its
rank

Kate Larson CS 497



Sponsored Search

Bidder Bid Quality Score
A 1.50 0.5
B 1.00 0.9
C 0.75 1.5

Ranking
C (1.25)
B (0.9)
A (0.75)

C will pay p = 0.9/1.5 = 0.6
B will pay p = 0.75/0.9 = 0.8
A will pay ?
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Sponsored Search

There are many questions about sponsored search

Is the current way (Generalized Second Price Auction) the
best way?

Revenue?

Pay-per-what?

Fraud/vindictive behavior?

Budgets?

Should bidders understand how the auction works?

...
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Selling Multiple Items

So far we have only talked about auctioning a single item. What
if we want to sell multiple items?
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Multiple Items

Parallel Auctions

Sequential Auctions

In both these approaches you have the exposure problem.
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Combinatorial Auctions

Allow bidders to submit bids on bundles of items.

<(coffee, donut, $5.00)XOR (cake, tea, $4.50)XOR ...>

Allocation x∗ = arg maxx
∑n

i vi(x) where vi is the bid of
agent i

Payment pi =
∑

j 6=i vj(x ′) −
∑

j 6=i vj(x∗) where x ′ is the
allocation if bidder i had not participated.

Efficient and truthful!
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Spectrum Auctions
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Winner Determination Problem

To run a Combinatorial Auction we must solve

x∗ = arg max
x

n∑
i

vi(x)

Weighted Set-Packing Problem

No PTAS

Kate Larson CS 497



Winner Determination Problem

To run a Combinatorial Auction we must solve

x∗ = arg max
x

n∑
i

vi(x)

Weighted Set-Packing Problem

No PTAS

Kate Larson CS 497



Winner Determination Problem

Special structure in the bids
Limiting choices for the bidders

Approximations and heuristics for the WDP
Can interfere with the incentive properties of the VCG
mechanism

Throw lots of computing power at the problem

Other issues include

Communication and preference elicitation

Design of iterative auctions
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Other research problems

Computational Limitations and Bidding Behaviour

Trading Agent Design (Trading Agent Competition)

Market Design (CATS)

Trust and Reputation in Online Markets

Incentive-based computing

...
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