
CS 240 – Data Structures and Data Management

Module 6: Dictionaries for special keys

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2020

References: Sedgewick 12.4, 15.2-15.4
Goodrich & Tamassia 23.5.1-23.5.2

version 2020-10-13 11:58

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 1 / 23

Outline

1 Lower bound

2 Interpolation Search

3 Tries
Standard Tries
Variations of Tries
Compressed Tries

Petrick (SCS, UW) CS240 – Module 6 Fall 2020

Lower bound for search
The fastest realizations of ADT Dictionary require Θ(log n) time to search
among n items. Is this the best possible?

Theorem: In the comparison model (on the keys),
Ω(log n) comparisons are required to search a size-n dictionary.

Proof: via decision tree
k : x1

k : x0 x2 : k

x0 : k x1 : k k : x2 (x2,∞)

(−∞, x0) x0 (x0, x1) x1 (x1, x2) x2

≤ >

≤ > ≤ >

> ≤ > ≤ > ≤

But can we beat the lower bound for special keys?

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 2 / 23

Binary Search
Recall the run-times in a sorted array :

insert, delete: Θ(n)
search: Θ(log n)

Binary-search(A, n, k)
A: Sorted array of size n, k: key
1. `← 0
2. r ← n − 1
3. while (` < r)

4. m← b `+r
2 c

5. if (A[m] < k) then ` = m + 1
6. else if (k < A[m]) then r = m − 1
7. else return m
8. if (k = A[`]) return `
9. else return “not found, but would be between `−1 and `”

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 3 / 23

Interpolation Search: Motivation

binary-search(A[`, r], k): Compare at index b `+r
2 c = ` + b12(r − `)c

` ↓ ↓ r
40 120

Question: If keys are numbers, where would you expect key k = 100?

interpolation-search(A[`, r], k): Compare at index ` +
⌊

k−A[`]
A[r]−A[`](r − `)

⌋

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 4 / 23

Interpolation Search Example

0
0

1
1

2
2

3
3

449
4

450
5

600
6

800
7

1000
8

1200
9

1500
10

interpolation-search(A[0..10],449):
Initially ` = 0, r = n− 1 = 10, m = ` + b 449−0

1500−0(10− 0)c = ` + 2 = 2
` = 3, r = 10, m = ` + b 449−3

1500−3(10− 3)c = ` + 2 = 5
` = 3, r = 4, m = ` + b449−3

449−3(4− 3)c = ` + 1 = 4, found at A[4]

Works well if keys are uniformly distributed:
Can show: the array in which we recurse into has size

√
n on average.

Recurrence relation is T (avg)(n) = T (avg)(
√
n) + Θ(1).

This resolves to T (avg)(n) ∈ Θ(log log n).

But: Worst case performance Θ(n)
Petrick (SCS, UW) CS240 – Module 6 Fall 2020 5 / 23

Interpolation Search
Code very similar to binary search, but compare at interpolated index
Need a few extra tests to avoid crash due to A[`] = A[r]

interpolation-search(A, n, k)
A: Sorted array of size n, k: key
1. `← 0
2. r ← n − 1
3. while (` < r)&&(A[r]! = A[`])&&(k ≥ A[`])&&(k ≤ A[r]))

4. m← ` + b k−A[`])
A[r]−A[`] · (r − `)c

5. if (A[m] < k) then ` = m + 1
6. else if (k < A[m]) then r = m − 1
7. else return m
8. if (k = A[`]) return `
9. else return “not found, but would be between `−1 and `”

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 6 / 23

Outline

1 Lower bound

2 Interpolation Search

3 Tries
Standard Tries
Variations of Tries
Compressed Tries

Petrick (SCS, UW) CS240 – Module 6 Fall 2020

Tries: Introduction
Trie (also know as radix tree): A dictionary for bitstrings.
(Should know: string, word, |w |, alphabet, prefix, suffix, comparing words,....)

