
CS 240 – Data Structures and Data Management

Module 10: Compression

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2020

References: Goodrich & Tamassia 10.3

version 2020-11-20 18:29

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 1 / 42

Outline

1 Compression
Encoding Basics
Huffman Codes
Run-Length Encoding
bzip2
Burrows-Wheeler Transform
Lempel-Ziv-Welch

Petrick (SCS, UW) CS240 – Module 10 Fall 2020

Outline

1 Compression
Encoding Basics
Huffman Codes
Run-Length Encoding
bzip2
Burrows-Wheeler Transform
Lempel-Ziv-Welch

Petrick (SCS, UW) CS240 – Module 10 Fall 2020

Data Storage and Transmission

The problem: How to store and transmit data?

Source text The original data, string S of characters from the
source alphabet ΣS

Coded text The encoded data, string C of characters from the
coded alphabet ΣC

Encoding An algorithm mapping source texts to coded texts
Decoding An algorithm mapping coded texts

back to their original source text

Note: Source “text” can be any sort of data (not always text!)

Usually the coded alphabet ΣC is just binary: {0, 1}.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 2 / 42

Judging Encoding Schemes

We can always measure efficiency of encoding/decoding algorithms.

What other goals might there be?
Processing speed
Reliability (e.g. error-correcting codes)
Security (e.g. encryption)
Size (main objective here)

Encoding schemes that try to minimize the size of the coded text perform
data compression. We will measure the compression ratio:

|C | · log |ΣC |
|S| · log |ΣS |

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 3 / 42

Types of Data Compression

Logical vs. Physical
Logical Compression uses the meaning of the data and only applies
to a certain domain (e.g. sound recordings)
Physical Compression only knows the physical bits in the data, not
the meaning behind them

Lossy vs. Lossless
Lossy Compression achieves better compression ratios, but the
decoding is approximate; the exact source text S is not recoverable
Lossless Compression always decodes S exactly

For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)

We will concentrate on physical, lossless compression algorithms.
These techniques can safely be used for any application.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 4 / 42

Character Encodings

A character encoding (or more precisely character-by-character
encoding) maps each character in the source alphabet to a string in
coded alphabet.

E : ΣS → Σ∗
C

For c ∈ ΣS , we call E (c) the codeword of c

Two possibilities:
Fixed-length code: All codewords have the same length.
Variable-length code: Codewords may have different lengths.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 5 / 42

Fixed-length codes
ASCII (American Standard Code for Information Interchange), 1963:
char null

start of
heading

start of
text

end of
text

. . . 0 1 . . . A B . . . ∼ delete

code 0 1 2 3 . . . 48 49 . . . 65 66 . . . 126 127

7 bits to encode 128 possible characters:
“control codes”, spaces, letters, digits, punctuation

A·P·P·L·E → (65, 80, 80, 76, 69)→ 1000001 1010000 1010000 1001100 1000101

Standard in all computers and often our source alphabet.
Not well-suited for non-English text:
ISO-8859 extends to 8 bits, handles most Western languages

Other (earlier) examples: Caesar shift, Baudot code, Murray code

To decode a fixed-length code (say codewords have k bits), we look up
each k-bit pattern in a table.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 6 / 42

Variable-Length Codes

Example 1: Morse code.

Pictures taken from http://apfelmus.nfshost.com/articles/fun-with-morse-code.html

Example 2: UTF-8 encoding of Unicode:

Encodes any Unicode character (more than 107,000 characters)
using 1-4 bytes

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 7 / 42

http://apfelmus.nfshost.com/articles/fun-with-morse-code.html

Encoding
Assume we have some character encoding E : ΣS → Σ∗

C .
Note that E is a dictionary with keys in ΣS .
Typically E would be stored as array indexed by ΣS .

Encoding(E , S[0..n − 1])
E : the encoding dictionary, S: text with characters in ΣS
1. initialize empty string C
2. for i = 0 . . . n − 1
3. x ← E .search(S[i])
4. C .append(x)
5. return C

Example: encode text “WATT” with Morse code:

• •︸ ︷︷ ︸
W

•︸ ︷︷ ︸
A

︸︷︷︸
T

︸︷︷︸
T

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 8 / 42

Decoding
The decoding algorithm must map Σ∗

C to Σ∗
S .

The code must be uniquely decodable.
I This is false for Morse code as described!
• • decodes to WATT and ANO and WJ.
(Morse code uses ‘end of character’ pause to avoid ambiguity.)

