CS 240 – Data Structures and Data Management

Module 8: Range-Searching in Dictionaries for Points

Mark Petrick

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2020

References: Goodrich & Tamassia 21.1, 21.3

version 2020-10-27 11:48

Petrick (SCS, UW)

CS240 - Module 8

Fall 2020 1 / 38

Outline

1 Range-Searching in Dictionaries for Points

- Range Searches
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

Outline

1

Range-Searching in Dictionaries for Points Range Searches

- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

Range searches

- So far: *search*(*k*) looks for *one* specific item.
- New operation RangeSearch: look for all items that fall within a given range.
 - ► Input: A range, i.e., an interval *I* = (*x*, *x'*) It may be open or closed at the ends.
 - ▶ Want: Report all KVPs in the dictionary whose key k satisfies $k \in I$

Example:

RangeSerach((18,45]) should return $\{19, 33, 45\}$

- Let s be the output-size, i.e., the number of items in the range.
- We need $\Omega(s)$ time simply to report the items.
- Note that sometimes *s* = 0 and sometimes *s* = *n*; we therefore keep it as a separate parameter when analyzing the run-time.

Petrick (SCS, UW)

Range searches in existing dictionary realizations

Unsorted list/array/hash table: Range search requires $\Omega(n)$ time: We have to check for each item explicitly whether it is in the range.

Sorted array: Range search in A can be done in $O(\log n + s)$ time:

- Using binary search, find *i* such that x is at (or would be at) A[i].
- Using binary search, find i' such that x' is at (or would be at) A[i']
- Report all items A[i+1...i'-1]
- Report A[i] and A[i'] if they are in range

BST: Range searches can similarly be done in time O(height+s) time. We will see this in detail later.

Petrick (SCS, UW)

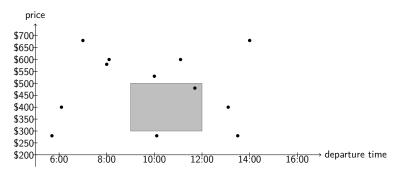
Outline

Range-Searching in Dictionaries for Points

- Range Searches
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

Multi-Dimensional Data

Range searches are of special interest for **multi-dimensional data**. **Example**: flights that leave between 9am and noon, and cost \$300-\$500



- Each item has *d* aspects (coordinates): $(x_0, x_1, \dots, x_{d-1})$
- Aspect values (x_i) are numbers
- Each item corresponds to a point in *d*-dimensional space
- We concentrate on d = 2, i.e., points in Euclidean plane

Petrick (SCS, UW)

Multi-dimensional Range Search

(Orthogonal) *d*-dimensional range search: Given a query rectangle *A*, find all points that lie within *A*.

The time for range searches depends on how the points are stored.

- Could store a 1-dimensional dictionary (where the key is some combination of the aspects.)
 Problem: Range search on one aspect is not straightforward
- Could use one dictionary for each aspect Problem: inefficient, wastes space
- Better idea: Design new data structures specifically for points.
 - Quadtrees
 - kd-trees
 - range-trees

Outline

1 Range-Searching in Dictionaries for Points

- Range Searches
- Multi-Dimensional Data

Quadtrees

- kd-Trees
- Range Trees
- Conclusion

Quadtrees

We have *n* points $S = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}$ in the plane.

We need a **bounding box** R: a square containing all points.

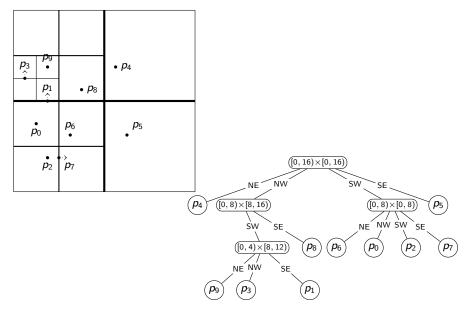
- Can find R by computing minimum and maximum x and y values in S
- The width/height of *R* should be a power of 2

Structure (and also how to *build* the quadtree that stores *S*):

- Root r of the quadtree is associated with region R
- If R contains 0 or 1 points, then root r is a leaf that stores point.
- Else *split*: Partition *R* into four equal subsquares (quadrants) *R_{NE}*, *R_{NW}*, *R_{SW}*, *R_{SE}*
- Partition S into sets S_{NE} , S_{NW} , S_{SW} , S_{SE} of points in these regions.
 - Convention: Points on split lines belong to right/top side
- Recursively build tree T_i for points S_i in region R_i and make them children of the root.

