
1

CS133: Developing 

Programming Principles

Lecture 10
Designing Classes

2

CS133 Course Notes Lecture 10, Slide 2

Testing methods

• All methods should be tested individually.

• If method A calls method B, test method B 
first and make it work properly. Then test 
method A. This is called bottom-up 

testing.



3

CS133 Course Notes Lecture 10, Slide 3

Driver program

• A simple program that calls a method 
multiple times with different arguments.

• Only used for testing.

• Includes “test suite” of test cases.

• Allows test cases to be repeated easily.

4

CS133 Course Notes Lecture 10, Slide 4

Testing

• All code should be tested to ensure it works 
properly.

• Testing code involves:
– Choosing test cases

– Running those tests

– Comparing expected and actual outcomes

– Modifying code

– Repeating process with same test cases until 
satisfied code is “correct”



5

CS133 Course Notes Lecture 10, Slide 5

Example: choosing test cases

if (grade == 'A') {

System.out.println("Excellent!");

} else if (grade == 'B') {

System.out.println("Good");

} else if (grade == 'F') {

System.out.println("Failed!");

} else {

System.out.println("Passed"); 

}

• What possible values of grade should be tested?

6

CS133 Course Notes Lecture 10, Slide 6

Choosing test cases

• Try to cover all different situations, not just 
typical ones.

• Some guidelines:
– Numerical data – smallest and largest possible, 

typical, invalid data.

– Boolean data – true, false values.

– Character data – numeric, alphabetic, special 
characters.

– String data – empty String , String with one 
character, and String with many characters.

– Object data – null and non-null values.



7

CS133 Course Notes Lecture 10, Slide 7

Driver program continued

• Example: Testing Math.abs(int a)
public class AbsoluteValueDriver {

public static void main(String[] args) {

//Test case 1: positive value

int answer1 = Math.abs(10);

System.out.println("Expected: 10, Actual: "+answer1 );

//Test case 2: negative value

int answer2 = Math.abs(-25);

System.out.println("Expected: 25, Actual: "+answer2 );

//Test case 3: zero

int answer3 = Math.abs(0);

System.out.println("Expected: 0, Actual: "+answer3) ;

}

}

8

CS133 Course Notes Lecture 10, Slide 8

Top-down design

• The practice of dividing large tasks into 
smaller, more manageable ones.

• Also known as stepwise refinement.



9

CS133 Course Notes Lecture 10, Slide 9

Coding using top-down design

• Each major task identified should be 
implemented in a method.

• The “original” method will call the other 
helper methods (which may call other 
helper methods themselves).

• Helper methods should be private to 
their class.

10

CS133 Course Notes Lecture 10, Slide 10

Example

• Given non-negative ints a, b, let cat(a, b) be 
the concatenation of their digits

– e.g., cat(20, 16) = 2016, cat(12, 0) = 120

• Write a method which takes an empty m x n 
Board and puts a peg on row r, column c if r or 
c are factors of cat(r, c) :

– Add a yellow peg if one of r, c is a factor

– Add a blue peg if both of r, c are factors

– Do not consider factors of 0

• e.g., (11, 0) = yellow, (2,3) = none, (2, 2) = blue



11

CS133 Course Notes Lecture 10, Slide 11

Pseudocode

for each row r

for each column c

determine number of factors

if one factor: put yellow peg

if two factors: put blue peg

end for c

end for r

12

CS133 Course Notes Lecture 10, Slide 12

Helper methods



13

CS133 Course Notes Lecture 10, Slide 13

How to break down code?

• When some step is confusing

• When your methods are getting long and 

unreadable

• When some subcomputation needs to be 
performed

• To avoid cuting-and-pasting

14

CS133 Course Notes Lecture 10, Slide 14

Stub

• Simplified version of a method.

• Method will not accomplish task, but will 
allow code to compile and run.

• Helpful when using top-down design.



15

CS133 Course Notes Lecture 10, Slide 15

Stubs continued

• When writing a stub for a method that returns a 
value, we must still include a return statement.

• Example:

public String reverseString(String s)

{ return "";

// or return s;

// or return null;

}

• Even a stub must return a value of the correct 
type.

16

CS133 Course Notes Lecture 10, Slide 16

Multiple constructors

• UW students have a major and may have 
an option as well.

• Write a class UWPlan. Include a 

constructor which sets major and option to 

provided values.



17

CS133 Course Notes Lecture 10, Slide 17

UWPlan class

public class UWPlan {

private String major;

private String option;

// Constructors here

public String getMajor() {

return this.major;

}

public String getOption() {

return this.option;

}

}

18

CS133 Course Notes Lecture 10, Slide 18

Example continued

public class UWPlan {

private String major;

private String option;

public UWPlan(String aMajor, 

String anOption) {

this.major = aMajor;

this.option = anOption;

}

}



19

CS133 Course Notes Lecture 10, Slide 19

Example continued

• Many students have a major, but no 
option.

• Write another constructor which accepts 
one parameter for a major.

• It should set the option to be the empty 
string.

20

CS133 Course Notes Lecture 10, Slide 20

One solution

public UWPlan(String aMajor) 

{

this.major = aMajor;

this.option = "";

}



21

CS133 Course Notes Lecture 10, Slide 21

A different solution

public UWPlan(String aMajor) 

{

this(aMajor, "");

}

22

CS133 Course Notes Lecture 10, Slide 22

Example continued

• Some students take some time before 
declaring their major.

• Write another constructor that takes no 
parameters.

• It sets the major to “Undeclared” and the 
option to be the empty string.



23

CS133 Course Notes Lecture 10, Slide 23

Testing constructors

public class UWPlan {
// rest of class here
public static void main (String[] args) {

UWPlan bioinfo = new UWPlan
("CS", "Bioinformatics");

System.out.println(
"Expected major: CS, Actual major: "
+ bioinfo.getMajor());

System.out.println("Expected option:"
+" Bioinformatics, Actual option: "
+ bioinfo.getOption());

24

CS133 Course Notes Lecture 10, Slide 24

More tests

UWPlan am = new UWPlan("Applied Math");
System.out.println("Expected major:"

+ " Applied Math, Actual major: "
+ am.getMajor());

System.out.println("Expected no option,"
+ " Actual option: " + am.getOption());



25

CS133 Course Notes Lecture 10, Slide 25

A third test

UWPlan dontKnowYet = new UWPlan();
System.out.println("Expected major:"

+ " Undeclared, Actual major: "
+ dontKnowYet.getMajor());

System.out.println("Expected no option,"
+ " Actual option: "
+ dontKnowYet.getOption());

}
}

26

CS133 Course Notes Lecture 10, Slide 26

Summary

• Testing

• Top-down design

• Overloading constructors





ERROR: undefined
OFFENDING COMMAND: ��

STACK:


