
1

CS133: Developing

Programming Principles

Lecture 12
Arrays as parameters,

arrays as return types,

partially filled arrays

2

CS133 Course Notes Lecture 12, Slide 2

Example:

working with arrays

• Develop a class for a list of birthdays.

• Use array of Date objects as instance
variable for class.

public class BirthdayList {

// declare array

private Date[] birthday;

//more code

}

3

CS133 Course Notes Lecture 12, Slide 3

Example continued

// create BirthdayList object

public BirthdayList(int numFriends)

{

this.birthday = new Date[numFriends];

Scanner in = new Scanner(System.in);

for (int i = 0; i < this.birthday.length; i++)

{

this.birthday[i] =

new Date(in.nextInt(), in.nextInt(),

in.nextInt());

}

}

4

CS133 Course Notes Lecture 12, Slide 4

Passing an array as a parameter

• Declare array in parameter list in “usual
way”:
public ReturnType MethodName(BaseType[] arrayName)

• BaseType can be primitive or class name

• Use array in method in “usual way”

5

CS133 Course Notes Lecture 12, Slide 5

Arrays as parameters

• Write a method in the BirthdayList
class that prints out birthdays of a
selection of friends.

• The birthdays to print will be passed to the
method as an array of integers.

• Each integer corresponds to the position in
the array.

6

CS133 Course Notes Lecture 12, Slide 6

Solution

public void printSelection(int[] whichOne)

{

for(int i = 0; i < whichOne.length; i++)

{

System.out.println(this.birthday[whichOne[i]]);

}

}

7

CS133 Course Notes Lecture 12, Slide 7

Using the printSelection method

BirthDayList myDB = new BirthdayList(4);

// Input 12 ints

int[] subset = new int[2];

subset[0] = 0;

subset[1] = 3;

myDB.printSelection(subset);

8

CS133 Course Notes Lecture 12, Slide 8

Arrays as return types

• Write a method createSelection

• Works like printSelection , but creates

an array with the selected entries and
returns it.

9

CS133 Course Notes Lecture 12, Slide 9

Returning an array from a method

• Create an array of the appropriate size

• Initialize all array entries for the new array

• Use return statement

• Method return type should be BaseType[]

10

CS133 Course Notes Lecture 12, Slide 10

Arrays as return types continued

public Date[] createSelection(int[] whichOne)

{

Date[] smallerArray = new Date[whichOne.length];

for (int i = 0; i < whichOne.length; i++)

{

smallerArray[i] = this.birthday[whichOne[i]];

}

return smallerArray;

}

11

CS133 Course Notes Lecture 12, Slide 11

Arrays as return types – memory

model

12

CS133 Course Notes Lecture 12, Slide 12

Challenge

• Write a method

public Date[] allBirthdaysInMonth(int m)

that returns an array of all entries in

original list for the given month.

13

CS133 Course Notes Lecture 12, Slide 13

Partially filled arrays

• An array does not need to have all of its
positions filled in order to be used.

• By default, when an array is created,
each entry is filled with the default value
for the base type:

'' // ASCII character 0char[] a = new char[5];

falseboolean[] a = new boolean[5];

0 // all numeric primitivesint[] a = new int[5];

null // all objectsString[] a = new String[5];

a[1]Type

14

CS133 Course Notes Lecture 12, Slide 14

Why have partially filled arrays?

• Example:

§An array that represents the number of

workers in a factory.

§The factory can employ up to 100 people.

§Currently employs 72.

§Array needs to have space for the potential 28

workers.

15

CS133 Course Notes Lecture 12, Slide 15

Keeping track of partially filled arrays

• Use a counter variable to know how many
entries are filled.

• Increment counter when entry is added.

• Use counter instead of length of array

when iterating.

16

CS133 Course Notes Lecture 12, Slide 16

Example

• Suppose we want to have a calculator memory.

• It can hold up to 10 values

• Values should be doubles

• Methods should be:

clearMemory() – all 10 cells are set to 0.0

addToMemory(double value) – add value in
next position, if valid.

maxMemory() – returns the maximum value

sumMemory() – returns the sum of elements

17

CS133 Course Notes Lecture 12, Slide 17

Example continued

public class CalcMem {

public static final int MEM_SIZE = 10;

private double[] memory =

new double[MEM_SIZE];

private int numElements = 0;

public void clearMemory() {…}

public void addToMemory(double value) {…}

public double maxMemory() {…}

public double sumMemory() {…}

}

18

CS133 Course Notes Lecture 12, Slide 18

Sequential search

• The simplest way to search for a value in
an array.

• Start at index 0 and keep going through
elements one by one until entry is found or

end of array is reached.

19

CS133 Course Notes Lecture 12, Slide 19

Deleting array elements

• Deleting last element: relatively easy

• Deleting middle elements: trickier?
private Date[] bdays;

private int numBdays;

private void arrayDelete(int pos)

{

// How to implement?

}

20

CS133 Course Notes Lecture 12, Slide 20

Growing arrays

• What should we do when we try to add to a full
partially filled array?

– Generate an error?

– Grow the array?

• Idea: Make a new array of double the size and

copy the elements over.

Why should we double the size?

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

