CS 240 – Data Structures and Data Management

Module 10: Compression

Mark Petrick
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2020

References: Goodrich & Tamassia 10.3

version 2020-11-20 18:29

Outline

- Compression
 - Encoding Basics
 - Huffman Codes
 - Run-Length Encoding
 - bzip2
 - Burrows-Wheeler Transform
 - Lempel-Ziv-Welch

Outline

- Compression
 - Encoding Basics
 - Huffman Codes
 - Run-Length Encoding
 - bzip2
 - Burrows-Wheeler Transform
 - Lempel-Ziv-Welch

Data Storage and Transmission

The problem: How to store and transmit data?

Source text The original data, string S of characters from the source alphabet Σ_S

Coded text The encoded data, string C of characters from the coded alphabet Σ_C

Encoding An algorithm mapping source texts to coded texts

Decoding An algorithm mapping coded texts back to their original source text

Note: Source "text" can be any sort of data (not always text!) Usually the coded alphabet Σ_C is just binary: $\{0,1\}$.

Judging Encoding Schemes

We can always measure efficiency of encoding/decoding algorithms.

What other goals might there be?

- Processing speed
- Reliability (e.g. error-correcting codes)
- Security (e.g. encryption)
- Size (main objective here)

Encoding schemes that try to minimize the size of the coded text perform data compression. We will measure the compression ratio:

$$\frac{|C| \cdot \log |\Sigma_C|}{|S| \cdot \log |\Sigma_S|}$$

Types of Data Compression

Logical vs. Physical

- Logical Compression uses the meaning of the data and only applies to a certain domain (e.g. sound recordings)
- Physical Compression only knows the physical bits in the data, not the meaning behind them

Lossy vs. Lossless

- Lossy Compression achieves better compression ratios, but the decoding is approximate; the exact source text S is not recoverable
- Lossless Compression always decodes S exactly

For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)

We will concentrate on *physical*, *lossless* compression algorithms. These techniques can safely be used for any application.

Character Encodings

A character encoding (or more precisely character-by-character encoding) maps each character in the source alphabet to a string in coded alphabet.

$$E:\Sigma_S\to\Sigma_C^*$$

For $c \in \Sigma_S$, we call E(c) the **codeword** of c

Two possibilities:

- Fixed-length code: All codewords have the same length.
- Variable-length code: Codewords may have different lengths.

Petrick (SCS, UW)

Fixed-length codes

ASCII (American Standard Code for Information Interchange), 1963:

		•										
	char	null	start of	start of	end of		0	1	 Α	В	 ~	delete
			heading	text	text							
ſ	code	0	1	2	3		48	49	 65	66	 126	127

• 7 bits to encode 128 possible characters:

"control codes", spaces, letters, digits, punctuation

$$A \cdot P \cdot P \cdot L \cdot E \to (65, 80, 80, 76, 69) \to {\scriptstyle 1000001\, 1010000\, 1010000\, 1001100\, 1000101}$$

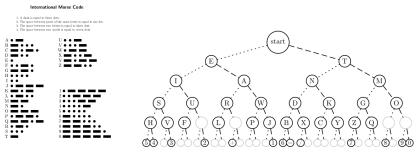
- Standard in all computers and often our source alphabet.
- Not well-suited for non-English text:
 ISO-8859 extends to 8 bits, handles most Western languages

Other (earlier) examples: Caesar shift, Baudot code, Murray code

To decode a fixed-length code (say codewords have k bits), we look up each k-bit pattern in a table.

Variable-Length Codes

Example 1: Morse code.



Pictures taken from http://apfelmus.nfshost.com/articles/fun-with-morse-code.html

Example 2: UTF-8 encoding of Unicode:

 Encodes any Unicode character (more than 107,000 characters) using 1-4 bytes

Encoding

Assume we have some character encoding $E: \Sigma_S \to \Sigma_C^*$.

- Note that E is a dictionary with keys in Σ_S .
- Typically E would be stored as array indexed by Σ_S .

```
Encoding(E, S[0..n-1])

E: the encoding dictionary, S: text with characters in \Sigma_S

1. initialize empty string C

2. for i=0...n-1

3. x \leftarrow E.search(S[i])

4. C.append(x)

5. return C
```

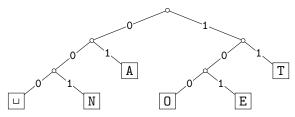
Example: encode text "WATT" with Morse code:

Petrick (SCS, UW)

Decoding

The decoding algorithm must map Σ_C^* to Σ_S^* .