From now on only consider prefix-free codes E :
no codeword is a prefix of another
This corresponds to a trie with characters of ΣS only at the leaves.

␣
0

N
1

0
A

1

0

O
0

E
1

0
T

1

1

The codewords need no end-of-string symbol $ if E is prefix-free.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 9 / 42

Decoding of Prefix-Free Codes
Any prefix-free code is uniquely decodable (why?)

PrefixFreeDecoding(T , C [0..n − 1])
T : the trie of a prefix-free code, C : text with characters in ΣC
1. initialize empty string S
2. i ← 0
3. while i < n
4. r ← T .root
5. while r is not a leaf
6. if i = n return “invalid encoding”
7. c ← child of r that is labelled with C [i]
8. i ← i + 1
9. r ← c
10. S.append(character stored at r)
11. return S

Run-time: O(|C |).

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 10 / 42

Encoding from the Trie
We can also encode directly from the trie.

PrefixFreeEncodingFromTrie(T , S[0..n − 1])
T : the trie of a prefix-free code, S: text with characters in ΣS
1. L← array of nodes in T indexed by ΣS
2. for all leaves ` in T
3. L[character at `]← `
4. initialize empty string C
5. for i = 0 to n − 1
6. w ← empty string; v ← L[S[i]]
7. while v is not the root
8. w .prepend(character from v to its parent)
9. // Now w is the encoding of S[i].
10. C .append(w)
11. return C

Run-time: O(|T |+ |C |) = O(|ΣS |+ |C |).

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 11 / 42

Example: Prefix-free Encoding/Decoding

Code as table: c ∈ ΣS ␣ A E N O T
E (c) 000 01 101 001 100 11

Code as trie:

␣
0

N
1

0
A

1

0

O
0

E
1

0
T

1

1

Encode AN␣ANT → 010010000100111

Decode 111000001010111 → TO␣EAT

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 12 / 42

Outline

1 Compression
Encoding Basics
Huffman Codes
Run-Length Encoding
bzip2
Burrows-Wheeler Transform
Lempel-Ziv-Welch

Petrick (SCS, UW) CS240 – Module 10 Fall 2020

Character Frequency
Overall goal: Find an encoding that is short.

Observation: Some letters in Σ occur more often than others.
So let’s use shorter codes for more frequent characters.

For example, the frequency of letters in typical English text is:

e 12.70% d 4.25% p 1.93%
t 9.06% l 4.03% b 1.49%
a 8.17% c 2.78% v 0.98%
o 7.51% u 2.76% k 0.77%
i 6.97% m 2.41% j 0.15%
n 6.75% w 2.36% x 0.15%
s 6.33% f 2.23% q 0.10%
h 6.09% g 2.02% z 0.07%
r 5.99% y 1.97%

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 13 / 42

Huffman’s Algorithm: Building the best trie

For a given source text S, how to determine the “best” trie that minimizes
the length of C?

1 Determine frequency of each character c ∈ Σ in S
2 For each c ∈ Σ, create “ c ” (height-0 trie holding c).

3 Our tries have a weight: sum of frequencies of all letters in trie.
Initially, these are just the character frequencies.

4 Find the two tries with the minimum weight.
5 Merge these tries with new interior node; new weight is the sum.

(Corresponds to adding one bit to the encoding of each character.)
6 Repeat last two steps until there is only one trie left

What data structure should we store the tries in to make this efficient?

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 14 / 42

Example: Huffman tree construction
Example text: GREENENERGY, ΣS = {G ,R,E ,N,Y }

Character frequencies: G : 2, R : 2, E : 4, N : 2 Y : 1

11

G
0

Y
1

0
E

1

0

R
0

N
1

GREENENERGY → 000 10 01 01 11 01 11 01 10 000 001

Compression ratio: 25
11·log 5 ≈ 97%

(These frequencies are not skewed enough to lead to good compression.)

