CS 240 - Data Structures and Data Management

Module 5: Other Dictionary Implementations

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2020

References: Sedgewick 9.1-9.4

Outline

(1) Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Skip Lists
- Re-ordering Items

Outline

(1) Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Skip Lists
- Re-ordering Items

Dictionary ADT: Implementations thus far

A dictionary is a collection of key-value pairs (KVPs), supporting operations search, insert, and delete.

Realizations we have seen so far:

- Unordered array or linked list: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- Ordered array: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- Binary search trees: Θ (height) search, insert and delete
- Balanced BST (AVL trees): $\Theta(\log n)$ search, insert, and delete
Improvements/Simplifications?
- Can show: The average-case height of binary search trees (over all possible insertion sequences) is $O(\log n)$.
- How can we shift the average-case to expected height via randomization?

Outline

(1) Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Skip Lists
- Re-ordering Items

Skip Lists

- A hierarchy S of ordered linked lists (levels) $S_{0}, S_{1}, \cdots, S_{h}$:
- Each list S_{i} contains the special keys $-\infty$ and $+\infty$ (sentinels)
- List S_{0} contains the KVPs of S in non-decreasing order. (The other lists store only keys, or links to nodes in S_{0}.)
- Each list is a subsequence of the previous one, i.e., $S_{0} \supseteq S_{1} \supseteq \cdots \supseteq S_{h}$
- List S_{h} contains only the sentinels; the left sentinel is the root

- Each KVP belongs to a tower of nodes
- There are (usually) more nodes than keys
- The skip list consists of a reference to the topmost left node.
- Each node p has references p.after and p.below

Search in Skip Lists

For each level, find predecessor (node before where k would be).
This will also be useful for insert/delete.

getPredecessors (k)

1. $\quad p \leftarrow$ topmost left sentinel
2. $\quad P \leftarrow$ stack of nodes, initially containing p
3. while p.below \neq NIL do
4. $\quad p \leftarrow p$.below
5. \quad while p.after.key $<k$ do $p \leftarrow p$.after
6. \quad P.push (p)
7. return P
skipList::search (k)
8. $\quad P \leftarrow$ getPredecessors (k)
9. $\quad p_{0} \leftarrow P . \operatorname{top}() / /$ predecessor of k in S_{0}
10. if p_{0}.after.key $=k$ return p_{0}.after
11. else return "not found, but would be after p_{0} "

Example: Search in Skip Lists

Example: $\operatorname{search(87)}$

\square key compared with k
\square added to P

Insert in Skip Lists

skipList::insert (k, v)

- Randomly repeatedly toss a coin until you get tails
- Let i the number of times the coin came up heads
- we want k to be in lists S_{0}, \ldots, S_{i}.
- $i \rightarrow$ height of tower of k
- $P($ tower of key k has height $\geq i)=\left(\frac{1}{2}\right)^{i}$
- Increase height of skip list, if needed, to have $h>i$ levels.
- Use getPredecessors(k) to get stack P.

The top i items of P are the predecessors $p_{0}, p_{1}, \cdots, p_{i}$ of where k should be in each list $S_{0}, S_{1}, \cdots, S_{i}$

- Insert (k, v) after p_{0} in S_{0}, and k after p_{j} in S_{j} for $1 \leq j \leq i$

Example: Insert in Skip Lists

Example: skipList::insert(52, v)
Coin tosses: $\mathrm{H}, \mathrm{T} \Rightarrow i=1$
getPredecessors(52)

Example 2: Insert in Skip Lists

Example: skipList::insert(100, v)

Insert in Skip Lists

```
skipList::insert(k,v)
1. }P\leftarrow\mathrm{ getPredecessors(k)
2. for (i\leftarrow0; random(2)=1;i\leftarrowi+1) {} // random tower height
3. while i\geqP.size()
            root }\leftarrow\mathrm{ new sentinel-only list,
                linked to previous root-list appropriately
5. P.append(left sentinel of root)
6. }p\leftarrowP.pop() // insert (k,v) in S
7. k
8. while }i>
                            // insert k in S S,\ldots, Si
9. }p\leftarrowP.pop(
10. kbelow }\leftarrow\mathrm{ new node with }k\mathrm{ ,
                inserted after p with below-reference to kbelow
    11. }\quadi\leftarrowi-
```