- The code must be uniquely decodable.
 - This is false for Morse code as described!
 decodes to WATT and ANO and WJ.
 (Morse code uses 'end of character' pause to avoid ambiguity.)
- From now on only consider prefix-free codes E:
 no codeword is a prefix of another
- ullet This corresponds to a $\it trie$ with characters of $\Sigma_{\it S}$ only at the leaves.



• The codewords need no end-of-string symbol \$ if E is prefix-free.

Decoding of Prefix-Free Codes

Any prefix-free code is uniquely decodable (why?)

```
PrefixFreeDecoding(T, C[0..n-1])
T: the trie of a prefix-free code, C: text with characters in \Sigma_C
       initialize empty string S
i \leftarrow 0
3. while i < n
             r \leftarrow T.root
4.
            while r is not a leaf
5.
                  if i = n return "invalid encoding"
6
7.
                  c \leftarrow \text{child of } r \text{ that is labelled with } C[i]
                  i \leftarrow i + 1
8.
9.
                  r \leftarrow c
            S.append(character stored at r)
10.
       return S
11.
```

Run-time: O(|C|).

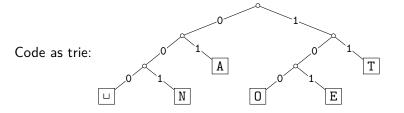
Encoding from the Trie

We can also encode directly from the trie.

```
PrefixFreeEncodingFromTrie(T, S[0..n-1])
T: the trie of a prefix-free code, S: text with characters in \Sigma_S
       L \leftarrow \text{array of nodes in } T \text{ indexed by } \Sigma_S
 2. for all leaves \ell in T
             L[\text{character at }\ell] \leftarrow \ell
4. initialize empty string C
 5. for i = 0 to n - 1
            w \leftarrow \text{empty string}; v \leftarrow L[S[i]]
             while v is not the root
 8.
                   w.prepend(character from v to its parent)
    // Now w is the encoding of S[i].
9.
            C.append(w)
 10.
       return C
 11.
```

Run-time: $O(|T| + |C|) = O(|\Sigma_S| + |C|)$.

Example: Prefix-free Encoding/Decoding



- Encode $AN_{\sqcup}ANT \rightarrow 010010000100111$
- Decode 111000001010111 \rightarrow TO, EAT

Outline

- Compression
 - Huffman Codes
 - a Pun Langth Encoding
 - a hain?
 - Burrows-Wheeler Transform
 - Lempel-Ziv-Welch

Character Frequency

Overall goal: Find an encoding that is short.

Observation: Some letters in Σ occur more often than others. So let's use shorter codes for more frequent characters.

For example, the frequency of letters in typical English text is:

е	12.70%	d	4.25%	р	1.93%
t	9.06%	I	4.03%	b	1.49%
а	8.17%	С	2.78%	V	0.98%
0	7.51%	u	2.76%	k	0.77%
i	6.97%	m	2.41%	j	0.15%
n	6.75%	W	2.36%	X	0.15%
S	6.33%	f	2.23%	q	0.10%
h	6.09%	g	2.02%	Z	0.07%
r	5.99%	V	1.97%		

Huffman's Algorithm: Building the best trie

For a given source text S, how to determine the "best" trie that minimizes the length of C?

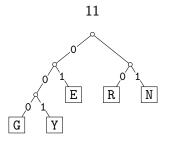
- ① Determine frequency of each character $c \in \Sigma$ in S
- ② For each $c \in \Sigma$, create "c" (height-0 trie holding c).
- Our tries have a weight: sum of frequencies of all letters in trie. Initially, these are just the character frequencies.
- 4 Find the two tries with the minimum weight.
- Merge these tries with new interior node; new weight is the sum. (Corresponds to adding one bit to the encoding of each character.)
- @ Repeat last two steps until there is only one trie left

What data structure should we store the tries in to make this efficient?

Example: Huffman tree construction

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$

Character frequencies: G:2, R:2, E:4, N:2 Y:1



GREENENERGY ightarrow 000 10 01 01 11 01 11 01 10 000 001

Compression ratio: $\frac{25}{11 \cdot \log 5} \approx 97\%$

(These frequencies are not skewed enough to lead to good compression.)

