CS 240 - Data Structures and Data Management

Module 9: String Matching

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo
Winter 2021

References: Goodrich \& Tamassia 23

Outline

(1) String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Conclusion

Outline

(1) String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Conclusion

Pattern Matching Definition [1]

- Search for a string (pattern) in a large body of text
- $T[0 . . n-1]$ - The text (or haystack) being searched within
- $P[0 . . m-1]-$ The pattern (or needle) being searched for
- Strings over alphabet Σ
- Return the first i such that

$$
P[j]=T[i+j] \quad \text { for } \quad 0 \leq j \leq m-1
$$

- This is the first occurrence of P in T
- If P does not occur in T, return FAIL
- Applications:
- Information Retrieval (text editors, search engines)
- Bioinformatics
- Data Mining

Pattern Matching Definition [2]

Example:

- $T=$ "Where is he?"
- $P_{1}=$ "he"
- $P_{2}=$ "who"

Definitions:

- Substring $T[i . . j] 0 \leq i \leq j<n$: a string of length $j-i+1$ which consists of characters $T[i], \ldots T[j]$ in order
- A prefix of T :
a substring $T[0 . . i]$ of T for some $0 \leq i<n$
- A suffix of T :
a substring $T[i . . n-1]$ of T for some $0 \leq i \leq n-1$

General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:

- A guess or shift is a position i such that P might start at $T[i]$. Valid guesses (initially) are $0 \leq i \leq n-m$.
- A check of a guess is a single position j with $0 \leq j<m$ where we compare $T[i+j]$ to $P[j]$. We must perform m checks of a single correct guess, but may make (many) fewer checks of an incorrect guess.
We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess.

Brute-force Algorithm

Idea: Check every possible guess.

```
Bruteforce::patternMatching(T[0..n-1], P[0..m - 1])
T: String of length n (text), P: String of length m (pattern)
1. for }i\leftarrow0\mathrm{ to }n-m\mathrm{ do
2. if strcmp(T[i..i+m-1],P)=0
3. return "found at guess i"
4. return FAIL
```

Note: strcmp takes $\Theta(m)$ time.

$$
\begin{array}{cc}
\text { strcmp }(T[i . . i+m-1], P[0 . . m-1]) \\
\text { 1. } & \text { for } j \leftarrow 0 \text { to } m-1 \text { do } \\
\text { 2. } & \text { if } T[i+j] \text { is before } P[j] \text { in } \Sigma \text { then return }-1 \\
3 . & \text { if } T[i+j] \text { is after } P[j] \text { in } \Sigma \text { then return } 1 \\
\text { 4. } & \text { return } 0
\end{array}
$$

Brute-Force Example

- Example: $T=$ abbbababbab, $P=$ abba

| a | b | b | b | a | b | a | b | b | a | b |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | b | b | \mathbf{a} | | | | | | | |
| | \mathbf{a} | | | | | | | | | |
| | | \mathbf{a} | | | | | | | | |
| | | | \mathbf{a} | | | | | | | |
| | | | | a | b | \mathbf{b} | | | | |
| | | | | | \mathbf{a} | | | | | |
| | | | | | | a | b | b | a | |

- What is the worst possible input?

$$
P=a^{m-1} b, T=a^{n}
$$

- Worst case performance $\Theta((n-m+1) m)$
- This is $\Theta(m n)$ e.g. if $m=n / 2$.

How to improve?

More sophisticated algorithms

- Do extra preprocessing on the pattern P
- Karp-Rabin
- Boyer-Moore
- Deterministic finite automata (DFA), KMP
- We eliminate guesses based on completed matches and mismatches.
- Do extra preprocessing on the text T
- Suffix-trees
- We create a data structure to find matches easily.