Comes from retrieval, but pronounced “try”
A tree based on bitwise comparisons: Edge labelled with
corresponding bit
Similar to radix sort: use individual bits, not the whole key

root

00011
1

1

0
001

1

0

010011
1

1

0

0

011011
1

1

0
0111

1

1

1

0

1100
0

11010
0

1

0

1110
0

1

1

1

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 7 / 23

More on tries
Assumption: Dictionary is prefix-free: no string is a prefix of another

Assumption satisfied if all strings have the same length.
Assumption satisfied if all strings end with ‘end-of-word’ character $.

Example: A trie for {00$, 0001$, 0100$, 011$, 0110$, 110$, 1101$, 111$}

00$
$

0001$
$

1

0

0

0100$
$

0

0

011$
$

011$
$

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Then items (keys) are stored only in the leaf nodes

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 8 / 23

Tries: Search
start from the root and the most significant bit of x
follow the link that corresponds to the current bit in x ;
return failure if the link is missing
return success if we reach a leaf (it must store x)
else recurse on the new node and the next bit of x

Trie::search(v ← root, d ← 0, x)
v : node of trie; d : level of v , x : word stored as array of chars
1. if v is a leaf
2. return v
3. else
4. let v ′ be child of v labelled with x [d]
5. if there is no such child
6. return “not found”
7. else Trie::search(v ′, d + 1, x)

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 9 / 23

Tries: Search Example

Example: Trie::search(011$)

00$
$

0001$
$

1

0

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 10 / 23

Tries: Insert & Delete

Trie::insert(x)
I Search for x , this should be unsuccessful
I Suppose we finish at a node v that is missing a suitable child.

Note: x has extra bits left.
I Expand the trie from the node v by adding necessary nodes that

correspond to extra bits of x .
Trie::delete(x)

I Search for x
I let v be the leaf where x is found
I delete v and all ancestors of v until we reach an ancestor that has two

children.
Time Complexity of all operations: Θ(|x |)
|x |: length of binary string x , i.e., the number of bits in x

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 11 / 23

Tries: Insert Example

Example: Trie::insert(0111$)

00$
$

0001$
$

1

0

0

01001$
$

1

0

0
no 1-child

011$
$

01101$
$

1

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 12 / 23

Tries: Delete Example

Example: Trie::delete(01001$)

00$
$

0001$
$

1

0

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

0111$
$

1

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 13 / 23

Outline

1 Lower bound

2 Interpolation Search

3 Tries
Standard Tries
Variations of Tries
Compressed Tries

Petrick (SCS, UW) CS240 – Module 6 Fall 2020

Variation 1 of Tries: No leaf labels

Do not store actual keys at the leaves.
The key is stored implicitly through the characters along the path to
the leaf. It therefore need not be stored again.
This halves the amount of space needed.

00$
$

0001$
$

1

0

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1

$

$

1

0

0

$

1

0

0

$

$

1

0

1

1

0

$

$

1

0

$

1

1

1

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 14 / 23

Variation 2 of Tries: Allow Proper Prefixes
Allow prefixes to be in dictionary.

Internal nodes may now also represent keys.
Use a flag to indicate such nodes.
No need for end-of-word character $
Now a trie of bitstrings is a binary tree. Can express 0-child and
1-child implicitly via left and right child.
More space-efficient.

$

$

1

0

0

$

1

0

0

$

$

1

0

1

1

0

$

$

1

0

$

1

1

1

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 15 / 23

Variations 3 of Tries

Pruned Trie: Stop adding nodes to trie as soon as the key is unique.
A node has a child only if it has at least two descendants.
Note that now we must store the full keys (why?)
Saves space if there are only few bitstrings that are long.
Could even store infinite bitstrings (e.g. real numbers)

00$
$

0001$
0

0

01001$
0

011$
$

01101$
0

1

1

0

110$
$

1101$
1

0
111$
1

1

1

This is in practice the most efficient version of tries, but the operations get
a bit more complicated.

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 16 / 23

Outline

1 Lower bound

2 Interpolation Search

3 Tries
Standard Tries
Variations of Tries
Compressed Tries

Petrick (SCS, UW) CS240 – Module 6 Fall 2020

Variation 4 of Tries
Compressed Trie: compress paths of nodes with only one child

Each node stores an index , corresponding to the depth in the
uncompressed trie.

I This gives the next bit to be tested during a search
A compressed trie with n keys has at most n − 1 internal nodes

00$
$

0001$
$

1

0

0

01001$
$

1

0

0

011$
$

01101$
$

1

0

1

1

0

110$
$

1101$
$

1

0

111$
$

1

1

1 0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

Also known as Patricia-Tries:
Practical Algorithm to Retrieve Information Coded in Alphanumeric

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 17 / 23

Compressed Tries: Search
start from the root and the bit indicated at that node
follow the link that corresponds to the current bit in x ;
return failure if the link is missing
if we reach a leaf, expicitly check whether word stored at leaf is x
else recurse on the new node and the next bit of x

CompressedTrie::search(v ← root, x)
v : node of trie; x : word
1. if v is a leaf
2. return strcmp(x , v .key)
3. d ← index stored at v
4. if x has at most d bits
5. return “not found”
6. v ′ ← child of v labelled with x [d]
7. if there is no such child
8. return “not found”
9. CompressedTrie::search(v ′, x)

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 18 / 23

Compressed Tries: Search Example

Example: CompressedTrie::search(10$) unsuccessful

0

1

2

00$
$

0001$
0

0
2

01001$
0

3

011$
$

01101$
0

1

1

0
2

3

110$
$

1101$
1

0
111$

1

1

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 19 / 23

Compressed Tries: Insert & Delete

CompressedTrie::delete(x):
I Perform search(x)
I Remove the node v that stored x
I Compress along path to v whenever possible.

CompressedTrie::insert(x):
I Perform search(x)
I Let v be the node where the search ended.
I Conceptually simplest approach:

F Uncompress path from root to v .
F Insert x as in an uncompressed trie.
F Compress paths from root to v and from root to x .

But it can also be done by only adding those nodes that are needed,
see the textbook for details.

All operations take O(|x |) time.

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 20 / 23

Multiway Tries: Larger Alphabet

To represent strings over any fixed alphabet Σ
Any node will have at most |Σ|+ 1 children (one child for the
end-of-word character $)
Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

be$
$

bear$
$

r

a

ben$
$

n

e

b

soul$
$

l

soup$
$

p

u

o

s

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 21 / 23

Compressed Multiway Tries

Variation: Compressed multi-way tries: compress paths as before
Example: A compressed trie holding strings {bear$, ben$, be$, soul$,
soup$}

0

2

be$

$

bear$

a

ben$

n

b

3

soul$

l

soup$

p

s

Petrick (SCS, UW) CS240 – Module 6 Fall 2020 22 / 23

Multiway Tries: Summary
Operations search(x), insert(x) and delete(x) are exactly as for tries
for bitstrings.
Run-time O(|x | · (time to find the appropriate child))

Each node now has up to |Σ|+ 1 children. How should they be stored?

Solution 1: Array of size |Σ|+ 1 for each node.
Complexity: O(1) time to find child, O(|Σ|n) space.

Solution 2: List of children for each node.
Complexity: O(|Σ|) time to find child, O(#children) space.

Solution 3: Dictionary (AVL-tree?) of children for each node.
Complexity: O(log(#children)) time, O(#children) space.
Best in theory, but not worth it in practice unless |Σ| is huge.

In practice, use hashing (keys are in (typically small) range Σ).
Petrick (SCS, UW) CS240 – Module 6 Fall 2020 23 / 23

	Lower bound
	Lower bound for search
	Binary Search

	Interpolation Search
	Interpolation Search: Motivation
	Interpolation Search Example
	Interpolation Search

	Tries
	Standard Tries
	Tries: Introduction
	More on tries
	Tries: Search
	Tries: Search Example
	Tries: Insert & Delete
	Tries: Insert Example
	Tries: Delete Example

	Variations of Tries
	Variation 1 of Tries: No leaf labels
	Variation 2 of Tries: Allow Proper Prefixes
	Variations 3 of Tries

	Compressed Tries
	Variation 4 of Tries
	Compressed Tries: Search
	Compressed Tries: Search Example
	Compressed Tries: Insert & Delete
	Multiway Tries: Larger Alphabet
	Compressed Multiway Tries
	Multiway Tries: Summary