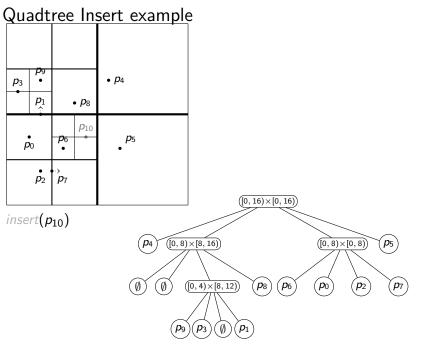
Petrick (SCS, UW)

Quadtrees example



Quadtree Dictionary Operations

- search: Analogous to binary search trees and tries
- insert:
 - Search for the point
 - ► Split the leaf while there are two points in one region
- delete:
 - Search for the point
 - Remove the point
 - If its parent has only one point left: delete parent (and recursively all ancestors that have only one point left)



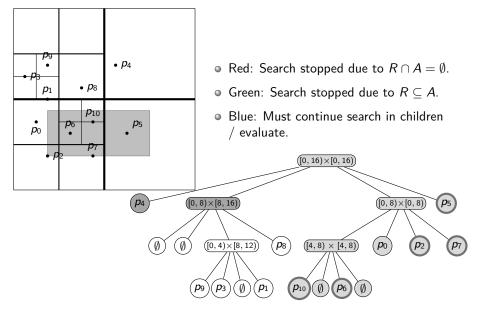
Quadtree Range Search

```
QTree::RangeSearch(r \leftarrow root, A)
r: The root of a quadtree, A: Query-rectangle
1. R \leftarrow region associated with node r
2. if (R \subseteq A) then // inside node
3.
                report all points below r; return
4. if (R \cap A \text{ is empty}) then // outside node
5.
                return
                // The node is a boundary node, recurse
      if (r is a leaf) then
6.
7.
   p \leftarrow \text{point stored at } r
   if p is in A return p
8.
9
   else return
10. for each child v of r do
      QTree::RangeSearch(v, A)
11.
```

Note: We assume here that each node of the quadtree stores the associated square. Alternatively, these could be re-computed during the search (space-time tradeoff).

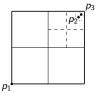
```
Petrick (SCS, UW)
```

Quadtree range search example



Quadtree Analysis

- Crucial for analysis: what is the height of a quadtree?
 - ► Can have very large height for bad distributions of points

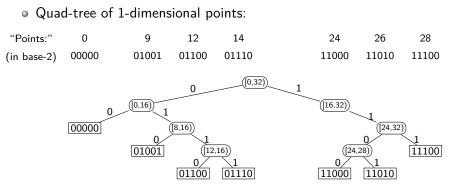


• **spread factor** of points *S*:

 $\beta(S) = \frac{\text{sidelength of } R}{\text{minimum distance between points in } S}$

- Can show: height *h* of quadtree is in $\Theta(\log \beta(S))$
- Complexity to build initial tree: $\Theta(nh)$ worst-case
- Complexity of range search: $\Theta(nh)$ worst-case even if the answer is \emptyset
- But in practice much faster.

Quadtrees in other dimensions



Same as a trie (with splitting stopped once key is unique)

 Quadtrees also easily generalize to higher dimensions (octrees, *etc.*) but are rarely used beyond dimension 3.

Petrick (SCS, UW)

Quadtree summary

- Very easy to compute and handle
- No complicated arithmetic, only divisions by 2 (bit-shift!) if the width/height of *R* is a power of 2
- Space potentially wasteful, but good if points are well-distributed
- Variation: We could stop splitting earlier and allow up to S points in a leaf (for some fixed bound S).
- Variation: Store pixelated images by splitting until each region has the same color.