Outline

(1) String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Conclusion

Karp-Rabin Fingerprint Algorithm - Idea

Idea: use hashing to eliminate guesses

- Compute hash function for each guess, compare with pattern hash
- If values are unequal, then the guess cannot be an occurrence
- Example: $P=59265, \quad T=31415926535$
- Use standard hash-function: flattening + modular (radix $R=10$):

$$
h\left(x_{0} \ldots x_{4}\right)=\left(x_{0} x_{1} x_{2} x_{3} x_{4}\right)_{10} \bmod 97
$$

- $h(P)=59265 \bmod 97=95$.

Karp-Rabin Fingerprint Algorithm - First Attempt

```
Karp-Rabin-Simple::patternMatching \((T, P)\)
1. \(\left.\quad h_{P} \leftarrow h(P[0 . . m-1)]\right)\)
2. for \(i \leftarrow 0\) to \(n-m\)
3. \(\quad h_{T} \leftarrow h(T[i . . i+m-1])\)
4. if \(h_{T}=h_{P}\)
5.
6.
7. return FAIL
```

- Never misses a match: $h(T[i . . i+m-1]) \neq h(P) \Rightarrow$ guess i is not P
- $h(T[i . . i+m-1])$ depends on m characters, so naive computation takes $\Theta(m)$ time per guess
- Running time is $\Theta(m n)$ if P not in T (how can we improve this?)

Karp-Rabin Fingerprint Algorithm - Fast Rehash

The initial hashes are called fingerprints.
Crucial insight: We can update these fingerprints in constant time.

- Use previous hash to compute next hash
- $O(1)$ time per hash, except first one

Example:

- Pre-compute: $10000 \bmod 97=9$
- Previous hash: $41592 \bmod 97=76$
- Next hash: $15926 \bmod 97=$??

Observe: $15926=(41592-4 \cdot 10000) \cdot 10+6$

$$
\begin{aligned}
15926 \bmod 97 & =((\underbrace{41592 \bmod 97}_{76(\text { previous hash })}-4 \cdot \underbrace{10000 \bmod 97}_{9(\text { pre-computed })}) \cdot 10+6) \bmod 97 \\
& =((76-4 \cdot 9) \cdot 10+6) \bmod 97=18
\end{aligned}
$$

Karp-Rabin Fingerprint Algorithm - Conclusion

$$
\begin{array}{lc}
\text { Karp-Rabin-RollingHash::patternMatching }(T, P) \\
\text { 1. } & \left.h_{P} \leftarrow h(P[0 . . m-1)]\right) \\
\text { 2. } & p \leftarrow \text { suitable prime number } \\
\text { 3. } & s \leftarrow 10^{m-1} \bmod p \\
\text { 4. } & \left.h_{T} \leftarrow h(T[0 . . m-1)]\right) \\
\text { 5. } & \text { for } i \leftarrow 0 \text { to } n-m \\
\text { 6. } & \text { if } i>0 / / \operatorname{compute} \text { hash-value for next guess } \\
\text { 7. } & h_{T} \leftarrow\left(\left(h_{T}-T[i] \cdot s\right) \cdot 10+T[i+m]\right) \bmod p \\
\text { 8. } & \text { if } h_{T}=h_{P} \\
\text { 9. } & \text { if } \operatorname{strcmp}(T[i . i+m-1], P)=0 \\
\text { 10. } & \text { return "found at guess } i " \\
\text { 11. } & \text { return "FAIL" }
\end{array}
$$

- Choose "table size" p at random to be huge prime
- Expected running time is $O(m+n)$
- $\Theta(m n)$ worst-case, but this is (unbelievably) unlikely

Outline

(1) String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Conclusion

String Matching with Finite Automata

Example: Automaton for the pattern $P=$ ababaca

(You should be familiar with:

- finite automaton, DFA, NFA, converting NFA to DFA
- transition function δ, states Q, accepting states F
- The above finite automation is an NFA
- State q expresses "we have seen $P[0 . . q-1]$ "
- NFA accepts T if and only if T contains ababaca
- But evaluating NFAs is very slow.

String matching with DFA

Can show: There exists an equivalent small DFA.

- Easy to test whether P is in T.
- But how do we find the arcs?
- We will not give the details of this since there is an even better automaton.

Outline

(1) String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Conclusion

Knuth-Morris-Pratt Motivation

- Use a new type of transition \times ("failure"):
- Use this transition only if no other fits.
- Does not consume a character.
- With these rules, computations of the automaton are deterministic. (But it is formally not a valid DFA.)
- Can store failure-function in an array $F[0 . . m-1]$
- The failure arc from state j leads to $F[j-1]$
- Given the failure-array, we can easily test whether P is in T : Automaton accepts T if and only if T contains ababaca

Knuth-Morris-Pratt Algorithm

```
KMP::patternMatching(T,P)
1. }F\leftarrow\leftarrow\mathrm{ failureArray ( }P
2. i\leftarrow0 // current character of T to parse
3. }j\leftarrow0// current state that we are in
4. while i<n do
5. if P[j]=T[i]
6. if }j=m-
7.
8. else
```

9.
10.
11.
12.
13.
14.
15.
16. return FAIL

String matching with KMP - Example

Example: $T=$ ababababaca, $P=$ ababaca

$q:$| 1 | 2 | 3 | 4 | 5 | 3,4 | 2,0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(after reading this character)

String matching with KMP - Failure-function

Assume we reach state $j+1$ and now have mismatch.

T :					...matched $P[0 . . j] \ldots$					
current guess					$\ldots P[0 . . j] \ldots . .$.	\times				

shift by 1 ? shift by 2?

- Can eliminate "shift by 1 " if $P[1 . . j] \neq P[0 . . j-1]$.
- Can eliminate "shift by 2 " if $P[1 . . j]$ does not end with $P[0 . . j-2]$.
- Generally eliminate guess if that prefix of P is not a suffix of $P[1 . . j]$.
- So want longest prefix $P[0 . . \ell-1]$ that is a suffix of $P[1 . . j]$.
- The ℓ characters of this prefix are matched, so go to state ℓ.
$F[j]=$ head of failure-arc from state $j+1$
$=$ length of the longest prefix of P that is a suffix of $P[1 . . j]$.

KMP Failure Array - Example

$F[j]$ is the length of the longest prefix of P that is a suffix of $P[1 . . j]$.
Consider $P=$ ababaca

j	$P[1 . . j]$	Prefixes of P	longest	$F[j]$
0	Λ	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	Λ	0
1	b	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	Λ	0
2	ba	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	a	1
3	bab	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	ab	2
4	baba	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	aba	3
5	babac	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	Λ	0
6	babaca	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	a	1

This can clearly be computed in $O\left(m^{3}\right)$ time, but we can do better!

Computing the Failure Array

```
KMP::failureArray \((P)\)
\(P\) : String of length \(m\) (pattern)
1. \(\quad F[0] \leftarrow 0\)
2. \(\quad j \leftarrow 1\)
3. \(\quad \ell \leftarrow 0\)
4. while \(j<m\) do
5. if \(P[j]=P[\ell]\)
6. \(\quad \ell \leftarrow \ell+1\)
7. \(\quad F[j] \leftarrow \ell\)
8. \(\quad j \leftarrow j+1\)
9. else if \(\ell>0\)
10.
11. else
12. \(\quad F[j] \leftarrow 0\)
13. \(\quad j \leftarrow j+1\)
```

Correctness-idea: $F[j]$ is defined via pattern matching of P in $P[1 . . j]$. So KMP uses itself! Already-built parts of $F[\cdot]$ are used to expand it.