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 15 / 42

Huffman’s Algorithm: Pseudocode

Huffman-Encoding(S[0..n−1])
S: text over some alphabet ΣS
1. f ← array indexed by ΣS , initially all-0 // frequencies
2. for i = 0 to n − 1 do increase f [S[i]] by 1
3. Q ← min-oriented priority queue that stores tries // initialize PQ
4. for all c ∈ ΣS with f [c] > 0 do
5. Q.insert(single-node trie for c with weight f [c])
6. while Q.size > 1 do // build decoding trie
7. T1 ← Q.deleteMin(), f1 ←weight of T1
8. T2 ← Q.deleteMin(), f2 ←weight of T2
9. Q.insert(trie with T1,T2 as subtries and weight f1+f2)
10. T ← Q.deleteMin
11. C ← PrefixFreeEncodingFromTrie(T ,S)
12. return C and T

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 16 / 42

Huffman Coding Evaluation

Note: constructed trie is not unique (why?)
So decoding trie must be transmitted along with the coded text C .
This may make encoding bigger than source text!
Encoding must pass through text twice (to compute frequencies and
to encode)

Encoding run-time: O(|ΣS | log |ΣS |+ |C |)
Decoding run-time: O(|C |)

The constructed trie is optimal in the sense that C is shortest
(among all prefix-free character-encodings with ΣC = {0, 1}).
We will not go through the proof.
Many variations (give tie-breaking rules, estimate frequencies,
adaptively change encoding,)

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 17 / 42

Outline

1 Compression
Encoding Basics
Huffman Codes
Run-Length Encoding
bzip2
Burrows-Wheeler Transform
Lempel-Ziv-Welch

Petrick (SCS, UW) CS240 – Module 10 Fall 2020

Run-Length Encoding

Variable-length code
Example of multi-character encoding: multiple source-text
characters receive one code-word.
The source alphabet and coded alphabet are both binary: {0, 1}.
Decoding dictionary is uniquely defined and not explicitly stored.

When to use: if S has long runs: 00000︸ ︷︷ ︸ 111︸︷︷︸ 0000︸ ︷︷ ︸
Encoding idea:

Give the first bit of S (either 0 or 1)
Then give a sequence of integers indicating run lengths.
We don’t have to give the bit for runs since they alternate.

Example becomes: 0, 5, 3, 4

Question: How to encode a run length k in binary?

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 18 / 42

Prefix-free Encoding for Positive Integers

Use Elias gamma coding to encode k:
blog kc copies of 0, followed by
binary representation of k (always starts with 1)

k blog kc k in binary encoding
1 0 1 1
2 1 10 010
3 1 11 011
4 2 100 00100
5 2 101 00101
6 2 110 00110
...

...
...

...

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 19 / 42

RLE Encoding
RLE-Encoding(S[0...n−1])
S: bitstring
1. initialize output string C ← S[0]
2. i ← 0 // index of parsing S
3. while i < n do
4. k ← 1 // length of run
5. while (i + k < n and S[i + k] = S[i]) do k++
6. i ← i + k

// compute and append Elias gamma code
7. K ← empty string
8. while k > 1
9. C .append(0)
10. K .prepend(k mod 2)
11. k ← bk/2c
12. K .prepend(1) // K is binary encoding of k
13. C .append(K)
14. return C

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 20 / 42

RLE Decoding

RLE-Decoding(C)
C : stream of bits
1. initialize output string S
2. b ← C .pop() // bit-value for the current run
3. repeat
4. `← 0 // length of base-2 number −1
5. while C .pop() = 0 do `++
6. k ← 1 // base-2 number converted
7. for (j ← 1 to `) do k ← k ∗ 2 + C .pop()
8. for (j ← 1 to k) do S.append(b)
9. b ← 1− b
10. until C has no more bits left
11. return S

If C .pop() is called when there are no bits left, then C was not valid input.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 21 / 42

RLE Example

Encoding:
S = 11111110010000000000000000000011111111111

Decoding:
C = 00001101001001010
S = 00000000000001111011

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 22 / 42

RLE Properties

An all-0 string of length n would be compressed to
2blog nc+ 2 ∈ o(n) bits.
Usually, we are not that lucky:

I No compression until run-length k ≥ 6
I Expansion when run-length k = 2 or 4

Used in some image formats (e.g. TIFF)
Method can be adapted to larger alphabet sizes (but then the
encoding of each run must also store the character)
Method can be adapted to encode only runs of 0 (we will need this
soon)

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 23 / 42

Outline

1 Compression
Encoding Basics
Huffman Codes
Run-Length Encoding
bzip2
Burrows-Wheeler Transform
Lempel-Ziv-Welch

Petrick (SCS, UW) CS240 – Module 10 Fall 2020

bzip2 overview
To achieve even better compression, bzip2 uses text transform: Change
input into a different text that is not necessarily shorter, but that has
other desirable qualities.
text T0y Burrows-Wheeler

transform
If T0 has repeated substrings, then T1 has
long runs of characters.

text T1y Move-to-front
transform

If T1 has long runs of characters, then
T2 has long runs of zeros and skewed fre-
quencies.

text T2y Modified RLE If T2 has long runs of zeroes, then T3 is
shorter. Skewed frequencies remain.

text T3y Huffman encoding Compresses well since frequencies are
skewed.

text T4

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 24 / 42

Move-to-Front transform
Recall the MTF heuristic for self-organizing search:

Dictionary L is stored as an unsorted array or linked list
After an element is accessed, move it to the front of the dictionary

How can we use this idea for transforming a text with repeat characters?