Outline

1 Range-Searching in Dictionaries for Points

- Range Searches
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

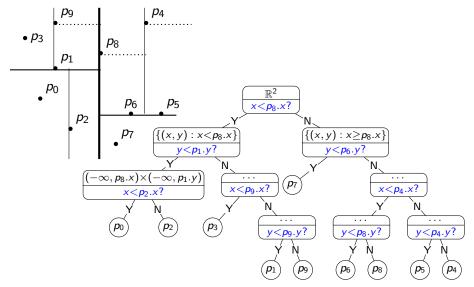
kd-trees

- We have *n* points $S = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}$
- Quadtrees split square into quadrants regardless of where points are
- (Point-based) kd-tree idea: Split the region such that (roughly) half the point are in each subtree
- Each node of the kd-tree keeps track of a **splitting line** in one dimension (2D: either vertical or horizontal)
- Convention: Points on split lines belong to right/top side
- Continue splitting, switching between vertical and horizontal lines, until every point is in a separate region

(There are alternatives, e.g., split by the dimension that has better aspect ratios for the resulting regions. No details.)

Petrick (SCS, UW)

kd-tree example



For ease of drawing, we will usually not show the associated regions.

Constructing kd-trees

Build kd-tree with initial split by x on points S:

- If $|S| \leq 1$ create a leaf and return.
- Else $X := quick-select(S, \lfloor \frac{n}{2} \rfloor)$ (select by x-coordinate)
- Partition S by x-coordinate into $S_{x < X}$ and $S_{x \ge X}$
- Create left subtree recursively (splitting by y) for points $S_{x < X}$.
- Create right subtree recursively (splitting by y) for points $S_{x \ge X}$.

Building with initial *y*-split symmetric.

Run-time:

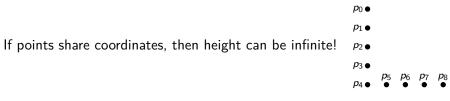
- Find X and partition S in $\Theta(n)$ expected time.
- $\Theta(n)$ expected time on each level in the tree
- Total is $\Theta(height \cdot n)$ expected time
- This can be reduced to $\Theta(n \log n + height \cdot n)$ worst-case time by pre-sorting (no details).

Petrick (SCS, UW)

kd-tree height

Assume first that the points are in **general position** (no two points have the same *x*-coordinate or *y*-coordinate).

- Then the split always puts $\lfloor \frac{n}{2} \rfloor$ points on one side and $\lceil \frac{n}{2} \rceil$ points on the other.
- So height h(n) satisfies the sloppy recurrence $h(n) \le h(\frac{n}{2}) + 1$.
- This resolves to $h(n) \in O(\log n)$
- So can build the kd-tree in $\Theta(n \log n)$ time and O(n) space.



This could be remedied by modifying the splitting routine. (No details.)

kd-tree Dictionary Operations

- *search* (for single point): as in binary search tree using indicated coordinate
- *insert*: search, insert as new leaf.
- *delete*: search, remove leaf.

Problem: After insert or delete, the split might no longer be at exact median and the height is no longer guaranteed to be $O(\log n)$ even for points in general position.

This can be remedied by allowing a certain imbalance and re-building the entire tree when it becomes too unbalanced. (No details.)

kd-tree Range Search

• Range search is *exactly* as for quad-trees, except that there are only two children.

```
kdTree::RangeSearch(r \leftarrow root, A)
r: The root of a kd-tree, A: Query-rectangle
      R \leftarrow region associated with node r
1
2. if (R \subseteq A) then report all points below r; return
3. if (R \cap A \text{ is empty}) then return
4. if (r is a leaf) then
5. p \leftarrow \text{point stored at } r
  if p is in A return p
6.
7.
     else return
8. for each child v of r do
      kdTree::RangeSearch(v,A)
9.
```

