
1

CS133: Developing

Programming Principles

Lecture 5
Objects, Classes, Methods,

Constructors, Local and Instance

Variables

2

CS133 Course Notes Lecture 5, Slide 2

Object

• A Java program consists of interacting objects.

• An object models a thing (real or abstract). It
has values (attributes) and operations
(methods).

• A class in Java is the code which details how to
create (instantiate) an object of the class and
includes the set of associated operations. A
“template”.

• An object is an instance of a class

3

CS133 Course Notes Lecture 5, Slide 3

Objects and Classes

• Recall: A class defines data (attributes) and
operations on that data (methods).
– Thus, a class defines a type!

• An object is space in memory for the data
specified by a class.
– We say: an object instantiates a class.

– A Java program consists of interacting objects.

• Classes define types that model things:
– Abstract things: coordinates, rectangles, fractions...

– Real things: students, boards, cash registers...

4

CS133 Course Notes Lecture 5, Slide 4

Example of an object

• We can model a cash register.

– Data: balance, number of sales, number of
items sold, amount of revenue

– Operations: check in an item, calculate
subtotals, receive payment...

• This defines a cash register "type".

• We can make the model simpler or more
complex.

5

CS133 Course Notes Lecture 5, Slide 5

Instantiating an object

• Syntax:

Class_Type Name = new Class_Type();

Examples:

Scanner input =

new Scanner(System.in);

CashRegister till =
new CashRegister();

6

CS133 Course Notes Lecture 5, Slide 6

Structure of a Java class

public class ClassName

{

// declare instance variables

// declare methods

}

7

CS133 Course Notes Lecture 5, Slide 7

Instance variables

• Store information about an object.

• Declared in a class but outside a method.

• Accessible to all methods in the class.

• Each object of a class has its own values
for the instance variables.

8

CS133 Course Notes Lecture 5, Slide 8

Declaring instance variables

(primitives)

• Syntax (for primitives):

private Type varName;

or

private Type varName = value;

Examples:
private int numSales = 0;

private double balance = 100.00;

9

CS133 Course Notes Lecture 5, Slide 9

Declaring instance variables (objects)

• Syntax:

private Class_Type varName =

new Class_Type();

Or

private Class_Type varName;

10

CS133 Course Notes Lecture 5, Slide 10

Methods

• A method is a definition of some action
that the object can perform.

• Examples:

String : toLowerCase , length

Scanner : nextLine , nextInt

Board : getPosition , putPeg

11

CS133 Course Notes Lecture 5, Slide 11

Our object’s methods

Cash register objects can:

• Scan an item to be purchased

• Return a subtotal

• Receive payment for a sale ("complete" the sale)
– Maybe make change?

• Indicate the number of sales made

• Indicate the number of items sold

• Indicate the amount of revenue earned

• Receive cash for their balance

• ...

12

CS133 Course Notes Lecture 5, Slide 12

Types of methods

• void methods

perform some action but don’t return a value.
Often change values of instance variables.

Signature:

public void methodName(Parameters)

Example: close() from the Scanner class.

13

CS133 Course Notes Lecture 5, Slide 13

Types of methods continued

• Methods that return a single value

should only perform the actions necessary to
return the value. Answers a question.

Signature:
public Return_Type methodName(Parameters)

Examples:
public int length() String class

public double nextDouble() Scanner class

public String toLowerCase() String class

14

CS133 Course Notes Lecture 5, Slide 14

Partial implementation

public class CashRegister
{ private double balance = 0.00;

private int numSales = 0;
private double currentTotal = 0.00;
// other instance variables omitted

public void addToBalance(double amount) {…}
public void scan(int quantity,

double unitPrice, String description) {…}
public int getNumSales() {…}
// other methods omitted

}

15

CS133 Course Notes Lecture 5, Slide 15

Types of methods: Constructors

• Constructors

Constructors are special methods, which are
only called when an object is created using new.
Generally, they initialize the object. They have
the same name as the class and no return type.

Signature:
public className(Parameters)

Examples:
public Scanner(InputStream source)

16

CS133 Course Notes Lecture 5, Slide 16

Constructors

A class may have several constructors:
public CashRegister(

double initialBalance);

public CashRegister();

17

CS133 Course Notes Lecture 10, Slide 17

Body of a constructor

• Includes assignments to instance
variables.

• Parameters can be used in the
assignment statements.

• Should include any other actions to be
taken when an object is constructed.

18

CS133 Course Notes Lecture 10, Slide 18

Default constructors

• If you don’t specify a constructor in the
class, Java automatically adds an empty
one that does nothing but create a
memory reference and return it.

• Instance variables must be initialized when
declared, or by using mutator methods.

• If at least one constructor is defined, Java
does not create a default constructor.

19

CS133 Course Notes Lecture 10, Slide 19

Use default constructor or write one?

• You almost always want to write constructors.

• Instance variables should be initialized
appropriately before object is used. How?
– Default constructor, combined with mutator methods

(user’s responsibility). (Often bad practice)

– Specialized constructor (programmer’s responsibility).

• If “other actions” are required, specialized
constructor must be written.

20

CS133 Course Notes Lecture 5, Slide 20

Invoking a method

• void methods

objectName. method(Arguments);

Examples:

theTill.addToBalance(5.00);

(where theTill is of type
CashRegister and has been initialized)

21

CS133 Course Notes Lecture 5, Slide 21

Invoking a method continued

• Methods that return values

Variable =

objectName. method(Arguments);

Examples:

int numChars = myString.length();

double amountToPay =

theTill.getSubtotal();

22

CS133 Course Notes Lecture 5, Slide 22

Writing a method

• Methods are part of a class

Method_Signature

{

// Method body:

// Java code to solve the problem

// or answer the question.

}

23

CS133 Course Notes Lecture 5, Slide 23

Writing a method: addToBalance

public class CashRegister

{

private double balance;

public void addToBalance(double amount)

{

// Increment the balance in the register.

// This amount had better be non-negative!

this.balance += amount;

}

}

24

CS133 Course Notes Lecture 5, Slide 24

The “this ” parameter

• A way for an object to refer to itself inside
a class.

• Used as if it was the object’s name.

25

CS133 Course Notes Lecture 5, Slide 25

Local variables

• If you declare a variable inside of a
method, it is a local variable.

• Stops existing as soon as the method
finishes executing.

• Only accessible within the method.

26

CS133 Course Notes Lecture 5, Slide 26

Local variables continued

• The same thing applies to variables declared in
compound statements.

• Example:

for (int i = 0; i <= 5; i++)

{

int q = i*i;

}

System.out.println(q); // Invalid

27

CS133 Course Notes Lecture 5, Slide 27

Coordinate class

Recall the Coordinate class, used to get clicks
from a 2D board:

Coordinate lastClicked = grid.getClick();

int r = lastClicked.getRow();

int c = lastClicked.getCol();

System.out.println("Last click at" +

"(" + r + ", " + c + ")");

A Coordinate has a row and column as its data.
Operations: getting the row and column.

28

CS133 Course Notes Lecture 5, Slide 28

A complete class

public class Coordinate {
private int row, col;

public Coordinate (int row, int col)
{

this.row = row;
this.col = col;

}

public int getRow() { return row; }

public int getCol() { return col; }
}

29

CS133 Course Notes Lecture 5, Slide 29

Summary

• Objects vs. classes

• Instance variables

• Methods

– Invoking

– Writing

– Constructors

– Local variables

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