Huffman's Algorithm: Pseudocode

```
Huffman-Encoding(S[0..n-1])
S: text over some alphabet \Sigma_S
       f \leftarrow \text{array indexed by } \Sigma_{S}, initially all-0
                                                                      // frequencies
       for i = 0 to n - 1 do increase f[S[i]] by 1
3.
       Q \leftarrow \text{min-oriented priority queue that stores tries}
                                                                     // initialize PQ
4.
     for all c \in \Sigma_S with f[c] > 0 do
             Q.insert(single-node trie for c with weight f[c])
5.
6
       while Q.size > 1 do
                                                           // build decoding trie
             T_1 \leftarrow Q.deleteMin(), f_1 \leftarrow weight of T_1
7.
             T_2 \leftarrow Q.deleteMin(), f_2 \leftarrow weight of T_2
8
             Q.insert(trie with T_1, T_2 as subtries and weight f_1+f_2)
9
     T \leftarrow Q.deleteMin
10.
11. C \leftarrow PrefixFreeEncodingFromTrie(T, S)
       return C and T
12.
```

Huffman Coding Evaluation

- Note: constructed trie is not unique (why?)
 So decoding trie must be transmitted along with the coded text C.
- This may make encoding bigger than source text!
- Encoding must pass through text twice (to compute frequencies and to encode)
- Encoding run-time: $O(|\Sigma_S| \log |\Sigma_S| + |C|)$
- Decoding run-time: O(|C|)
- The constructed trie is *optimal* in the sense that C is shortest (among all prefix-free character-encodings with $\Sigma_C = \{0,1\}$). We will not go through the proof.
- Many variations (give tie-breaking rules, estimate frequencies, adaptively change encoding,)

Outline

- Compression
 - Lincouning Dasic
 - Tiulillali Codes
 - Run-Length Encoding
 - bzip2
 - Burrows-Wheeler Transform
 - Lempel-Ziv-Welch

Run-Length Encoding

- Variable-length code
- Example of **multi-character encoding**: multiple source-text characters receive one code-word.
- The source alphabet and coded alphabet are both binary: $\{0,1\}$.
- Decoding dictionary is uniquely defined and not explicitly stored.

When to use: if S has long runs: 00000 111 0000

Encoding idea:

- Give the first bit of *S* (either 0 or 1)
- Then give a sequence of integers indicating run lengths.
- We don't have to give the bit for runs since they alternate.

Example becomes: 0, 5, 3, 4

Question: How to encode a run length k in binary?

Prefix-free Encoding for Positive Integers

Use Elias gamma coding to encode k:

- $\lfloor \log k \rfloor$ copies of 0, followed by
- binary representation of k (always starts with 1)

k	[log <i>k</i>]	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
:	:	:	:

RLE Encoding

```
RLE-Encoding(S[0...n-1])
S: bitstring
   initialize output string C \leftarrow S[0]
i \leftarrow 0
                                  // index of parsing S
3. while i < n do
4.
          k \leftarrow 1
                                 // length of run
5. while (i + k < n \text{ and } S[i + k] = S[i]) do k++
6.
        i \leftarrow i + k
           // compute and append Elias gamma code
7. K \leftarrow \text{empty string}
        while k > 1
8.
9
               C.append(0)
               K.prepend(k \mod 2)
10.
               k \leftarrow |k/2|
11.
12. K.prepend(1) // K is binary encoding of k
           C.append(K)
13.
      return C
14
```

RLE Decoding

```
RLE-Decoding(C)
C: stream of bits
    initialize output string S
2. b \leftarrow C.pop() // bit-value for the current run
3. repeat
4. \ell \leftarrow 0 // length of \ell

5. while C.pop() = 0 do \ell + +
             \ell \leftarrow 0 // length of base-2 number -1
    k \leftarrow 1 // base-2 number converted for (j \leftarrow 1 \text{ to } \ell) do k \leftarrow k * 2 + C.pop()
    for (j \leftarrow 1 \text{ to } k) do S.append(b)
9. b \leftarrow 1 - b
10. until C has no more bits left
 11.
        return S
```

If C.pop() is called when there are no bits left, then C was not valid input.

RLE Example

Encoding:

Decoding:

C = 00001101001001010

S = 0000000000001111011

RLE Properties

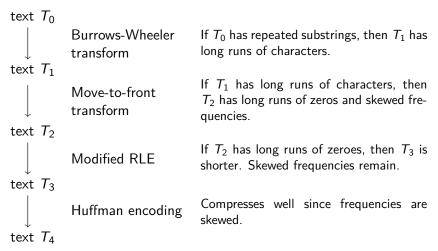
- An all-0 string of length n would be compressed to $2|\log n| + 2 \in o(n)$ bits.
- Usually, we are not that lucky:
 - ▶ No compression until run-length $k \ge 6$
 - Expansion when run-length k = 2 or 4
- Used in some image formats (e.g. TIFF)
- Method can be adapted to larger alphabet sizes (but then the encoding of each run must also store the character)
- Method can be adapted to encode only runs of 0 (we will need this soon)

Outline

- Compression
 - Lincouning Dasic
 - Run-Length Encoding
 - bzip2
 - Burrows-Wheeler Transform
 - Lempel-Ziv-Welch

bzip2 overview

To achieve even better compression, bzip2 uses *text transform*: Change input into a different text that is not necessarily shorter, but that has other desirable qualities.