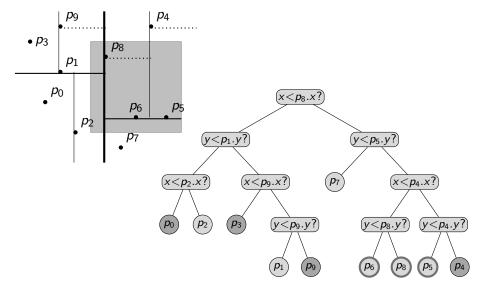
- We assume again that each node stores its associated region.
- To save space, we could instead pass the region as a parameter and compute the region for each child using the splitting line.

Petrick (SCS, UW)

CS240 - Module 8

Fall 2020 20 / 38

kd-tree: Range Search Example



Red: Search stopped due to $R \cap A = \emptyset$. Green: Search stopped due to $R \subseteq A$.

kd-tree: Range Search Complexity

- The complexity is O(s + Q(n)) where
 - s is the output-size
 - ► Q(n) is the number of "boundary" nodes (blue):
 - ★ *kdTree::RangeSearch* was called.
 - ★ Neither $R \subseteq A$ nor $R \cap A = \emptyset$
- **Can show:** Q(n) satisfies the following recurrence relation (no details):

 $Q(n) \leq 2Q(n/4) + O(1)$

- This solves to $Q(n) \in O(\sqrt{n})$
- Therefore, the complexity of range search in kd-trees is $O(s + \sqrt{n})$

kd-tree: Higher Dimensions

- kd-trees for *d*-dimensional space:
 - ► At the root the point set is partitioned based on the first coordinate
 - At the subtrees of the root the partition is based on the second coordinate
 - At depth d-1 the partition is based on the last coordinate
 - At depth d we start all over again, partitioning on first coordinate
- Storage: O(n)
- Height: $O(\log n)$
- **Construction time**: $O(n \log n)$
- Range search time: $O(s + n^{1-1/d})$

This assumes that points are in general position and d is a constant.

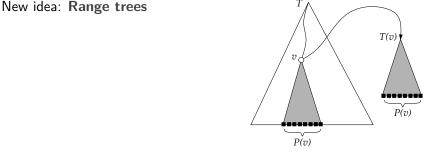
Outline

1 Range-Searching in Dictionaries for Points

- Range Searches
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

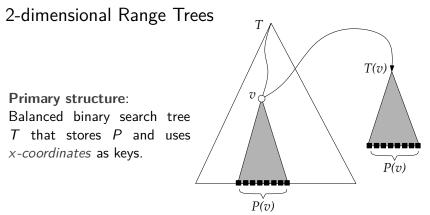
Towards Range Trees

- Both Quadtrees and kd-trees are intuitive and simple.
- But: both may be very slow for range searches.
- Quadtrees are also potentially wasteful in space.



- Somewhat wasteful in space, but much faster range search.
- Tree of trees (a *multi-level* data structure)

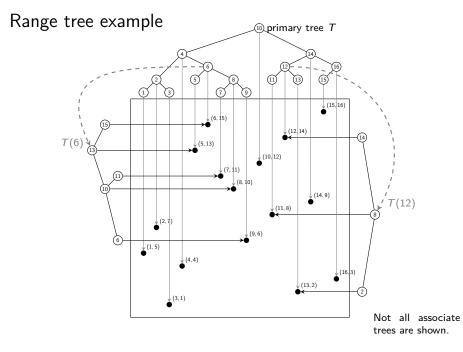
Petrick (SCS, UW)



Each node v of T stores an associate structure T(v):

- Let P(v) be all points in subtree of v in T (including point at v)
- T(v) stores P(v) in a balanced binary search tree, using the *y*-coordinates as key
- Note: v is not necessarily the root of T(v)

Petrick (SCS, UW)



Petrick (SCS, UW)

Fall 2020 26 / 38

Range Tree Space Analysis

- Primary tree uses O(n) space.
- Associate tree T(v) uses O(|P(v)|) space (where P(v) are the points at descendants of v in T)
- Key insight: $w \in P(v)$ means that v is an ancestor of w in T
 - ▶ Every node has $O(\log n)$ ancestors in T
 - Every node belongs to $O(\log n)$ sets P(v)
 - So $\sum_{v} |P(v)| \le n \cdot O(\log n)$

Therefore: A range-tree with *n* points uses $O(n \log n)$ space.

