
University of Waterloo

CS240 Fall 2020
Assignment 2

Due Date: Wednesday, Oct 7 at 5pm

The integrity of the grade you receive in this course is very important to you and the
University of Waterloo. As part of every asessment in this course you must read and sign
an Academic Integrity Declaration before you start working on the assessment and submit
it before the deadline of October 7th along with your answers to the assignment; i.e.
read, sign and submit A02-AID.txt now or as soon as possible. The agreement will
indicate what you must do to ensure the integrity of your grade. If you are having difficulties
with the assignment, course staff are there to help (provided it isn’t last minute).

The Academic Integrity Declaration must be signed and submitted on time or
the assessment will not be marked.

Please read http://www.student.cs.uwaterloo.ca/~cs240/f20/guidelines/guidelines.

pdf for guidelines on submission. Each question must be submitted individually to
MarkUs as a PDF with the corresponding file names: a2q1.pdf, a2q2.pdf, ... , a2q6.pdf .

It is a good idea to submit questions as you go so you aren’t trying to create several PDF
files at the last minute. Remember, late assignments will not be marked.

Problem 1 [3+3=6 marks]

a) Given a heap H, suppose we want to search for an item with key k and minimize (as
best we can) the number of entries we check for key k.

i) Describe an efficient algorithm heapSearch(H, k) that searches H for k and returns
the index where k is found or −1 if not found. If the heap contains multiple entries
with key k, any index where the item has key k is okay.

ii) For your algorithm, give a lower bound on the best-case runtime and a lower
bound on the worse-case runtime. Briefly justify the runtimes.

iii) Are the lower bounds from part ii) actually tight (i.e. the same as the correspond-
ing upper bounds)? Briefly justify your answer.

b) Given a heap H, suppose we want to remove an arbitrary item at index i. Describe an
efficient algorithm heapRemove(H, i) that removes the item at index i from heap H.
State and justify the algorithm’s runtime.
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Problem 2 [6 marks]

Generalize quickSelect1 to work on two input arrays. Let the resulting algorithm be called
quickSelect2Arrays(A,B, k). Arrays A and B are of size n and m, respectively, and k ∈
{0, 1, ..., n + m − 1}. Algorithm quickSelect2Arrays(A,B, k) should return the item that
would be in C[k] if C was the array resulting from merging arrays A and B and C was sorted
in non-decreasing order.

Your algorithm quickSelect2Arrays(A,B, k) must be in-place, i.e. only O(1) additional
space is allowed. Briefly and informally (one or two sentences) argue that the time complexity
of your algorithm is the same as of quickSelect1, i.e. O(v) in the average case where v is the
total number of elements in A and B, i.e. v = n + m.
Hint: use the same pivot-value for partitioning both arrays.

Problem 3 [2+3+3=8]

A clever student (let’s call him Sajed) thinks he can avoid the worst-case behaviour of
QuickSort by employing the following pivot-selection procedure. First, compute the mean
M̄ of the elements in the array. Then choose as the pivot the element x of the array, such
that |x − M̄ | is minimized, i.e., pick the element closest to the average value in the array.
Everything else is the same as QuickSort. He calls the modified QuickSort algorithm SSort.

a) Write down the recurrence for running time T (n) of SSort. In doing so, assume x is
placed at index i of the partitioned array. The recurrence relation may be expressed
in terms of n and i.

b) Assume that the elements of the array form an arithmetic sequence (i.e., have the form
a, a+ k, a+ 2k, a+ 3k, . . . , a+ (n− 1)k), scrambled in some order. Show that, under
this distribution of array elements, SSort always runs in Θ(n log n) time.

c) Unfortunately, Sajed’s scheme is not as clever as it looks. Give an example of an ar-
ray where SSort achieves its worst case runtime of Θ(n2) and briefly explain why this
example requires this time.

Problem 4 [8 marks]

Given an array A[0 . . . n− 1] of numbers, such that A[i] ≥ A[i− j] for all 0 ≤ i ≤ n− 1 and
log n ≤ j ≤ i, design an algorithm to sort A in O(n log log n) time.

Hint: Partition A into contiguous blocks of size (log n); i.e. the first (log n) elements are in
the first block, the next (log n) elements are in the second block, and so on. Then, establish
a connection between the elements within two blocks, which are separated by another block.
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Problem 5 [2+2+4=8 marks]

Consider the problem of finding the location of a given item k in an array of n distinct
integers. The following randomized algorithm selects a random index and checks whether its
entry is the desired value. If it is, it returns the index; otherwise, it recursively calls itself.

Recall that random(n) returns an integer from the set of {0, 1, 2, . . . , n − 1} uniformly
and at random.

find-index(A, n, k)

1: i← random(n)
2: if A[i] == k then
3: return i
4: else
5: return find-index(A, n, k).
6: end if

In your answers below, be as precise as possible. You may use order notation when
appropriate. Briefly justify your answers.

a) What is the best-case running time of find-index?

b) What is the worst-case running time of find-index?

c) Let T (n) be the expected running time of find-index.
Write a recurrence relation for T (n) and then solve it.

Problem 6 [3+2+3=8 marks]

In a game of loonie poker, all bids are placed using the Canadian loonie (one dollar coin). At
the end of the night there is one winner who walks away with all the loonies. Unfortunately,
some of the players were using counterfeit loonies. Suppose there are n loonies, some of which
are genuine and others that are counterfeit (there is at least one of each). All genuine loonies
weigh the same and all counterfeit loonies weigh the same, but the counterfeit coins weigh
less than the genuine coins. The goal is to separate the genuine coins from the counterfeit
coins by comparing the weight of pairs of subsets of the coins using a balance scale. The
balance scale gives one of the following outcomes:

� the two subsets of coins weigh the same

� the subset on the left weighs more than the subset on the right

� the subset on the right weighs more than the subset on the left
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a) Give a formula for the precise (not big-Omega) lower bound for the number of weigh-
ings required in the worst case to determine which coins are genuine and which are
counterfeit; i.e. your formula should produce an integer value that is the minimum
number of weighings necessary in the worst case.

b) Describe an algorithm called FindGenuine to determine the genuine coins when n = 4.
Use the names L1, L2, L3, L4 for the four loonies, and the function

BalanceResult ({left subset; right subset}) ,

which returns either “left weighs more”, “right weighs more”, or “both weigh the
same”. Your function should return the set of genuine loonies.

Give an exact worst-case analysis of the number of weighings required by your algo-
rithm. For full marks, this should match exactly the lower bound from Part (a) when
n = 4.

c) Describe an algorithm to determine the genuine loonies, for any n. Use the names L1,
L2, ... , Ln and the BalanceResult subroutine from Part (b). Analyze your algorithm
by counting the number of weighings. Your answer, for this part, should be O(a(n))
where a(n) is the precise cost you found in part (a) of this problem.
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