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CS133: Developing 

Programming Principles

Lecture 7
Encapsulation, 

Programmer Interface vs 

Implementation, Helper Methods, 

Overloading Methods
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Encapsulation

• Separation of the implementation from 
the programmer interface.

• This is an extension of information hiding.
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Programmer interface

• All the information needed for the 
programmer to use the class.

• I.e., method signatures, constants, pre and 

postconditions.

• Method bodies and other implementation 

details are not required!
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CashRegister interface

// post: Initializes a register with
// balance of 0 and no sales.
public CashRegister()

// pre: initialBalance >= 0.00
// post: Initializes a register with 
// initial balance initialBalance
public CashRegister(double initialBalance)

// post: returns number of sales completed 
// so far
public int getNumSales()
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CashRegister interface (2)

// post: returns number of items sold so far
public int getNumItemsSold()

// post: returns amount of money in this 
// register's balance
public double getBalance()

// post: returns amount of revenue from all
//   completed sales
public double getRevenue()

// pre: amount >= 0.0
// post: adds amount to current balance
public void addToBalance(double amount)
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CashRegister interface (3)

// pre: price >= 0.0, description != null
// post: adds the item of the given price to 
// the current sale
public void scanItem(double unitCost, 

String description)

// pre: price >= 0.0, description != null, 
//   quantity >= 0
// post: adds quantity items of the given 
//   price to the current sale
public void scanItem(int quantity, 

double unitCost, String description)
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CashRegister interface (4)

// post: returns amount owed in current sale
public double getSubTotal()

// pre: payment >= this.getSubTotal()
// post: pays for current sale from payment
//   and adds amount of current sale
//   to balance.
//   returns the amount of change from 
//   the sale.
public double completeSale(double payment) 
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CashRegister interface (5)

// post: returns String representation of 
// this cash register
public String toString()

// pre: other != null
// post: returns true iff this and other
// have the same number of sales, same
// balance, and same revenues.
public boolean equals(CashRegister other) 
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ATM class programmer interface

• Digits à

• Deposit à

• Withdrawal à

• Confirm à
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Implementation

• The actual code of the methods that 
makes them work.

• private methods.

• Instance variables.
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CashRegister variables

• private int numSales;

• private int numItemsSold;

• private double totalRevenue;

• private double balance;

• private double currRevenue;

• private int currNumItems;

Exercise: implement some methods

12

CS133 Course Notes Lecture 7, Slide 12

Helper methods

• Methods that perform subtasks of a bigger 
method.

• Should always be private .

• Make program shorter and easier to read 

and understand.

• Reuse code without copying andpasting.
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Why encapsulate?

• Preserves the integrity of your code by 
blocking other programmers from 
modifying it to work in unplanned ways.

• Makes it easier for another programmer to 

use the object without worrying about the 
way it works.
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Defining a well-encapsulated class

• Place an introductory comment before the 
beginning of the class that describes its 
functionality.

• All instance variables should be private .

• Provide accessor and mutator methods as 
appropriate.

• Make any helper methods private .

• Make sure pre and postconditions are 
clear and complete.
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Overloading

• We have already seen an example of 
overloading in the form of + for String
objects and numeric primitives.

• The same can be applied to methods.

• A class can have more than one method 

of the same name.
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Overloading continued

• Each method must have either a different 
number or different kind of parameters.

• Examples:
public void scanItem(double unitCost, 

String description)
public void scanItem(int quantity, 

double unitCost, String description)

public String substring(int start)
public String substring(int start, int end)
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Cannot overload return type

• The following is not allowed:
public int age(int y, int m, int d) 

{ … }

public double age(int y, int m, int d) 

{ … }

• If two methods have the same name, their 
parameter lists must be different.
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Overloading: when?

• Two methods in a class should be 
overloaded only if:

– They have the same basic task.

– They need different information to accomplish 

that task.
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Summary

• Encapsulation

• Programmer interface

• Implementation

• Overloading methods





ERROR: undefined
OFFENDING COMMAND: ��

STACK:


