
1

CS133: Developing

Programming Principles

Lecture 7
Encapsulation,

Programmer Interface vs

Implementation, Helper Methods,

Overloading Methods

2

CS133 Course Notes Lecture 7, Slide 2

Encapsulation

• Separation of the implementation from
the programmer interface.

• This is an extension of information hiding.

3

CS133 Course Notes Lecture 7, Slide 3

Programmer interface

• All the information needed for the
programmer to use the class.

• I.e., method signatures, constants, pre and

postconditions.

• Method bodies and other implementation

details are not required!

4

CS133 Course Notes Lecture 7, Slide 4

CashRegister interface

// post: Initializes a register with
// balance of 0 and no sales.
public CashRegister()

// pre: initialBalance >= 0.00
// post: Initializes a register with
// initial balance initialBalance
public CashRegister(double initialBalance)

// post: returns number of sales completed
// so far
public int getNumSales()

5

CS133 Course Notes Lecture 7, Slide 5

CashRegister interface (2)

// post: returns number of items sold so far
public int getNumItemsSold()

// post: returns amount of money in this
// register's balance
public double getBalance()

// post: returns amount of revenue from all
// completed sales
public double getRevenue()

// pre: amount >= 0.0
// post: adds amount to current balance
public void addToBalance(double amount)

6

CS133 Course Notes Lecture 7, Slide 6

CashRegister interface (3)

// pre: price >= 0.0, description != null
// post: adds the item of the given price to
// the current sale
public void scanItem(double unitCost,

String description)

// pre: price >= 0.0, description != null,
// quantity >= 0
// post: adds quantity items of the given
// price to the current sale
public void scanItem(int quantity,

double unitCost, String description)

7

CS133 Course Notes Lecture 7, Slide 7

CashRegister interface (4)

// post: returns amount owed in current sale
public double getSubTotal()

// pre: payment >= this.getSubTotal()
// post: pays for current sale from payment
// and adds amount of current sale
// to balance.
// returns the amount of change from
// the sale.
public double completeSale(double payment)

8

CS133 Course Notes Lecture 7, Slide 8

CashRegister interface (5)

// post: returns String representation of
// this cash register
public String toString()

// pre: other != null
// post: returns true iff this and other
// have the same number of sales, same
// balance, and same revenues.
public boolean equals(CashRegister other)

9

CS133 Course Notes Lecture 7, Slide 9

ATM class programmer interface

• Digits à

• Deposit à

• Withdrawal à

• Confirm à

10

CS133 Course Notes Lecture 7, Slide 10

Implementation

• The actual code of the methods that
makes them work.

• private methods.

• Instance variables.

11

CS133 Course Notes Lecture 7, Slide 11

CashRegister variables

• private int numSales;

• private int numItemsSold;

• private double totalRevenue;

• private double balance;

• private double currRevenue;

• private int currNumItems;

Exercise: implement some methods

12

CS133 Course Notes Lecture 7, Slide 12

Helper methods

• Methods that perform subtasks of a bigger
method.

• Should always be private .

• Make program shorter and easier to read

and understand.

• Reuse code without copying andpasting.

13

CS133 Course Notes Lecture 7, Slide 13

Why encapsulate?

• Preserves the integrity of your code by
blocking other programmers from
modifying it to work in unplanned ways.

• Makes it easier for another programmer to

use the object without worrying about the
way it works.

14

CS133 Course Notes Lecture 7, Slide 14

Defining a well-encapsulated class

• Place an introductory comment before the
beginning of the class that describes its
functionality.

• All instance variables should be private .

• Provide accessor and mutator methods as
appropriate.

• Make any helper methods private .

• Make sure pre and postconditions are
clear and complete.

15

CS133 Course Notes Lecture 7, Slide 15

Overloading

• We have already seen an example of
overloading in the form of + for String
objects and numeric primitives.

• The same can be applied to methods.

• A class can have more than one method

of the same name.

16

CS133 Course Notes Lecture 7, Slide 16

Overloading continued

• Each method must have either a different
number or different kind of parameters.

• Examples:
public void scanItem(double unitCost,

String description)
public void scanItem(int quantity,

double unitCost, String description)

public String substring(int start)
public String substring(int start, int end)

17

CS133 Course Notes Lecture 7, Slide 17

Cannot overload return type

• The following is not allowed:
public int age(int y, int m, int d)

{ … }

public double age(int y, int m, int d)

{ … }

• If two methods have the same name, their
parameter lists must be different.

18

CS133 Course Notes Lecture 7, Slide 18

Overloading: when?

• Two methods in a class should be
overloaded only if:

– They have the same basic task.

– They need different information to accomplish

that task.

19

CS133 Course Notes Lecture 7, Slide 19

Summary

• Encapsulation

• Programmer interface

• Implementation

• Overloading methods

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