KMP - Runtime

failureArray

- Consider how $2 j-\ell$ changes in each iteration of the while loop
- j and ℓ both increase by $1 \Rightarrow 2 j-\ell$ increases
- ℓ decreases $(F[\ell-1]<\ell) \Rightarrow 2 j-\ell$ increases
-OR-
- j increases $\Rightarrow 2 j-\ell$ increases
- Initially $2 j-\ell \geq 0$, at the end $2 j-\ell \leq 2 m$
- So no more than $2 m$ iterations of the while loop.
- Running time: $\Theta(m)$

KMP main function

- failureArray can be computed in $\Theta(m)$ time
- Same analysis gives at most $2 n$ iterations of the while loop since $2 i-j \leq 2 n$.
- Running time KMP altogether: $\Theta(n+m)$

Outline

(1) String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Conclusion

Boyer-Moore Algorithm

Brute-force search with three changes:

- Reverse-order searching: Compare P with a guess moving backwards
- Bad character jumps: When a mismatch occurs, then eliminate guesses where P does not agree with this char of T
- Good suffix jumps: When a mismatch occurs, then use recently seen suffix of P to eliminate guesses.
- This gives two possible shifts (locations of next guess to try). Use the one that moves forward more.
- In practice large parts of T will not be looked at.

Boyer-Moore Algorithm

```
Boyer-Moore::patternMatching(T,P)
1. \(L \leftarrow\) last occurrence array computed from \(P\)
2. \(\quad S \leftarrow\) good suffix array computed from \(P\)
3. \(\quad i \leftarrow m-1, \quad j \leftarrow m-1\)
4. while \(i<n\) and \(j \geq 0\) do
5. if \(T[i]=P[j]\)
6.
7. \(\quad j \leftarrow j-1\)
8. else
9.
10. \(\quad j \leftarrow m-1\)
11. if \(j=-1\) return \(i+1\)
12. else return FAIL
```

L and S will be explained below.

Bad character heuristic

Shift to where 'a' fits ' t ' $\notin P \Rightarrow$ shift past ' t ' Shift to where ' p ' fits $i>n$, so P not in T

- Build the last-occurrence array L mapping Σ to integers
- $L(c)$ is the largest index i such that $P[i]=c$
(or -1 if no such index exists)

c	p	a	n	i	all others
$L(c)$	0	1	4	5	-1

- Can build this in time $O(m+|\Sigma|)$ with simple for-loop
- Guesses are updated by aligning $T[i]$ with $P[L(T[i])]$

Good suffix heuristic

$P=$ onobobo

\bigcirc	n	0	\bigcirc	0	b	0	o	0	i	b	b	O	u	n	d	a	r	y
			b	o	b	0												

Do smallest shift so that obo fits in the new guess.

			(b) (o)	b	0									
Do smallest shift so that o fits in the new guess.														
					(o)									
But this has to fail at b, so could shift farther right away														
				(not b)	(o)		0	b	0					
Again: the shift that matches bo would fail at o, so shift farther.														
							(o)	(b)	(o)					
									(0)					

Good suffix array

- For $0 \leq j<m$, if search failed at $T[i] \neq P[j]$
- Had $T[i+1 . . k+m-1]=P[j+1 . . m-1] \quad$ and $\quad T[i] \neq P[j]$
- Can precompute good suffix array of where to shift
- Then can update guess by aligning $T[i]$ with $P[S[j]]$
- $S[\cdot]$ computable (similar to KMP failure function) in $\Theta(m)$ time.

Good suffix array example

Example: bonobobo

i	0	1	2	3	4	5	6	7
$P[i]$	b	o	n	o	b	o	b	o
$S[i]$	-6	-5	-4	-3	2	-1	2	6

Outline

(1) String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Conclusion

Tries of Suffixes and Suffix Trees

- What if we want to search for many patterns P within the same fixed text T ?
- Idea: Preprocess the text T rather than the pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T.
- So want to store all suffixes of T in a trie.
- To save space:
- Use a compressed trie.
- Store suffixes implicitly via indices into T.
- This is called a suffix tree.

