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CS133: Developing 

Programming Principles

Lecture 12
Arrays as parameters, 

arrays as return types,

partially filled arrays
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Example: 

working with arrays

• Develop a class for a list of birthdays. 

• Use array of Date objects as instance 
variable for class.

public class BirthdayList {

// declare array

private Date[] birthday;

//more code

}
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Example continued

// create BirthdayList object

public BirthdayList(int numFriends) 

{

this.birthday = new Date[numFriends];

Scanner in = new Scanner(System.in);

for (int i = 0; i < this.birthday.length; i++)  

{

this.birthday[i] = 

new Date(in.nextInt(), in.nextInt(), 

in.nextInt());

}

}
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Passing an array as a parameter

• Declare array in parameter list in “usual 
way”:
public ReturnType MethodName( BaseType[] arrayName)

• BaseType can be primitive or class name

• Use array in method in “usual way”
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Arrays as parameters

• Write a method in the BirthdayList
class that prints out birthdays of a 
selection of friends. 

• The birthdays to print will be passed to the 
method as an array of integers.

• Each integer corresponds to the position in 
the array.
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Solution

public void printSelection(int[] whichOne) 

{

for(int i = 0; i < whichOne.length; i++)

{

System.out.println(this.birthday[whichOne[i]]);

}

}
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Using the printSelection method

BirthDayList myDB = new BirthdayList(4);

// Input 12 ints

int[] subset = new int[2];

subset[0] = 0;

subset[1] = 3;

myDB.printSelection(subset);
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Arrays as return types

• Write a method createSelection

• Works like printSelection , but creates 

an array with the selected entries and 
returns it.
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Returning an array from a method

• Create an array of the appropriate size

• Initialize all array entries for the new array

• Use return statement

• Method return type should be BaseType[ ]
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Arrays as return types continued

public Date[] createSelection(int[] whichOne)

{

Date[] smallerArray = new Date[whichOne.length];

for (int i = 0; i < whichOne.length; i++)

{

smallerArray[i] = this.birthday[whichOne[i]];

}

return smallerArray;

}
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Arrays as return types – memory 

model
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Challenge

• Write a method

public Date[] allBirthdaysInMonth(int m)

that returns an array of all entries in 

original list for the given month.
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Partially filled arrays

• An array does not need to have all of its 
positions filled in order to be used.

• By default, when an array is created, 
each entry is filled with the default value 
for the base type:

'' // ASCII character 0char[] a = new char[5];

falseboolean[] a = new boolean[5];

0 // all numeric primitivesint[] a = new int[5];

null // all objectsString[] a = new String[5];

a[1]Type
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Why have partially filled arrays?

• Example:

§An array that represents the number of 

workers in a factory.

§The factory can employ up to 100 people.

§Currently employs 72.

§Array needs to have space for the potential 28 

workers.
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Keeping track of partially filled arrays

• Use a counter variable to know how many 
entries are filled.

• Increment counter when entry is added.

• Use counter instead of length of array 

when iterating.
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Example

• Suppose we want to have a calculator memory.

• It can hold up to 10 values

• Values should be doubles

• Methods should be:

clearMemory() – all 10 cells are set to 0.0

addToMemory(double value) – add value in 
next position, if valid.

maxMemory() – returns the maximum value

sumMemory() – returns the sum of elements
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Example continued

public class CalcMem {

public static final int MEM_SIZE = 10;

private double[] memory = 

new double[MEM_SIZE];

private int numElements = 0;

public void clearMemory() {…}

public void addToMemory(double value) {…}

public double maxMemory() {…}

public double sumMemory() {…}

}
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Sequential search

• The simplest way to search for a value in 
an array.

• Start at index 0 and keep going through 
elements one by one until entry is found or 

end of array is reached.
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Deleting array elements

• Deleting last element: relatively easy

• Deleting middle elements: trickier?
private Date[] bdays;

private int numBdays;

private void arrayDelete(int pos)

{

// How to implement?

}
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Growing arrays

• What should we do when we try to add to a full 
partially filled array?

– Generate an error?

– Grow the array?

• Idea: Make a new array of double the size and 

copy the elements over. 

Why should we double the size?





ERROR: undefined
OFFENDING COMMAND: ��

STACK:


