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Course Objectives: What is this course about?

o When first learning to program, we emphasize correctness: does your
program output the expected results?

o Starting with this course, we will also be concerned with efficiency: is
your program using the computer’s resources (typically processor
time) efficiently?

o We will study efficient methods of storing, accessing, and organizing
large collections of data.

o Typical operations include: inserting new data items, deleting data
items, searching for specific data items, sorting.

o Motivating examples: Digital Music Collection, English Dictionary
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Course Objectives: What is this course about?

o We will consider various abstract data types (ADTs) and how to
implement them efficiently using appropriate data structures.

o There is a strong emphasis on mathematical analysis in the course.

o Algorithms are presented using pseudo-code and analyzed using order
notation (big-Oh, etc.).
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Course Topics

o big-Oh analysis

o priority queues and heaps

o sorting, selection

o binary search trees, AVL trees, B-trees
o skip lists

o hashing

o quadtrees, kd-trees

o range search

o tries

o string matching

o data compression
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CS Background

Topics covered in previous courses with relevant sections in [Sedgewick]:

o arrays, linked lists (Sec. 3.2-3.4)

o strings (Sec. 3.6)

o stacks, queues (Sec. 4.2-4.6)

o abstract data types (Sec. 4-intro, 4.1, 4.8-4.9)

o recursive algorithms (5.1)

o binary trees (5.4-5.7)

o sorting (6.1-6.4)

o binary search (12.4)

o binary search trees (12.5)

o probability and expectations (Goodrich & Tamassia, Section 1.3.4)
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Problems (terminology)

First, we must introduce terminology so that we can precisely characterize
what we mean by efficiency.

Problem: Given a problem instance, carry out a particular computational
task.

Problem Instance: Input for the specified problem.

Problem Solution: Output (correct answer) for the specified problem
instance.

Size of a problem instance: Size(/) is a positive integer which is a
measure of the size of the instance /.

Example: Sorting problem
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Algorithms and Programs

Algorithm: An algorithm is a step-by-step process (e.g., described in
pseudo-code) for carrying out a series of computations, given an arbitrary
problem instance /.

Solving a problem: An Algorithm A solves a problem [1 if, for every
instance [ of I, A finds (computes) a valid solution for the instance / in
finite time.

Program: A program is an implementation of an algorithm using a
specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or
programming).
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Algorithms and Programs

Pseudocode: a method of communicating an algorithm to another
person.

In contrast, a program is a method of communicating an algorithm to a
computer.

Pseudocode

o omits obvious details, e.g. variable declarations,

©

has limited if any error detection,

©

sometimes uses English descriptions,

sometimes uses mathematical notation.

©
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Algorithms and Programs

For a problem 1, we can have several algorithms.

For an algorithm A solving 1, we can have several programs
(implementations).

Algorithms in practice: Given a problem T1

@ Design an algorithm A that solves 1. — Algorithm Design
@ Assess correctness and efficiency of A. — Algorithm Analysis

@ If acceptable (correct and efficient), implement A.
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Efficiency of Algorithms/Programs

o How do we decide which algorithm or program is the most efficient
solution to a given problem?

o In this course, we are primarily concerned with the amount of time a
program takes to run. — Running Time

o We also may be interested in the amount of additional memory the
program requires. — Auxiliary space

o The amount of time and/or memory required by a program will
depend on Size(l), the size of the given problem instance /.
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Running Time of Algorithms/Programs

First option: experimental studies
o Write a program implementing the algorithm.
o Run the program with inputs of varying size and composition.

o Use a method like clock() (from time.h) to get an accurate
measure of the actual running time.

o Plot/compare the results.
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Running Time of Algorithms/Programs

Shortcomings of experimental studies
o Implementation may be complicated/costly.

o Timings are affected by many factors: hardware (processor, memory),
software environment (OS, compiler, programming language), and
human factors (programmer).

o We cannot test all inputs; what are good sample inputs?

o We cannot easily compare two algorithms/programs.

We want a framework that:
o Does not require implementing the algorithm.
o Is independent of the hardware/software environment.

o Takes into account all input instances.
We need some simplifications.
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Overview of Algorithm Analysis

We will develop several aspects of algorithm analysis in the next slides.
To overcome dependency on hardware/software:

o Algorithms are presented in structured high-level pseudo-code which
is language-independent.

o Analysis of algorithms is based on an idealized computer model.
o Instead of time, count the number of primitive operations

o The efficiency of an algorithm (with respect to time) is measured in
terms of its growth rate (this is called the complexity of the
algorithm).
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Random Access Machine

Random Access Machine (RAM) model:

o A set of memory cells, each of which stores one item (word) of data.
Implicit assumption: memory cells are big enough to hold the items
that we store.

o Any access to a memory location takes constant time.

o Any primitive operation takes constant time.
Implicit assumption: primitive operations have fairly similar, though
different, running time on different systems

o The running time of a program is proportional to the number of
memory accesses plus the number of primitive operations.

This is an idealized model, so these assumptions may not be valid for a
“real” computer.
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Running Time Simplifications

We will simplify our analysis by considering the behaviour of algorithms for
large inputs sizes.

o Example 1: What is larger, 100n or 10n°?

o Example 2: What is larger, 10000001 4+ 200000000000000 or
0.01n%?

o To simplify comparisons, use order notation

o Informally: ignore constants and lower order terms
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Order Notation

O-notation: f(n) € O(g(n)) if there exist constants ¢ > 0 and ng > 0
such that |f(n)| < c|g(n)| for all n > ng.

Example: f(n) = 75n+ 500 and g(n) = 5n° (e.g. ¢ =1, np = 20)
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Note: The absolute value signs in the definition are irrelevant for analysis
of run-time or space, but are useful in other applications of asymptotic
notation.
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Example of Order Notation

In order to prove that 2n? +3n 4 11 € O(n?) from first principles, we need

to find ¢ and ng such that the following condition is satisfied:
0<2n®+3n+11<cn?forall n> ng.

note that not all choices of ¢ and ng will work.
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Aymptotic Lower Bound

o We have 2n% +3n + 11 € O(n?).
o But we also have 2n? +3n 4+ 11 € O(n'9).
o We want a tight asymptotic bound.

Q-notation: f(n) € Q(g(n)) if there exist constants ¢ > 0 and ng > 0
such that c|g(n)| < |f(n)| for all n > ng.

©-notation: 7(n) € ©(g(n)) if there exist constants ¢1,c, > 0 and ng > 0
such that ¢ [g(n)| < |f(n)| < c2|g(n)| for all n > ny.

f(n) € ©(g(n)) < f(n) € O(g(n)) and f(n) € Q2(g(n))
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Example of Order Notation

Prove that f(n) = 2n% + 3n + 11 € Q(n?) from first principles.

Prove that 3n® — 5n € Q(n?) from first principles.

Prove that log,(n) € ©(logn) for all b > 1 from first principles.
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Strictly smaller/larger asymptotic bounds

o We have f(n) = 2n? +3n+ 11 € ©(n?).

o How to express that f(n) is asymptotically strictly smaller than n3?

o-notation: f(n) € o(g(n)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that |f(n)| < c|g(n)| for all n > ng.

w-notation: f(n) € w(g(n)) if g(n) € o(f(n)).

o Rarely proved from first principles.
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Algebra of Order Notations

Identity rule: f(n) € ©(f(n))

Transitivity:
o If f(n) € O(g(n)) and g(n) € O(h(n)) then f(n) € O(h(n)).
o If f(n) € Q(g(n)) and g(n) € Q(h(n)) then f(n) € Q(h(n)).

Maximum rules: Suppose that f(n) > 0 and g(n) > 0 for all n > ng.
Then:

o O(f(n) + g(n)) = O(max{f(n), g(n)})
o Q(f(n) + g(n)) = Q(max{f(n),g(n)})
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Techniques for Order Notation

Suppose that f(n) > 0 and g(n) > 0 for all n > ng. Suppose that

(in particular, the limit exists).

Then
o(g(n)) ifL=0
f(n) € ¢O(g(n)) If0<L<oo
w(g(n)) if L= oc.
The required limit can often be computed using /'Hépital’s rule. Note that

this result gives sufficient (but not necessary) conditions for the stated
conclusions to hold.
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Example 1
Let f(n) be a polynomial of degree d > 0:

f(n) = Cdnd + Cd,lnd_l +

for some ¢4 > 0.

Then f(n) € ©(n9):
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Example 2

Prove that n(2 + sin nm/2) is ©(n). Note that lim,_,(2 + sin n7w/2) does
not exist.
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Relationships between Order Notations

) ©(g(n) < g(n) € ©(f(n))

o f(n

o f(n) € o(g(n)) = f(n) € O(g(n))
o f(n) € o(g(n)) = f(n) & Qg(n))
o f(n) € w(g(n)) = f(n) € Q(g(n))
o f(n) € w(g(n)) = f(n) ¢ O(g(n))
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Growth Rates

o If f(n) € ©(g(n)), then the growth rates of f(n) and g(n) are the
same.

o If f(n) € o(g(n)), then we say that the growth rate of f(n) is
less than the growth rate of g(n).

o If f(n) € w(g(n)), then we say that the growth rate of f(n) is
greater than the growth rate of g(n).

o Typically, f(n) may be “complicated” and g(n) is chosen to be a very
simple function.
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Example 3

Compare the growth rates of logn and n.

Now compare the growth rates of (log n) and n (where ¢ >0 and d > 0
are arbitrary numbers).
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Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the
following (in increasing order of growth rate):

o ©(1) (constant complexity),
o O(log n) (logarithmic complexity),
o ©(n) (linear complexity),

o O(nlog n)(linearithmic),

o o
O O

n?) (quadratic complexity),
0 ©
o ©

(
(
(
(nlog” n), for some constant k (quasi-linear),
(
(n3) (cubic complexity),

(

2") (exponential complexity).
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How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

o constant complexity: T(n) =c¢ ~» T(2n) = c.

o logarithmic complexity: T(n) = clogn  ~» T(2n)= T(n)+c

o linear complexity: T(n) = ¢cn ~» T(2n) =2T(n).

o linearithmic ©(nlogn): T(n) = cnlogn ~» T(2n)=2T(n)+ 2cn
o quadratic complexity: T(n) = cn? ~> T(2n) = 4T(n).

o cubic complexity: T(n) = cn® ~» T(2n) =8T(n).

o exponential complexity: T(n) = c2" ~ T(2n) = (T(n))?/c
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Techniques for Algorithm Analysis

o Goal: Use asymptotic notation to simplify run-time analysis.

o Running time of an algorithm depends on the input size n.

(n)
sum < 0
for i < 1 to ndo
for j < i to ndo
sum < sum + (i — j)?
return sum

ok wn =

o ldentify primitive operations that require ©(1) time.

o The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.

o Nested loops: start with the innermost loop and proceed outwards.
This gives nested summations.
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Techniques for Algorithm Analysis

Two general strategies are as follows.

Strategy I: Use ©-bounds throughout the analysis and obtain a ©-bound
for the complexity of the algorithm.

Strategy Il: Prove a O-bound and a matching Q-bound separately.
Use upper bounds (for O-bounds) and lower bounds (for Q2-bound) early
and frequently.

This may be easier because upper/lower bounds are easier to sum.

(A, n)
max < 0
for i+ 1to ndo
for j < i to ndo
sum <+ 0
for k + i to j do
sum + A[k]

No oW

return max
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Complexity of Algorithms

o Algorithm can have different running times on two instances of the
same size.

(A, n)
A: array of size n
fori<1ton—1do
J—i
while j > 0 and A[j] > A[j — 1] do
swap A[j] and A[j — 1]
j=Jj-1

ok b=

Let T 4(/) denote the running time of an algorithm 4 on instance /.
Worst-case complexity of an algorithm: take the worst /

Average-case complexity of an algorithm: average over /
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Complexity of Algorithms

Worst-case complexity of an algorithm: The worst-case running time
of an algorithm A is a function f : ZT — R mapping n (the input size) to
the longest running time for any input instance of size n:

Ta(n) = max{Ta(l): Size(l) = n}.

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is a function f : ZT — R mapping n (the input
size) to the average running time of .4 over all instances of size n:

1

N S Ta).
{1 : Size(1) = n}| {1:Size(l)=n}

T3%(n) =
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O-notation and Complexity of Algorithms

o It is important not to try and make comparisons between algorithms
using O-notation.

o For example, suppose algorithm A; and A3 both solve the same
problem, A; has worst-case run-time O(n®) and A, has worst-case
run-time O(n?).

o Observe that we cannot conclude that A, is more efficient than A;
for all input!
@ The worst-case run-time may only be achieved on some instances.
@ O-notation is an upper bound. A; may well have worst-case run-time
O(n). If we want to be able to compare algorithms, we should always
use ©-notation.
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Design of MergeSort

Input: Array A of n integers

o Step 1: We split A into two subarrays: A, consists of the first [ 7]
elements in A and Ag consists of the last | 7] elements in A.

o Step 2: Recursively run on A; and Ag.

o Step 3: After A; and Ag have been sorted, use a function to
merge them into a single sorted array.
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MergeSort

(Al <+ 0,r < n—1,5+« NIL)
A: array of size n, 0 </ <r<n-1
if Sis NIL initialize it as array S[0..n — 1]
if (r </{) then
return
else
m=(r+4¢)/2
(A, ¢, m,S)
(A,m+1,r,5)
(A8, m,r,S)

© NSO AN

Two tricks to reduce run-time and auxiliary space:

o The recursion uses parameters that indicate the range of the array
that needs to be sorted.

o The array used for copying is passed along as parameter.
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Merge

(A ,m,r,S)

A[0..n — 1] is an array, A[¢..m] is sorted, A[m + 1..r] is sorted
S[0..n — 1] is an array
copy A[l..r] into S[..r]
int iy < ¢;int ip < m+1;
for (k < ¢; k < r; k++) do

if (iL > m) Alk] < S[ir++]

else if (ir > r) A[k] < S[i,++]

else if (S[ir] < S[ir]) Alk] < S[iL-++]

else A[k] < S[ir++]

Noog~wbdbH=

takes time ©(r — £ + 1), i.e., ©(n) time for merging n elements.
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Analysis of MergeSort

Let T(n) denote the time to run on an array of length n.
o Step 1 takes time ©(n)
o Step 2 takes time T([51]) + T([5])
o Step 3 takes time ©(n)

The recurrence relation for T(n) is as follows:

. { (15 + T(13) +0(n) ifn>1
©(1) if n=1.

It suffices to consider the following exact recurrence, with constant factor
c replacing ©'s:

T(H)Z{CT([SWHT(LSJ)Hn :;::
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Analysis of MergeSort

o The following is the corresponding sloppy recurrence
(it has floors and ceilings removed):

T(n)_{2T(2)+cn if n>1
c if n=1.

o The exact and sloppy recurrences are identical when n is a power of 2.

o The recurrence can easily be solved by various methods when n = 2.
The solution has growth rate T(n) € ©(nlog n).

o It is possible to show that T(n) € ©(nlogn) for all n
by analyzing the exact recurrence.
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Some Recurrence Relations

Recursion

resolves to example
T(n) = T(n/2)+ ©(1) T(n) € ©(log n) Binary search
T(n)=2T(n/2) + ©(n) T(n) € ©(nlogn) Mergesort
T(n) =2T(n/2)+ ©(logn) | T(n) € ©(n) Heapify (— later)
T(n) = T(cn) + ©(n) T(n) € ©(n) Selection
forsome 0 < c <1 (— later)
T(n)=2T(n/4)+©(1) T(n) € ©(+v/n) Range Search

(— later)

T(n) = T(v/n)+©6(1) T(n) € ©(loglog n) | Interpolation Search

(— later)

o Once you know the result, it is (usually) easy to prove by induction.

o Many more recursions, and some methods to find the result, in cs341.
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Order Notation Summary

O-notation: f(n) € O(g(n)) if there exist constants ¢ > 0 and ng > 0
such that |f(n)| < c|g(n)| for all n > ng.

Q-notation: f(n)
n)|

S
such that c|g(n)| < |f(n)| for all n > ng.
©(g(n)) if there exist constants ¢i, ¢, > 0 and ng > 0

)
Q(g(n)) if there exist constants ¢ > 0 and ng > 0
f(n)|
€ O(g(n
< |f(n)| < c2|g(n)| for all n > ng.

©-notation: f(n)
such that ¢ |g(n)|

o-notation: f(n) € o(g(n)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that |f(n)| < c|g(n)| for all n > ng.

w-notation: f(n) € w(g(n)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that ¢ |g(n)| < |f(n)| for all n > ng.
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Useful Sums

Arithmetic sequence:

Srdi=177 S0 da+di) = na+ @) c 9(n?) ifd £0.
Geometric sequence:
n
-1
a T € o(r" 1) ifr>1
r —
27:—01 i = 7277 Z,'-':_ol ari=1{ na € O(n) ifr=1
1— 0
a T eco(1) fo<r<l.
—r
Harmonic sequence:
=1 Hp:=37 1% =Inn+~+o(1) € ©(log n)
A few more:
2
Pip=177 Yiip=T% €0
n ik =777 " ikeo(n ) for k>0
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Useful Math Facts

Logarithms:

o ¢ = log,(a) means b° = a. E.g. n = 2\°&",

©

log(a) (in this course) means log,(a)

log(a- c) = log(a)+ log(c), log(a®) = clog(a)

_ logca _ 1 log,c _— logya
log,(a) = log. b~ Tog,(B)' ? - ¢

©

©

o In(x) = natural log = log,(x), d% Inx = %

o concavity: alogx+(1—a)logy < log(ax+(1—a)y) for 0 <a <1
Factorial:

onl:=n(n—1)(n—2)----2-1= # ways to permute n elements

o log(n!) =logn+log(n—1)+---+log2+logl € ©(nlogn)
Probability and moments:

o El[aX] = aE[X], E[X + Y] = E[X] + E[Y] (linearity of expectation)
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