Encode each character of source text S by its index in L.
After each encoding, update L with Move-To-Front heuristic.
Example: S = GOOD becomes C = 1, 2, 0, 2

0 1 2

D G O
G−→
1

0 1 2

G D O
O−→
2

0 1 2

O G D
O−→
0

0 1 2

O G D
D−→
2

0 1 2

D O G

Observe: A character in S repeats k times ⇔ C has run of k−1 zeroes

Observe: C contains lots of small numbers and few big ones.
C has the same length as S, but better properties.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 25 / 42

Move-to-Front Encoding/Decoding

MTF-encode(S)
1. L← array with ΣS in some pre-agreed, fixed order (usually ASCII)
2. while S has more characters do
3. c ← next character of S
4. output index i such that L[i] = c
5. for j = i − 1 down to 0
6. swap L[j] and L[j + 1]

Decoding works in exactly the same way:

MTF-decode(C)
1. L← array with ΣS in some pre-agreed, fixed order (usually ASCII)
2. while C has more characters do
3. i ← next integer from C
4. output L[i]
5. for j = i − 1 down to 0
6. swap L[j] and L[j + 1]

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 26 / 42

Outline

1 Compression
Encoding Basics
Huffman Codes
Run-Length Encoding
bzip2
Burrows-Wheeler Transform
Lempel-Ziv-Welch

Petrick (SCS, UW) CS240 – Module 10 Fall 2020

Burrows-Wheeler Transform
Idea:

Permute the source text S: the coded text C has the exact same
letters (and the same length), but in a different order.
Goal: If S has repeated substrings, then C should have long runs of
characters.
We need to choose the permutation carefully, so that we can decode
correctly.

Details:
Assume that the source text S ends with end-of-word character $ that
occurs nowhere else in S.
A cyclic shift of S is the concatenation of S[i+1..n−1] and S[0..i],
for 0 ≤ i < n.
The encoded text C consists of the last characters of the cyclic shifts
of S after sorting them.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 27 / 42

BWT Encoding Example

S = alf␣eats␣alfalfa$

1 Write all cyclic shifts
2 Sort cyclic shifts
3 Extract last characters from
sorted shifts

C =

$alf␣eats␣alfalfa
␣alfalfa$alf␣eats
␣eats␣alfalfa$alf
a$alf␣eats␣alfalf
alf␣eats␣alfalfa$
alfa$alf␣eats␣alf
alfalfa$alf␣eats␣
ats␣alfalfa$alf␣e
eats␣alfalfa$alf␣
f␣eats␣alfalfa$al
fa$alf␣eats␣alfal
falfa$alf␣eats␣al
lf␣eats␣alfalfa$a
lfa$alf␣eats␣alfa
lfalfa$alf␣eats␣a
s␣alfalfa$alf␣eat
ts␣alfalfa$alf␣ea

Observe: Substring alf occurs three times and causes runs lll and aaa
in C (why?)

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 28 / 42

BWT Decoding

Idea: Given C , we can reconstruct the first and last column of the array
of cyclic shifts by sorting.

C = ard$rcaaaabb

1 Last column: C
2 First column: C sorted
3 Disambiguate by row-index

Can argue: Repeated characters are in
the same order in the first and the last
column (the sort was stable).

4 Starting from $, recover S

S =

$,3.........a,0
a,0.........r,1
a,6.........d,2
a,7.........$,3
a,8.........r,4
a,9.........c,5
b,10.........a,6
b,11.........a,7
c,5.........a,8
d,2.........a,9
r,1.........b,10
r,4.........b,11

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 29 / 42

BWT Decoding

BWT-decoding(C [0..n − 1])
C : string of characters over alphabet ΣS
1. A← array of size n // leftmost column
2. for i = 0 to n − 1
3. A[i]← (C [i], i) // store character and index
4. Stably sort A by character
5. for j = 0 to n // where is the $-char?
6. if C [j] = $ break
7. S ← empty string
8. repeat
9. j ← index stored in A[j]
10. S.append(C [j])
11. until C [j] = $
12. return S

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 30 / 42

BWT Overview
Encoding cost: O(n(n + |ΣS |)) (using MSD or LSD radix sort) and often
better

Encoding is theoretically possible in O(n) time, assuming |ΣS | = O(1):
Sorting cyclic shifts of S is equivalent to sorting the suffixes of S · S
that have length > n
This can be done by traversing the suffix tree of S · S

Decoding cost: O(n + |ΣS |) (faster than encoding)

Encoding and decoding both use O(n) space.