Trie of suffixes: Example

$T=$ bananaban has suffixes
\{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, $n, \Lambda\}$

Tries of suffixes

Suffix tree

Suffix tree: Compressed trie of suffixes

$$
T=\begin{array}{|c|c|c|c|c|c|c|c|c|c|c}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \mathrm{~b} & \mathrm{a} & \mathrm{n} & \mathrm{a} & \mathrm{n} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{n} & \$ \\
\hline
\end{array}
$$

Building Suffix Trees

- Text T has n characters and $n+1$ suffixes
- We can build the suffix tree by inserting each suffix of T into a compressed trie. This takes time $\Theta\left(n^{2}|\Sigma|\right)$.
- There is a way to build a suffix tree of T in $\Theta(n|\Sigma|)$ time. This is quite complicated and beyond the scope of the course.
- For pattern matching, suffix trees additionally need:
- Every interior node w stores a reference w.leaf to the leaf in its subtree with the longest suffix.
- This can be found in $O(n)$ time by traversing the suffix tree.

Suffix Trees: String Matching

- In the uncompressed trie, searching for P would be easy.
- In the compressed suffix tree, search as in a compressed trie. Stop the search once P has run out of characters.

```
SuffixTree:: :patternMatching \((T[0 . . n-1], P[0 . . m-1], \mathcal{T})\)
\(T\) : text, \(P\) : pattern, \(\mathcal{T}\) : Suffix tree of \(T\)
1. \(\quad v \leftarrow \mathcal{T}\).root
2. repeat
3. if v.index \(\geq m\) or \(v\) has no child corresponding to \(P\) [v.index]
return FAIL
    \(w \leftarrow\) child of \(v\) corresponding to \(P[v\).index \(]\)
    if \(w\) is leaf or \(w\).index \(\geq m / /\) have gone beyond pattern \(P\)
        \(\ell \leftarrow w\).leaf
        \(i \leftarrow \ell\).start
        if \((i+m \leq n\) and \(\operatorname{strcmp}(T[i . . i+m-1], P)=0)\)
        return "found at guess \(i\) "
        else return FAIL
12. \(\quad v \leftarrow w\)
```


Pattern Matching in Suffix Tree: Example 1

	0	1	2	3	4	5	6	7	8	9
$T=$	b	a	n	a	n	a	b	a	n	\$

$P=$ ann FAIL

Pattern Matching in Suffix Tree: Example 2

$T=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b | a | n | a | n | a | b | a | n | $\$$ | |\quad| $P=$ ana |
| :--- |
| "found at guess $1 "$ |

Pattern Matching in Suffix Tree: Example 3

$T=$	0	1	2	3	4	5	6	7	8	9
b	a	n	a	n	a	b	a	n	$\$$	

$P=$ briar
FAIL

Pattern Matching in Suffix Tree: Example 4

	0	1	2	3	4	5	6	7	8	9
$T=$	b	a	n	a	n	a	b	a	n	\$

$P=$ abando FAIL

Outline

(1) String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Conclusion

String Matching Conclusion

	Brute- Force	KarpRabin	DFA	Knuth- Morris- Pratt	Boyer- Moore	Suffix Tree	Suffix Array ${ }^{1}$
Preproc.	-	$O(m)$	$O(m\|\Sigma\|)$	$O(m)$	$O(m+\|\Sigma\|)$	$\begin{aligned} & O\left(n^{2}\|\Sigma\|\right) \\ & {[O(n)\|\Sigma\|]} \end{aligned}$	$\begin{aligned} & O(n \log n) \\ & {[O(n)]} \end{aligned}$
Search time	$O(n m)$	$\begin{aligned} & O(n+m) \\ & \text { exnected } \end{aligned}$	$O(n)$	$O(n)$	$O(n)$ or better	$O(m)$	$O(m \log n)$
Extra space	-	$O(1)$	$O(m\|\Sigma\|)$	$O(m)$	$O(m+\|\Sigma\|)$	$O(n)$	$O(n)$

- Our algorithms stopped once they have found one occurrence.
- Most of them can be adapted to find all occurrences within the same worst-case run-time.

[^0]
[^0]: ${ }^{1}$ studied only in the enriched section