Range Trees Operations

- search: search by x-coordinate in T (handling duplicates suitably)
- insert: First, insert point by x-coordinate into T.
 Then, walk back up to the root and insert the point by y-coordinate in all associate trees T(v) of nodes v on path to the root.
- delete: analogous to insertion
- Problem: We want the binary search trees to be balanced.
 - This makes *insert/delete* very slow if we use AVL-trees.
 (A rotation at v changes P(v) and hence requires a re-build of T(v).)
 - ► This can be resolved by using other balancing methods (no details)
- range-search: search by x-range in T. Among found points, search by y-range in some associated trees.
- Must understand first: How to do (1-dimensional) range search in binary search tree?

Petrick (SCS, UW)

BST Range Search

 $BST::RangeSearch(r \leftarrow root, x_1, x_2)$ *r*: root of a binary search tree, x_1, x_2 : search keys Returns keys in subtree at r that are in range $[x_1, x_2]$ if r = NIL then return 1. 2. **if** $x_1 < r.key < x_2$ **then** $L \leftarrow BST::RangeSearch(r.left, x_1, x_2)$ 3 $R \leftarrow BST::RangeSearch(r.right, x_1, x_2)$ 4. 5. return $L \cup r.\{key\} \cup R$ 6. if $r key < x_1$ then 7. **return** BST::RangeSearch($r.right, x_1, x_2$) if $r.key > x_2$ then 8 9. **return** BST::RangeSearch(r.left, x_1, x_2)

Keys are reported in in-order, i.e., in sorted order.

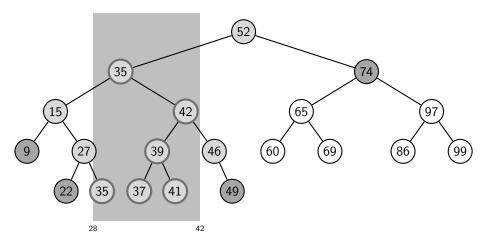
Note: If there are *duplicates*, then this finds all copies that are in range. (Normally dictionaries do not contain duplicates, but we will soon apply this as part of range-trees where duplicates may occur.)

Petrick (SCS, UW)

CS240 - Module 8

Fall 2020 29 / 38

BST Range Search example BST::RangeSearch(T, 28, 42)

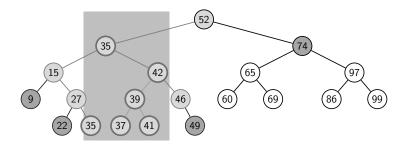


Note: Search from 39 was unnecessary: *all* its descendants are in range.

CS240 - Module 8

Fall 2020 30 / 38

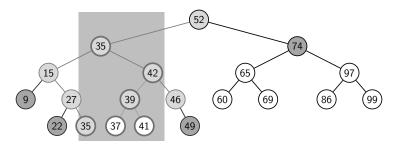
BST Range Search re-phrased



- Search for left boundary x₁: this gives path P₁
 In case of equality, go *left* to ensure that we find all duplicates.
- Search for right boundary x₂: this gives path P₂
 In case of equality, go *right* to ensure that we find all duplicates.
- This partitions *T* into three groups: outside, on, or between the paths.

Petrick (SCS, UW)

BST Range Search re-phrased



• boundary nodes: nodes in P_1 or P_2

► For each boundary node, test whether it is in the range.

• outside nodes: nodes that are left of P_1 or right of P_2

• These are *not* in the range, we stop the search at the topmost.

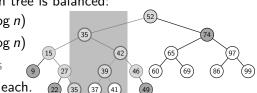
- inside nodes: nodes that are right of P_1 and left of P_2
 - We stop the search at the topmost inside node.
 - ► All descendants of such a node are *in* the range. For a 1d range search, report them.

