
CS 240 – Data Structures and Data Management

Module 5: Other Dictionary Implementations

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2020

References: Sedgewick 9.1-9.4

version 2020-09-30 23:49

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 1 / 17

Outline

1 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Skip Lists
Re-ordering Items

Petrick (SCS, UW) CS240 – Module 5 Fall 2020

Outline

1 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Skip Lists
Re-ordering Items

Petrick (SCS, UW) CS240 – Module 5 Fall 2020

Dictionary ADT: Implementations thus far

A dictionary is a collection of key-value pairs (KVPs), supporting
operations search, insert, and delete.

Realizations we have seen so far:
Unordered array or linked list: Θ(1) insert, Θ(n) search and delete
Ordered array: Θ(log n) search, Θ(n) insert and delete
Binary search trees: Θ(height) search, insert and delete
Balanced BST (AVL trees):
Θ(log n) search, insert, and delete

Improvements/Simplifications?
Can show: The average-case height of binary search trees (over all
possible insertion sequences) is O(log n).
How can we shift the average-case to expected height via
randomization?

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 2 / 17

Outline

1 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Skip Lists
Re-ordering Items

Petrick (SCS, UW) CS240 – Module 5 Fall 2020

Skip Lists
A hierarchy S of ordered linked lists (levels) S0, S1, · · · , Sh:

I Each list Si contains the special keys −∞ and +∞ (sentinels)
I List S0 contains the KVPs of S in non-decreasing order.

(The other lists store only keys, or links to nodes in S0.)
I Each list is a subsequence of the previous one, i.e., S0 ⊇ S1 ⊇ · · · ⊇ Sh
I List Sh contains only the sentinels; the left sentinel is the root

−∞S0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞S1 37 65 83 94 ∞

−∞S2 65 ∞

−∞S3 ∞

Each KVP belongs to a tower of nodes
There are (usually) more nodes than keys
The skip list consists of a reference to the topmost left node.
Each node p has references p.after and p.below

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 3 / 17

Search in Skip Lists
For each level, find predecessor (node before where k would be).
This will also be useful for insert/delete.

getPredecessors (k)
1. p ← topmost left sentinel
2. P ← stack of nodes, initially containing p
3. while p.below 6= NIL do
4. p ← p.below
5. while p.after .key < k do p ← p.after
6. P.push(p)
7. return P

skipList::search (k)
1. P ← getPredecessors(k)
2. p0 ← P.top() // predecessor of k in S0
3. if p0.after .key = k return p0.after
4. else return “not found, but would be after p0”

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 4 / 17

Example: Search in Skip Lists

Example: search(87)

−∞S0 (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞S1 37 65 83 94 ∞

−∞S2 65 ∞

−∞S3 ∞

key compared with k

added to P

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 5 / 17

Insert in Skip Lists

skipList::insert(k, v)
Randomly repeatedly toss a coin until you get tails
Let i the number of times the coin came up heads

I we want k to be in lists S0, . . . , Si .
I i → height of tower of k
I P(tower of key k has height ≥ i) =

(1
2
)i

Increase height of skip list, if needed, to have h > i levels.
Use getPredecessors(k) to get stack P.
The top i items of P are the predecessors p0, p1, · · · , pi of where k
should be in each list S0, S1, · · · , Si

Insert (k, v) after p0 in S0, and k after pj in Sj for 1 ≤ j ≤ i

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 6 / 17

Example: Insert in Skip Lists

Example: skipList::insert(52, v)
Coin tosses: H,T ⇒ i = 1
getPredecessors(52)

−∞S0 (23,v) (37,v) (44,v) (52,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞S1 37 52 65 83 94 ∞

−∞S2 65 ∞

−∞S3 ∞

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 7 / 17

Example 2: Insert in Skip Lists

Example: skipList::insert(100, v)

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 8 / 17

Insert in Skip Lists

skipList::insert(k, v)
1. P ← getPredecessors(k)
2. for (i ← 0; random(2) = 1;i ← i+1) {} // random tower height
3. while i ≥ P.size() // increase skip-list height?
4. root ← new sentinel-only list,

linked to previous root-list appropriately
5. P.append(left sentinel of root)
6. p ← P.pop() // insert (k, v) in S0
7. kbelow ← new node with (k, v), inserted after p
8. while i > 0 // insert k in S1, . . . , Si
9. p ← P.pop()
10. kbelow ← new node with k,

inserted after p with below-reference to kbelow
11. i ← i − 1

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 9 / 17

Delete in Skip Lists
It is easy to remove a key since we can find all predecessors.
Then eliminate layers if there are multiple ones with only sentinels.

skipList::delete(k)
1. P ← getPredecessors(k)
2. while P is non-empty
3. p ← P.pop() // predecessor of k in some layer
4. if p.after .key = k
5. p.after ← p.after .after
6. else break // no more copies of k

