University of Waterloo CS240 Fall 2020 Assignment 3

Due Date: Wednesday, Nov 4 at 5pm

The integrity of the grade you receive in this course is very important to you and the University of Waterloo. As part of every asessment in this course you must read and sign an Academic Integrity Declaration before you start working on the assessment and submit it before the deadline of November 4th along with your answers to the assignment; i.e. read, sign and submit A03-AID.txt now or as soon as possible. The agreement will indicate what you must do to ensure the integrity of your grade. If you are having difficulties with the assignment, course staff are there to help (provided it isn't last minute).

The Academic Integrity Declaration must be signed and submitted on time or the assessment will not be marked.

Please readhttp://www.student.cs.uwaterloo.ca/~cs240/f20/guidelines.pdffor guidelines on submission. Each question must be submitted individually to MarkUs as a PDF with the corresponding file names: a3q1.pdf, a3q2.pdf, ... , a3q6.pdf .

It is a good idea to submit questions as you go so you aren't trying to create several PDF files at the last minute. Remember, late assignments will not be marked.

Problem $1 \quad[0+2+2=4$ marks $]$

a) Practice (not worth any marks): Starting with an empty AVL tree, insert the following keys in order: 279917284216124.

You should obtain the AVL tree given in the next part.
b) Given the following AVL tree:

Note: this tree shows balance factors instead of height.

Insert the following keys in order: $8^{\star}, 22,21,18^{\star}$.
Show the resulting AVL trees with balance factors (not height) for each node after the elements marked with star (\star) are inserted.
Note: you should only show 2 trees.
c) Consider the following AVL tree:

Given the above tree, delete the following keys in order:

$$
66,13^{\star}, 72,77,56^{\star}, 42^{\star}
$$

Show the resulting AVL trees with balance factors (not height) for each node after the elements marked with star (\star) are deleted. If you have a choice of which element to move up, pick the inorder successor. Note: you should only show 3 trees.

Problem 2 [$2+4=6$ marks]

Given two non-empty AVL trees T_{A} and T_{B} such that all keys in T_{B} are larger than all keys in T_{A}. The relative heights of the two trees are specified in each part of the question. You may assume the initial heights of the trees, h_{A} and h_{B} are also given.

In each part, you will design an algorithm to merge the two trees T_{A} and T_{B} into a single AVL tree. The worst-case running time of each algorithm must be $O(h)$ where h is the maximal height of the two trees. Justify that your resulting tree is AVL and also that the runtime requirements are satisfied.
a) The height of T_{A} and T_{B} differ by at most one.
b) The height of T_{B} is strictly greater than the height of T_{A}.

Problem $3 \quad[3+3+4=10$ marks]

Which of the following trees must have height $O(\log n)$? Justify your answer.
a) There is a constant $c>0$ such that for all nodes z in T, z.left.height $\leq z$.right.height + c.
b) Every node z that is not a leaf in T has exactly two children.
c) Given a $\operatorname{BST} T$, let $N(z)$ be the number of nodes in the subtree rooted at z. If z is an empty subtree, then $N(z)=0$.
There is a constant $0<c \leq 1$ such that for every node z in $T, N(z . l e f t) \geq c \times$ $N(z . r i g h t)-1$ and $N(z . r i g h t) \geq c \times N(z . l e f t)-1$.

Problem $4 \quad[0+2+1+2+2+2=9$ marks $]$

a) Practice (not worth any marks): Starting with an empty skip list, insert the following keys in order: 22317772142 using the following flip sequence:

ННТНТНННТННТНТНТ

You should obtain the skip list given in the next part.
b) Given the following skip list:

Show the skip list that is created by inserting the keys: $37,66,13,4,27,99$ into the given skip list. You must use the following coin flip sequence:

Н Н Н НТТ НТ НТ Н НТ НТТ Н Н Н Н НТ Н НТТ

Note that each coin flip in the sequence will only be used once, in order and there may be some unused coin flips.

After inserting all keys, determine the exact number of comparisons (between 2 keys) required to search for the keys inserted in this part (that is, indicate what the search cost would be for 37 , and then the search cost for 66 , and so on).

For example, a search for 18 in the given skip list above, requires 6 comparisons.

Key	37	66	13	4	27	99
Comparisons						

For the remaining parts, assume that the probability of adding a level to a tower is p $(0<p<1)$, as opposed to $\frac{1}{2}$.
c) Explain why the probability that a key in the skip list has height at least i is p^{i}.
d) Show that the expected number of extra nodes (i.e., the sum of all tower heights not including nodes in S_{0}) is $O(n)$. Therefore, the space requirements for this skip list are linear in the number of keys being stored.
e) Similar to what was done in lecture, let $C(k)$ be the expected total path length which rises k levels when working back to the top-most, left-most node. Find the recurrence relation for $C(k)$ in terms of k and p.
f) Assuming $C(0)=0$, show that your recurrence relation from the previous part has closed form $C(k)=k / p$.

Problem $5 \quad[2+2+2=6$ marks]

Consider the list of keys:

$$
\left[\begin{array}{lllllllll}
1 & 2 & 3 & 5 & 6 & 7 & 9 & 10
\end{array}\right]
$$

and assume we perform the following searches:

$$
9,5,2,6,4^{\star}, 4,1,5,3,9^{\star}, 2,8,2,9^{\star}
$$

a) Using the move-to-front heuristic, give the list ordering after the starred (\star) searches are performed. Additionally, record the number of comparisons between keys after each search, as well as the total number of comparisons.

9	5	2	6	4	4	1	5	3	9	2	8	2	9	Total

b) Repeat part (a), using the transpose heuristic instead of the move-to-front heuristic.
c) Another heuristic is move-to-front2 (MTF2) that is similar to move-to-front (MTF) except that when an element is found at position i it is moved to position $\left\lfloor\frac{i}{2}\right\rfloor$. Repeat part (a), using this heuristic.

Problem $6 \quad[2+2+2+2=8$ marks $]$

a) Insert the following binary keys into an initially empty (uncompressed) binary trie:

$$
1001 \$, 001 \$, 1111 \$, 10110 \$, 10 \$, 11 \$, 10100 \$, 1 \$, 000 \$, 101 \$, 00 \$
$$

b) From your answer to part (a), delete the following keys, and show the trie after each deletion:

$$
10100 \$, 11 \$, 1001 \$
$$

c) Repeat part (a), except use a compressed trie.
d) Repeat part (b), starting from your answer to part (c).