Petrick (SCS, UW)

BST Range Search analysis

Assume that the binary search tree is balanced:

- Search for path P_1 : $O(\log n)$
- Search for path P_2 : $O(\log n)$
- O(log n) boundary nodes
- We spend O(1) time on each.



- We spend O(1) time per topmost outside node.
 - They are children of boundary nodes, so this takes $O(\log n)$ time.
- We spend O(1) time per topmost inside node v.
 - They are children of boundary nodes, so this takes $O(\log n)$ time.
- For 1d range search, also report the descendants of v.
 - We have ∑_v topmost inside #{descendants of v} ≤ s since subtrees of topmost inside nodes are disjoint. So this takes time O(s) overall.

Run-time for 1d range search: $O(\log n + s)$. This is no faster overall, but topmost inside nodes will be important for 2d range search.

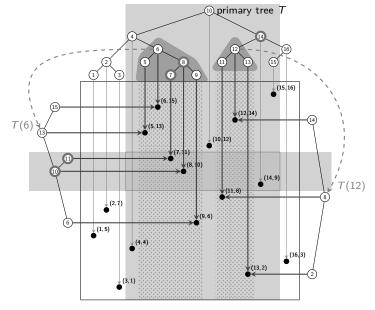
Petrick (SCS, UW)

Range Trees: Range Search

Range search for $A = [x_1, x_2] \times [y_1, y_2]$ is a two stage process:

- Perform a range search (on the x-coordinates) for the interval [x₁, x₂] in primary tree T (BST::RangeSearch(T, x₁, x₂))
- Get boundary, topmost outside and topmost inside nodes as before.
- For every boundary node, test to see if the corresponding point is within the region *A*.
- For every topmost inside node v:
 - Let P(v) be the points in the subtree of v in T.
 - We know that all x-coordinates of points in P(v) are within range.
 - Recall: P(v) is stored in T(v).
 - ► To find points in P(v) where the y-cordinates are within range as well, perform a range search in T(v): BST::RangeSearch(T(v), y₁, y₂)

Range tree range search example



Petrick (SCS, UW)

Range Trees: Range Search Run-time

- $O(\log n)$ time to find boundary and topmost inside nodes in primary tree.
- There are $O(\log n)$ such nodes.
- $O(\log n + s_v)$ time for each topmost inside node v, where s_v is the number of points in T(v) that are reported
- Two topmost inside nodes have no common point in their trees \Rightarrow every point is reported in at most one associate structure $\Rightarrow \sum_{v \text{ topmost inside }} s_v \leq s$

Time for range search in range-tree is proportional to

$$\sum_{v \text{ topmost inside}} (\log n + s_v) \in O(\log^2 n + s)$$

(There are ways to make this even faster. No details.)

Petrick (SCS, UW)

Range Trees: Higher Dimensions

• Range trees can be generalized to *d*-dimensional space.

Space $O(n(\log n)^{d-1})$ kd-trees: O(n)Construction time $O(n(\log n)^d)$ kd-trees: $O(n \log n)$ Range search time $O(s + (\log n)^d)$ kd-trees: $O(s + n^{1-1/d})$

(Note: *d* is considered to be a constant.)

• Space/time trade-off compared to kd-trees.

Outline

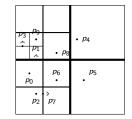
1 Range-Searching in Dictionaries for Points

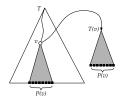
- Range Searches
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

Range search data structures summary

Quadtrees

- ▶ simple (also for dynamic set of points)
- work well only if points evenly distributed
- wastes space for higher dimensions
- kd-trees
 - linear space
 - range search time $O(\sqrt{n} + s)$
 - inserts/deletes destroy balance
 - care needed if not in general position
- range-trees
 - range search time $O(\log^2 n + s)$
 - wastes some space
 - inserts/deletes destroy balance





Convention: Points on split lines belong to right/top side.

Petrick (SCS, UW)