Delete in Skip Lists

It is easy to remove a key since we can find all predecessors.
Then eliminate layers if there are multiple ones with only sentinels.

```
skipList:: delete(k)
1. \(\quad P \leftarrow\) get Predecessors \((k)\)
2. while \(P\) is non-empty
3. \(\quad p \leftarrow P \cdot \operatorname{pop}() \quad / /\) predecessor of \(k\) in some layer
4. if p.after.key \(=k\)
5. p.after \(\leftarrow\) p.after.after
6. else break // no more copies of \(k\)
7. \(\quad p \leftarrow\) left sentinel of the root-list
8. while \(p\).below.after is the \(\infty\)-sentinel
    // the two top lists are both only sentinels, remove one
9. p.below \(\leftarrow\) p.below.below
10. p.after.below \(\leftarrow\) p.after.below.below
```


Example: Delete in Skip Lists

Example: skipList::delete(65)

Analysis of Skip Lists

- Expected space usage: $O(n)$
- Expected height: $O(\log n)$

A skip list with n items has height at most $3 \log n$ with probability at least $1-1 / n^{2}$

- Crucial for all operations:
- How often do we drop down (execute $p \leftarrow p$.below)?
- How often do we scan forward (execute $p \leftarrow p$.after)?
- skipList::search: $O(\log n)$ expected time
- \# drop-downs = height
- expected \# scan-forwards is ≤ 1 in each level
- skipList::insert: $O(\log n)$ expected time
- skipList::delete: $O(\log n)$ expected time

Summary of Skip Lists

- $O(n)$ expected space, all operations take $O(\log n)$ expected time.
- As described they are no faster than randomized binary search trees.
- Can show: A biased coin-flip to determine tower-height gives smaller expected run-times.
- Can save links (hence space) by implementing towers as array.

- Then skip lists are fast in practice and simple to implement.

Outline

(1) Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Skip Lists
- Re-ordering Items

Re-ordering Items

- Recall: Unordered list/array implementation of ADT Dictionary search: $\Theta(n)$, insert: $\Theta(1)$, delete: $\Theta(1)$ (after a search)
- Lists/arrays are a very simple and popular implementation. Can we do something to make search more effective in practice?
- No: if items are accessed equally likely
- Yes: otherwise (we have a probability distribution of the items)
- Intuition: Frequently accessed items should be in the front.
- Two cases: Do we know the access distribution beforehand or not?
- For short lists or extremely unbalanced distributions this may be faster than AVL trees or Skip Lists, and much easier to implement.

Optimal Static Ordering

Example:

key	A	B	C	D	E
frequency of access	2	8	1	10	5
access-probability	$\frac{2}{26}$	$\frac{8}{26}$	$\frac{1}{26}$	$\frac{10}{26}$	$\frac{5}{26}$

- We count cost i for accessing the key in the i th position.
- Order A, B, C, D, E has expected access cost $\frac{2}{26} \cdot 1+\frac{8}{26} \cdot 2+\frac{1}{26} \cdot 3+\frac{10}{26} \cdot 4+\frac{5}{26} \cdot 5=\frac{86}{26} \approx 3.31$
- Order D, B, E, A, C has expected access cost $\frac{10}{26} \cdot 1+\frac{8}{26} \cdot 2+\frac{5}{26} \cdot 3+\frac{2}{26} \cdot 4+\frac{1}{26} \cdot 5=\frac{66}{26} \approx 2.54$
- Claim: Over all possible static orderings, the one that sorts items by non-increasing access-probability minimizes the expected access cost.
- Proof Idea: For any other ordering, exchanging two items that are out-of-order according to their access probabilities makes the total cost decrease.

Dynamic Ordering: MTF

- What if we do not know the access probabilities ahead of time?
- Rule of thumb (temporal locality): A recently accessed item is likely to be used soon again.
- In list: Always insert at the front
- Move-To-Front heuristic (MTF): Upon a successful search, move the accessed item to the front of the list

- We can also do MTF on an array, but should then insert and search from the back so that we have room to grow.

Dynamic Ordering: Transpose

Transpose heuristic: Upon a successful search, swap the accessed item with the item immediately preceding it

Performance of dynamic ordering:

- Transpose does not adapt quickly to changing access patterns.
- MTF works well in practice.
- Can show: MTF is "2-competitive":

No more than twice as bad as the optimal static ordering.