They need all of the text (no streaming possible). BWT is a block
compression method.

BWT tends to be slower than other methods, but (combined with MTF,
modified RLE and Huffman) gives better compression.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 31 / 42

Outline

1 Compression
Encoding Basics
Huffman Codes
Run-Length Encoding
bzip2
Burrows-Wheeler Transform
Lempel-Ziv-Welch

Petrick (SCS, UW) CS240 – Module 10 Fall 2020

Longer Patterns in Input

Huffman and RLE take advantage of frequent/repeated single characters.

Observation: Certain substrings are much more frequent than others.

English text:
Most frequent digraphs: TH, ER, ON, AN, RE, HE, IN, ED, ND, HA
Most frequent trigraphs: THE, AND, THA, ENT, ION, TIO, FOR, NDE
HTML: “<a href”, “<img src”, “
”
Video: repeated background between frames, shifted sub-image

Ingredient 1 for Lempel-Ziv-Welch compression: take advantage of such
substrings without needing to know beforehand what they are.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 32 / 42

Adaptive Dictionaries

ASCII, UTF-8, and RLE use fixed dictionaries.

In Huffman, the dictionary is not fixed, but it is static: the dictionary is
the same for the entire encoding/decoding.

Ingredient 2 for LZW: adaptive encoding :
There is a fixed initial dictionary D0. (Usually ASCII.)
For i ≥ 0, Di is used to determine the ith output character
After writing the ith character to output, both encoder and decoder
update Di to Di+1

Encoder and decoder must both know how the dictionary changes.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 33 / 42

LZW Overview

Start with dictionary D0 for |ΣS |.
Usually ΣS = ASCII, then this uses codenumbers 0, . . . , 127.
Every step adds to dictionary a multi-character string, using
codenumbers 128, 129,
Encoding:

I Store current dictionary Di as a trie.
I Parse trie to find longest prefix w already in Di .

So all of w can be encoded with one number.
I Add to dictionary the substring that would have been useful :

add wK where K is the character that follows w in S.
I This creates one child in trie at the leaf where we stopped.

Output is a list of numbers. This is usually converted to bit-string
with fixed-width encoding using 12 bits.

I This limits the codenumbers to 4096.

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 34 / 42

LZW Example

Text: A N A N A S A N N A

65 78 128 65 83 128 129

65
128

130
A

133
NN

131
S

A

78 129AN

83 132A

S
Dictionary:

Final output: 000001000001︸ ︷︷ ︸
65

000001001110︸ ︷︷ ︸
78

000010000000︸ ︷︷ ︸
128

000001000001︸ ︷︷ ︸
65

000001010011︸ ︷︷ ︸
83

000010000000︸ ︷︷ ︸
128

000010000001︸ ︷︷ ︸
129

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 35 / 42

LZW encoding pseudocode

LZW-encode(S)
S : stream of characters
1. Initialize dictionary D with ASCII in a trie
2. idx ← 128
3. while there is input in S do
4. v ← root of trie D
5. K ← S.peek()
6. while (v has a child c labelled K)
7. v ← c; S.pop()
8. if there is no more input in S break (goto 10)
9. K ← S.peek()
10. output codenumber stored at v
11. if there is more input in S
12. create child of v labelled K with codenumber idx
13. idx++

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 36 / 42

LZW decoding

Same idea: build dictionary while reading string.
Dictionary maps numbers to strings.
To save space, store string as code of prefix + one character.
Example: 67 65 78 32 66 129 133

D =

Code # String
. . .

32 ␣
. . .
. . .

65 A
66 B
67 C

. . .
78 N

. . .
83 S

. . .

decodes String String
input to Code # (human) (computer)
67 C
65 A 128 CA 67, A
78 N 129 AN 65, N
32 ␣ 130 N␣ 78, ␣
66 B 131 ␣B 32, B
129 AN 132 BA 66, A
133 ??? 133

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 37 / 42

LZW decoding: the catch
In this example: Want to decode 133, but not yet in dictionary!
What happened during the corresponding encoding?

