The CoopStudent class

cs 1 33: Deve I O pi Ilg public class CoopStudent extends Student

- - - { private boolean isOnWorkTerm = false;
Prog ramming Princi ples private static final double COOP_FEE = 317.69;

public CoopStudent(String newName, int sID)
{ super(newName, sID);

LeCture 1 5 Lublic CoopStudent(String newName, String newAddress,
- . . int sID)
More on Inheritance: super , final , { super(newName, newAddress, sID):

method resolution, Object

public double calcFees()
{ return super.calcFees() + COOP_FEE;

/I other methods omitted

CS 133 Course Notes Lecture 15, Slide 2

Accessing the parent class

super as constructor

* Notice that we can use the constructor
of Student

—called super(newName, sID)

* Notice the method calcFees uses
super in a different way
—not as a constructor, but to indicate which
class to look in for the (other) calcFees
method

CS 133 Course Notes Lecture 15, Slide 3

» Must be the first line in a constructor of a
derived class.

« If it's not there, Java automatically inserts
super() as the first line.

* Must be super(Arguments) if superclass
constructor needs parameters.

CS 133 Course Notes Lecture 15, Slide 4

Accessing the parent class continued

» Using super as the name of the object
will use the method defined in the parent
(base) class.

« Similar to this , but pretends it is an
instance of the parent class.

The calcFees method of the
CoopStudent class

CS 133 Course Notes Lecture 15, Slide 5

So we can explain this method more fully:

public double calcFees()

{ return super ac e F(Htﬁls CGO]P FEE;
}

Look in the super class

Call the calcFees method
in the super class

CS 133 Course Notes Lecture 15, Slide 6

super as object

Inheritance

» Can be used as an object name

— super .method(arguments) to access method in
superclass

» When used as object name, may only be
called once:

- Can’tdo

super.super. method(arguments) .

* Only use super when overriding is involved.

CS 133 Course Notes Lecture 15, Slide 7

» What if CoopStudent wants to access
the method getName ?

» getName is not in its (direct) parent class
(i.e., Student) but it is in an ancestor
class (i.e., Person).

« Example:

Write a method upperName that prints
the name of the CoopStudent in
uppercase, one character per line.

CS 133 Course Notes Lecture 15, Slide 8

upperName

Inheritance of methods

public void upperName()

{

CS 133 Course Notes

Lecture 15, Slide 9

» All public methods from parent classes
are inherited.

« Child classes can override these public
methods and also create new methods.

» private methods are not inherited, nor
can they be accessed.

CS 133 Course Notes Lecture 15, Slide 10

private methods not inherited

» Suppose Person had a private method,
changeNameToFirstinitial
public class Person

{.

private void changeNameToFirstInitial()

{

this.name = this.name.substr(0, 1);

}

-
* In Student , we cannot access this method, in
the class definition or in a Student object.

CS 133 Course Notes Lecture 15, Slide 11

Inheritance of instance variables

» Derived methods cannot access inherited
private instance variables directly.

* Must use public mutator and accessor
classes.

« Example:
name variable in Person is accessible
only by accessor/mutator methods.

CS 133 Course Notes Lecture 15, Slide 12

final

* Recall that
final int myValue = 12;

makes myValue a constant that cannot be
changed.

* We can use final in method signatures
in a similar way.

CS 133 Course Notes Lecture 15, Slide 13

Example

* In the Person class
public final void greeting()

{
System.out.printin("Hello World");

}

* No subclass (like Student or
CoopStudent) can override this method!

CS 133 Course Notes Lecture 15, Slide 14

Resolving method calls

CoopStudent mike = new
CoopStudent("Mike", 123456789);

mike.setName("Michael");

mike.getName();

» How does the computer know where to
find the methods to perform?
> Class hierarchy

CS 133 Course Notes Lecture 15, Slide 15

Resolving method calls continued

mike.setName("Michael");

Person public void setName(String name)

Student public double calcFees()

| CoopStudent | public double calcFees()

CS 133 Course Notes Lecture 15, Slide 16

this vs. super

this.foo(...) this(...)
Start hi C tructor i
I—talflgrets ggjrecct?lass CLi'::r:tugI:srsm —T |
Method call Constructor call
Start hi C tructor i |
l [Iawperclass | | soperciass |1 \
super.foo(...) super(...)

Note: this(...) , super(...) can only occur in constructor.

Note:this.foo(...) and super.foo(...) can occur in any
method of the derived class.

CS 133 Course Notes Lecture 15, Slide 17

The class Object

» Every class in Java extends Object by
default.

» Provides the basic functionality you see in
any object of any type.

» No need to extend it explicitly.

CS 133 Course Notes Lecture 15, Slide 18

Object methods

» There are two methods in the Object
class that we care about
—toString() and equals(Object other)

» We typically override these methods with
more meaningful functionality

« Example: add toString to the Student
class

CS 133 Course Notes Lecture 15, Slide 19

Summary

» Accessing parent methods

private methods are not inherited
final modifier for methods
Resolving method calls

The Object class

CS 133 Course Notes Lecture 15, Slide 20

20

ERROR: undefined
OFFENDING COMMAND

STACK:

