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Selection vs. Sorting
The selection problem: Given an array A of n numbers, and 0 < k < n,

find the element that would be at position k of the sorted array.

0 1 2 3 4 5 6 7 8 9
[30 ] 60| 10[ o [50[8 [o90]10]40] 70|
(3) should return 30.

Special case: median finding = selection with k = | J].
Selection can be done with heaps in time ©(n + klog n).
Median-finding with this takes time ©(nlog n).

This is the same cost as our best sorting algorithms.

Question: Can we do selection in linear time?
The algorithm answers this question in the affirmative.

The encountered sub-routines will also be useful otherwise.
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Crucial Subroutines

and the related algorithm rely on two subroutines:

° (A): Return an index p in A. We will use the
pivot-value v < A[p] to rearrange the array.

Simplest idea: Always select rightmost element in array

(A)

1. return A.size—1

We will consider more sophisticated ideas later on.

° (A, p): Rearrange A and return pivot-index i so that
» the pivot-value v is in A[/],
» all items in A[0,...,i —1] are < v, and
» allitemsin A[i+1,...,n—1] are > v.
A ‘ <v ‘ v ‘ >v
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Partition Algorithm

Conceptually easy linear-time implementation:

(A,p)
A: array of size n, p: integers.t. 0 < p<n

1 Create empty lists smaller, equal and larger.
2 v < Alp]

3 for each element x in A

4. if x < v then smaller. (x)

5. else if x > v then larger. (x)

6 else equal. (x).

7 i < smaller.size

8 j < equal.size

9 Overwrite A[0...i—1] by elements in smaller

10.  Overwrite A[i...i+j — 1] by elements in equal
11.  Overwrite A[i+j...n—1] by elements in larger
12, return i

More challenging: partition in place (with O(1) auxiliary space).
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Efficient In-Place partition (Hoare)

i=—1 0 1 2 3 4 5 6 7 8 j=s
[30]60]10] o [s0[s0]90]20]40Jv=r0]
0 1 2 3 4 i=5 6 7 J=8 9
[30]60 [ 120 0 [50[s0]o0]20]40 [v=70]
0 1 2 3 4  i=5 6 7 J=8 9
[30]60]10] o [5s0]40] 90 [20] 80 Jv=r0]
0 1 2 3 4 5 i=6 J=7 8 9
[30]60 [ 10 0 [50]40] 90 [20]s0 [v=70]
0 1 2 3 4 5 i=6 J=7 8 9
[30 60 ] 10] o [50]40]20 ]9 ] 8o Jv=r0]
0 1 2 3 4 5 J6 =7 8 9
[30]60 [ 120 0 [50]40]2 ]9 ]so[v=70]
0 1 2 3 4 5 J%6 i=7 8 9
[30]60]10] 05040 ]20]70]80]90]

Petrick (SCS, UW) CS240 — Module 3 Fall 2020 5/ 34



Efficient In-Place partition (Hoare)

Idea: Keep swapping the outer-most wrongly-positioned pairs.

P T2 R T2
i j n—1
(A,p)
A: array of size n, p: integerst. 0<p<n
1. swap(Aln — 1], Alp])
2. i+ -1, j+<n—=-1 v+ An-1]
3. loop
4. do i< i+ 1 while i < nand A[i] < v
5. do j < j— 1 while j > 0 and A[j] > v
6. if i > j then break (goto 9)
7. else swap(A[i], Aj])
8. end loop
9.  swap(A[n—1], A[]])
10. return

Running time: ©(n).
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QuickSelect Algorithm

(A, k)

A: array of size n, k: integerst. 0 < k<n
p (A)
i (A, p)
if i = k then

return A[i]
else if i > k then

return (A[0,1,...,i—1],k)
else if i < k then

return (Ai+1,i+2,...,n—1],k—i—1)

©® N R W
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Analysis of

Worst-case analysis: Recursive call could always have size n — 1.

_ >
Recurrence given by T(n) = { Z'(n 1)+ en, Z: i

Solution: T(n)=cn+c(n—1)+c(n—2)+---+c-2+c € O(n?)

Best-case analysis: First chosen pivot could be the kth element
No recursive calls; total cost is ©(n).

Average case analysis?
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Sorting Permutations

o Need to take average running time over all inputs.

o How to characterize input of size n?
(There are infinitely many sets of n numbers.)

o Simplifying assumption: All input numbers are distinct.
o Observe: quick-selectl would act the same on inputs
14, 2, 3, 6, 1, 11, 7 and
147 21 41 61 11 12, 8
o The actual numbers do not matter, only their relative order.

o Characterize input via sorting permutation: the permutation that
would put the input in order.

o Assume all n! permutations are equally likely.

~ Average cost is sum of costs for all permutations, divided by n!
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Average-Case Analysis of

Define T(n, k) as average cost for selecting kth item from size-n array.
Then T(1,k) = c and

T(n k)=cn+= (ZTn—/—lk—/—l—i—Z T(i )

i=k+1
Proof:
o Fori=0,...,n—1, a fraction of 1/n of all permutations has pivot
index i.

o The average runtime for these permutations is

en+ T(n—i—1,k—i—1) ifi<k
cn ifi=k
cn+ T(i k) if k<i.
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Average-Case Analysis of

i=k+1

T(n k)=cn+ = (ZTn—/—lk—/—l—i—Z T(i )

Theorem: T(n, k) < 4cn.

Proof: By induction on n
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Randomized algorithms

A randomized algorithm is one which relies on some random numbers in
addition to the input.

Computers cannot generate randomness. We assume that there exists a
pseudo-random number generator (PRNG), a deterministic program that uses
an initial value or seed to generate a sequence of seemingly random numbers.
The quality of randomized algorithms depends on the quality of the PRNG!

o The run-time will depend on the input and the random numbers used.

o Goal: Shift the dependency of run-time from what we can’t control
(the input) to what we can control (the random numbers).

No more bad instances, just unlucky numbers.
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Expected running time

Define T(/, R) to be the running time of a randomized algorithm A for an
instance / and the sequence of random numbers R.

The expected running time T(e"p)(l) for instance [ is the expected value
for T(/,R):

TER(1) = E[T(LR) =Y T(I,R) - Pr[R]
R

o We could now take the maximum or the average over all instances of
size n to define the expected running time of A.

o But we usually design A such that all instances of size n have the
same expected run-time.

o Then maximum and average are the same, so we have

el TEP)(]
max T(exp)(/) _ Z{I.s:ze(l)—n} ( )

T(exP) () =
( ) {I:size(l)=n} |{/:size()=n}|
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Randomized QuickSelect: Shuffle

Goal: Create a randomized version of

for which all input has
the same expected run-time.

First idea: Randomly permute the input first using

(A)
A: array of size n
1. for i+~ O0ton—2do

2. swap( A[i], Ali + (n—1)])

We assume the existence of a function

(n) that returns an integer
uniformly from {0,1,2,...,n— 1}.

Expected cost becomes the same as the average cost: ©(n).
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Randomized QuickSelect: Random Pivot

Second idea: Change the pivot selection.

(A)
1. return (n)
(A k)
1. p+ (A)
2. ..

With probablity % the random pivot has index i, so the analysis is just like
that for the average-case. The expected running time is again ©(n).

This is generally the fastest quick-select implementation.

There exists a variation that has worst-case running time O(n), but it uses
double recursion and is slower in practice. (~ cs341)
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QuickSort

Hoare developed and in 1960.
He also used them to sort based on partitioning:

(A)

A: array of size n

1 if n <1 then return

2. p+ (A)

3 i+ (A, p)

4 (A[0,1,...,i—1])
5 (Ali+1,....,n=1])
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QuickSort analysis

Define T(n) to be the run-time for in a size-n array.
o T(n) depends again on the pivot-index i.
o If we know i: T(n)=©(n)+ T(i)+ T(n—1i-—1).

o Worst-case analysis: i = 0 or n—1 always. Then as for

T(n—1)4cn, n>2
T(n):{c( ) n:]_

for some constant ¢ > 0. This resolves to ©(n?).

o Best-case analysis: i = 7] or [5] always. Then

2
T(n) = { T(* )+ T(["5*]) +en n>2
c, n=1
Similar to : This resolves to ©(nlog n).
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Average-case analysis of
Now let T(n) to be the average-case run-time for in a size-n
array.

o As before, (n— 1)! permutations have pivot-index i.

o So average running time is

T(n) = Z Z running time for instance /

I:size(l)=n
| has pivot-index i

n—1
< %Z (n=1)! (c-n+T()+ T(n—i-1))

= c-n+— Z +Tn—/—1))

Theorem: T(n) € @(nlog n).
Proof: Can prove that T(n) < 2cnlog(n) by induction on n
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Improvement ideas for QuickSort

Qo

We can randomize by using , giving
©(nlog n) expected time for

The auxiliary space is Q(recursion depth).
» This is ©(n) in the worst-case.
» It can be reduced to ©(log n) worst-case by recursing in smaller
sub-array first and replacing the other recursion by a while-loop.

One should stop recursing when n < 10.
One run of InsertionSort at the end then sorts everything in O(n)
time since all items are within 10 units of their required position.

Arrays with many duplicates can be sorted faster by changing
<v ‘ =v ‘ >v ‘

to produce three subsets |

Two programming tricks that apply in many situations:

» Instead of passing full arrays, pass only the range of indices.
» Avoid recursion altogether by keeping an explicit stack.
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QuickSort with tricks

(A,n)

1. |Initialize a stack S of index-pairs with { (0, n—1)}
2. while S is not empty

3. (¢, r) < S.pop()

4. while (r—¢+1 > 10) do

5. p (Al r)
6. i (AL r,p)

7. if (i—¢ > r—i) do

8. S. ((¢,i-1))

9. i+l

10. else

11. S. ((i+1,r))

12. r+i-1

13. (A)

This is often the most efficient sorting algorithm in practice.
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Lower bounds for sorting

We have seen many sorting algorithms:

Sort Running time Analysis
Selection Sort 0(n?) worst-case
Insertion Sort 0(n?) worst-case
Merge Sort ©(nlog n) worst-case
Heap Sort ©(nlog n) worst-case
©(nlogn) | average-case
©(nlog n) expected

Question: Can one do better than ©(nlog n) running time?
Answer: Yes and no! It depends on what we allow.

o No: Comparison-based sorting lower bound is Q(nlog n).

o Yes: Non-comparison-based sorting can achieve O(n) (under
restrictions!). — see below
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The Comparison Model

In the comparison model data can only be accessed in two ways:
o comparing two elements

o moving elements around (e.g. copying, swapping)

This makes very few assumptions on the kind of things we are sorting.
We count the number of above operations.

All sorting algorithms seen so far are in the comparison model.
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Decision trees

Comparison-based algorithms can be expressed as decision tree.
To sort {xp, x1, x2}:

Y

1,02
2,0,1
2,1,0

(e, xo < x1 < x2)

|0,2,1 | | 1,2,0| | 1,0,2| | 2,0,1 |
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Lower bound for sorting in the comparison model

Theorem. Any correct comparison-based sorting algorithm requires at
least Q(nlog n) comparison operations to sort n distinct items.

Proof.
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Non-Comparison-Based Sorting

o Assume keys are numbers in base R (R: radix)
» R =2,10,128,256 are the most common.

Example (R =4): | 123 [ 230 [ 21 [ 320 | 210 [ 232 | 101 |

o Assume all keys have the same number m of digits.
» Can achieve after padding with leading Os.

Example (R = 4): [ 123 [ 230 | 021 | 320 [ 210 | 232 | 101 |

o Can sort based on individual digits.

» How to sort 1-digit numbers?
» How to sort multi-digit numbers based on this?
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(Single-digit) Bucket Sort

Sort array A by last digit:

A

12
230
02Q)
320
210
23Q
100D

Petrick (SCS, UW)

B

B[0] | —[230] — [320] — [210]
B[1] | —|021] —[101

B[2] | —[232

B[3] | —[123

CS240 — Module 3
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230
320
210
021
101
232
123
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(Single-digit) Bucket Sort

()

Sorts numbers by a single digit.
o Create a "bucket” for each possible digit: Array B[0..R—1] of lists
Copy item with digit i into bucket B[]

©

o At the end copy buckets in order into A.

(A,d)
A: array of size n, contains numbers with digits in {0,..., R — 1}
d: index of digit by which we wish to sort
1. Initialize an array B[0...R — 1] of empty lists

fori<~0ton—1do
Append A[i] at end of B[d™ digit of A[/]]
i+ 0
for j<~ 0to R—1do
while B[j] is non-empty do
move first element of B[j] to Ali++]

NooarwdN

o This is stable: equal items stay in original order.
o Run-time ©(n + R), auxiliary space ©(n)
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Count Sort

o Bucket sort wastes space for linked lists.
o Observe: We know exactly where numbers in B[j] go:
» The first of them is at index |B[0]| 4+ |B[1]| + --- + |B[j—1]|
» The others follow.
o So we don’t need the lists; it's enough to count how many there
would be in it.
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Count Sort Pseudocode

(A d)
A: array of size n, contains numbers with digits in {0,...,R — 1}
d: index of digit by which we wish to sort
// count how many of each kind there are
1. < array of size R, filled with zeros
2. fori+Oton—1do
3. increment [d™ digit of A[/]]
// find left boundary for each kind
4, <+ array of size R, idx[0] =0
5. fori<—1to R—1do
6. [i] < idAi — 1] + [i —1]
// move to new array in sorted order, then copy back
7. <+ array of size n
8. fori+0ton—1do
9. [idx[d™ digit of A[i]]] + Ali]
10. increment /dx[d™ digit of A[/]]
11. A<+ copy(aux)
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Example: Count Sort

A A
120 0,1,2,3 0 230
230 0,1,2 3 320
020D 0,1 5 210
320 | = | 0,1 6 | = | 021
210 101
23Q) 232
100D 123
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MSD-Radix-Sort

Sorts array of m-digit radix-R numbers recursively:
sort by leading digit, then each group by next digit, etc.

(A, £+0, r+n=-1, d+1)
if 0 <r
(A[L..r], d)
ifd<m

for i< 0to R—1do

let ¢; and r; be boundaries of ith bin
(i.e., A[¢;..r;] all have dth digit i)
(A,é,-, I’,',d—|—].)

No o s Wb

o ¢; and r; are automatically computed with
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MSD-Radix-Sort Example

(d =1) (d=2) (d =3)
73
232 123
Q21 101 "— 1537
320
@10 \ 232 /'
2o 230
@30 200 — | 23Q@
01 20 .
@ =
o Drawback of : many recursions
o Auxiliary space: ©(n+ R+ m) (for and recursion stack)

o Run-time: ©(m(n+ R)) can be achieved if auxiliary arrays for
are shared across subroutines.
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LSD-Radix-Sort

(A)

(A d)

A: array of size n, contains m-digit radix-R numbers
1. for d < m down to 1 do
2.

123 230 @01 021
230 320 @10 101
020 | (d=3) [ 200 | (d=2) | @20 | (d=1) | 123
320 = 021 = ®21 = 210
210 101 D23 230
23 232 @30 232
100D 123 @32 320
o Loop-invariant: A is sorted w.r.t. digits d, ..., m of each entry.

o Time cost: ©(m(n+ R))

Petrick (SCS, UW)
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Auxiliary space: ©(n+ R)
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Summary

©

Sorting is an important and very well-studied problem

©

Can be done in ©(nlog n) time; faster is not possible for general input

° is the only ©(nlog n)-time algorithm we have seen with
O(1) auxiliary space.

° is also ©(nlog n), selection & insertion sorts are ©(n?).
° is worst-case ©(n?), but often the fastest in practice

° and achieve o(nlog n) if the input is special

o Randomized algorithms can eliminate “bad cases”

o Best-case, worst-case, average-case, expected-case can all differ, but
for well-design randomizations of algorithms, the expected case is the
same as the average-case of the non-randomized algorithm.
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