Text: C A N ␣ B A N x1 x2 . . .

67 65 78 33 66 129 133
A N x1

Dictionary
(parts omitted):

65 129 133x1N
A

66 132A
B

We know: 133 encodes ANx1 (for unknown x1)
We know: Next step uses 133 = ANx1
So x1 =A and 133 encodes ANA

Generally: If code number is about to be added to D, then it encodes

“previous string + first character of previous string”

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 38 / 42

LZW decoding pseudocode
LZW-decode(C)
C : stream of integers
1. D ← dictionary that maps {0, . . . , 127} to ASCII
2. idx ← 128
3. S ← empty string
4. code ← C .pop(); s ← D(code); S.append(s)
5. while there are more codes in C do
6. sprev ← s; code ← C .pop()
7. if code < idx
8. s ← D(code)
9. else if code = idx // special situation!
10. s ← sprev + sprev [0]
11. else FAIL // Encoding was invalid
12. S.append(s)
13. D.insert(idx , sprev + s[0])
14. idx++
15. return S

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 39 / 42

LZW decoding example revisited

Example: 67 65 78 32 66 129 133 83

D =

Code # String
. . .

32 ␣
. . .
. . .

65 A
66 B
67 C

. . .
78 N

. . .
83 S

. . .

decodes String String
input to Code # (human) (computer)
67 C
65 A 128 CA 67, A
78 N 129 AN 65, N
32 ␣ 130 N␣ 78, ␣
66 B 131 ␣B 32, B
129 AN 132 BA 66, A
133 ANA 133 ANA 129, A
83 S 134 ANAS 133, S

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 40 / 42

Lempel-Ziv-Welch discussion
Encoding: O(|S|) time, uses a trie of encoded substrings to store the
dictionary
Decoding: O(|S|) time, uses an array indexed by code numbers to
store the dictionary.
Encoding and decoding need to go through the string only once and
do not need to see the whole string
⇒ can do compression while streaming the text
Compresses quite well (≈ 45% on English text).

Brief history:
LZ77 Original version (“sliding window”)

Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, . . .
DEFLATE used in (pk)zip, gzip, PNG

LZ78 Second (slightly improved) version
Derivatives: LZW, LZMW, LZAP, LZY, . . .
LZW used in compress, GIF (patent issues!)

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 41 / 42

Compression summary

Huffman Run-length
encoding

Lempel-Ziv-
Welch

bzip2 (uses
Burrows-Wheeler)

variable-length variable-length fixed-length multi-step

single-character multi-character multi-character multi-step

2-pass, must send
dictionary

1-pass 1-pass not streamable

60% compression
on English text

bad on text 45% compression
on English text

70% compression
on English text

optimal 01-prefix-
code

good on long runs
(e.g., pictures)

good on English
text

better on English
text

requires uneven fre-
quencies

requires runs requires repeated
substrings

requires repeated
substrings

rarely used directly rarely used directly frequently used used but slow

part of pkzip,
JPEG, MP3

fax machines, old
picture-formats

GIF, some variants
of PDF, compress

bzip2 and variants

Petrick (SCS, UW) CS240 – Module 10 Fall 2020 42 / 42

	Compression
	Encoding Basics
	Data Storage and Transmission
	Judging Encoding Schemes
	Types of Data Compression
	Character Encodings
	Fixed-length codes
	Variable-Length Codes
	Encoding
	Decoding
	Decoding of Prefix-Free Codes
	Encoding from the Trie
	Example: Prefix-free Encoding/Decoding

	Huffman Codes
	Character Frequency
	Huffman's Algorithm: Building the best trie
	Example: Huffman tree construction
	Huffman's Algorithm: Pseudocode
	Huffman Coding Evaluation

	Run-Length Encoding
	Run-Length Encoding
	Prefix-free Encoding for Positive Integers
	RLE Encoding
	RLE Decoding
	RLE Example
	RLE Properties

	bzip2
	bzip2 overview
	Move-to-Front transform
	Move-to-Front Encoding/Decoding

	Burrows-Wheeler Transform
	Burrows-Wheeler Transform
	BWT Encoding Example
	BWT Decoding
	BWT Decoding
	BWT Overview

	Lempel-Ziv-Welch
	Longer Patterns in Input
	Adaptive Dictionaries
	LZW Overview
	LZW Example
	LZW encoding pseudocode
	LZW decoding
	LZW decoding: the catch
	LZW decoding pseudocode
	LZW decoding example revisited
	Lempel-Ziv-Welch discussion
	Compression summary