7. p ← left sentinel of the root-list
8. while p.below .after is the ∞-sentinel

// the two top lists are both only sentinels, remove one
9. p.below ← p.below .below
10. p.after .below ← p.after .below .below

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 10 / 17

Example: Delete in Skip Lists

Example: skipList::delete(65)

−∞S0 (23,v) (37,v) (44,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞

−∞S1 37 83 94 ∞

−∞S2 ∞

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 11 / 17

Analysis of Skip Lists

Expected space usage: O(n)
Expected height: O(log n)
A skip list with n items has height at most 3 log n with probability at
least 1− 1/n2
Crucial for all operations:

I How often do we drop down (execute p ← p.below)?
I How often do we scan forward (execute p ← p.after)?

skipList::search: O(log n) expected time
I # drop-downs = height
I expected # scan-forwards is ≤ 1 in each level

skipList::insert: O(log n) expected time
skipList::delete: O(log n) expected time

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 12 / 17

Summary of Skip Lists

O(n) expected space, all operations take O(log n) expected time.
As described they are no faster than randomized binary search trees.
Can show: A biased coin-flip to determine tower-height gives smaller
expected run-times.
Can save links (hence space) by implementing towers as array.

−∞ (23,v) (37,v) (44,v) (65,v) (69,v) (79,v) (83,v) (87,v) (94,v) ∞
• • • • • •
• • •
• •

Then skip lists are fast in practice and simple to implement.

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 13 / 17

Outline

1 Dictionaries with Lists revisited
Dictionary ADT: Implementations thus far
Skip Lists
Re-ordering Items

Petrick (SCS, UW) CS240 – Module 5 Fall 2020

Re-ordering Items

Recall: Unordered list/array implementation of ADT Dictionary
search: Θ(n), insert: Θ(1), delete: Θ(1) (after a search)
Lists/arrays are a very simple and popular implementation. Can we do
something to make search more effective in practice?

No: if items are accessed equally likely
Yes: otherwise (we have a probability distribution of the items)

I Intuition: Frequently accessed items should be in the front.
I Two cases: Do we know the access distribution beforehand or not?
I For short lists or extremely unbalanced distributions this may be faster

than AVL trees or Skip Lists, and much easier to implement.

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 14 / 17

Optimal Static Ordering
Example: key A B C D E

frequency of access 2 8 1 10 5
access-probability 2

26
8
26

1
26

10
26

5
26

We count cost i for accessing the key in the ith position.
Order A, B, C , D, E has expected access cost
2
26 · 1 + 8

26 · 2 + 1
26 · 3 + 10

26 · 4 + 5
26 · 5 = 86

26 ≈ 3.31
Order D, B, E , A, C has expected access cost
10
26 · 1 + 8

26 · 2 + 5
26 · 3 + 2

26 · 4 + 1
26 · 5 = 66

26 ≈ 2.54

Claim: Over all possible static orderings, the one that sorts items by
non-increasing access-probability minimizes the expected access cost.
Proof Idea: For any other ordering, exchanging two items that are
out-of-order according to their access probabilities makes the total
cost decrease.
Petrick (SCS, UW) CS240 – Module 5 Fall 2020 15 / 17

Dynamic Ordering: MTF
What if we do not know the access probabilities ahead of time?
Rule of thumb (temporal locality): A recently accessed item is likely
to be used soon again.
In list: Always insert at the front
Move-To-Front heuristic (MTF): Upon a successful search, move
the accessed item to the front of the list

A B C D E
↓ search(D)

D A B C E
↓ insert(F)

F D A B C E

We can also do MTF on an array, but should then insert and search
from the back so that we have room to grow.

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 16 / 17

Dynamic Ordering: Transpose

Transpose heuristic: Upon a successful search, swap the accessed item
with the item immediately preceding it

A B C D E
↓ search(D)

A B D C E
↓ insert(F)

F A B D C E

Performance of dynamic ordering:
Transpose does not adapt quickly to changing access patterns.
MTF works well in practice.
Can show: MTF is “2-competitive”:
No more than twice as bad as the optimal static ordering.

Petrick (SCS, UW) CS240 – Module 5 Fall 2020 17 / 17

	Dictionaries with Lists revisited
	Dictionary ADT: Implementations thus far
	Dictionary ADT: Implementations thus far

	Skip Lists
	Skip Lists
	Search in Skip Lists
	Example: Search in Skip Lists
	Insert in Skip Lists
	Example: Insert in Skip Lists
	Example 2: Insert in Skip Lists
	Insert in Skip Lists
	Delete in Skip Lists
	Example: Delete in Skip Lists
	Analysis of Skip Lists
	Summary of Skip Lists

	Re-ordering Items
	Re-ordering Items
	Optimal Static Ordering
	Dynamic Ordering: MTF
	Dynamic Ordering: Transpose