Move-to-Front transform

Recall the MTF heuristic for self-organizing search:

- Dictionary L is stored as an unsorted array or linked list
- After an element is accessed, move it to the front of the dictionary

How can we use this idea for transforming a text with repeat characters?

- Encode each character of source text *S* by its index in *L*.
- After each encoding, update *L* with Move-To-Front heuristic.
- Example: S = GOOD becomes C = 1, 2, 0, 2

Observe: A character in *S* repeats k times $\Leftrightarrow C$ has run of k-1 zeroes

Observe: C contains lots of small numbers and few big ones.

C has the same length as S, but better properties.

Move-to-Front Encoding/Decoding

```
MTF-encode(S)

1. L \leftarrow \text{array with } \Sigma_S \text{ in some pre-agreed, fixed order (usually ASCII)}

2. while S has more characters do

3. c \leftarrow \text{next character of } S

4. output index i such that L[i] = c

5. for j = i - 1 down to 0

6. swap L[j] and L[j + 1]
```

Decoding works in *exactly* the same way:

```
MTF-decode(C)
1. L \leftarrow \text{array with } \Sigma_S \text{ in some pre-agreed, fixed order (usually ASCII)}
2. while C has more characters do
3. i \leftarrow \text{next integer from } C
4. output L[i]
5. for j = i - 1 down to 0
6. swap L[j] and L[j + 1]
```

Outline

- Compression
 - Lincouning Dasic
 - Run-Length Encoding
 - bzip2
 - Burrows-Wheeler Transform
 - Lempel-Ziv-Welch

Burrows-Wheeler Transform

Idea:

- *Permute* the source text *S*: the coded text *C* has the exact same letters (and the same length), but in a different order.
- **Goal:** If *S* has repeated substrings, then *C* should have long runs of characters.
- We need to choose the permutation carefully, so that we can decode correctly.

Details:

- Assume that the source text S ends with end-of-word character \$ that occurs nowhere else in S.
- A cyclic shift of S is the concatenation of S[i+1..n-1] and S[0..i], for $0 \le i < n$.
- The encoded text C consists of the last characters of the cyclic shifts of S after sorting them.

Petrick (SCS, UW)

BWT Encoding Example

 $S = alf_ueats_ualfalfa$ \$

- Write all cyclic shifts
- 2 Sort cyclic shifts
- 3 Extract last characters from sorted shifts

C =

\$alf, eats, alfalfa ⊔alfalfa\$alf⊔eats _eats_alfalfa\$alf a\$alf, eats, alfalf alf_□eats_□alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf⊔eats⊔ atsualfalfa\$alfue eats alfalfa\$alf ... fueatsualfalfa\$al fa\$alf, eats, alfal falfa\$alf_eats_al lfueatsualfalfa\$a lfa\$alf, eats, alfa lfalfa\$alfueatsua sualfalfa\$alfueat tsualfalfa\$alfuea

Observe: Substring alf occurs three times and causes runs 111 and aaa in C (why?)

BWT Decoding

Idea: Given C, we can reconstruct the *first* and *last column* of the array of cyclic shifts by sorting.

C =	ard\$rcaaaabb									
1	Last column: C									
2	First column: C sorted									
3	3 Disambiguate by row-index									
	Can argue: Repeated characters are in									
	the same order in the first and the last									
	column (the sort was <i>stable</i>).									
4	Starting from \$, recover <i>S</i>									

9	\$,	3					.a,0
8	a	,	0					.r,1
8	a	,	6					.d,2
8	a	,	7					.\$,3
8	a	,	8					.r,4
8	a	,	9					.c,5
b,	,	1	0					.a,6
b,	,	1	1					.a,7
(С	,	5					.a,8
(f	,	2					.a,9
1	r	,	1					.b,10
1	r		4					.b.11

BWT Decoding

```
BWT-decoding(C[0..n-1])
C: string of characters over alphabet \Sigma_S
   A \leftarrow \text{array of size } n // leftmost column
2. for i = 0 to n - 1
3. A[i] \leftarrow (C[i], i) // store character and index
4. Stably sort A by character
5. for j = 0 to n // where is the $-char?
6. if C[j] = \$ break
7. S \leftarrow \text{empty string}
   repeat
9. j \leftarrow \text{index stored in } A[j]
10. S.append(C[j])
11. until C[j] = $
      return S
```

BWT Overview

Encoding cost: $O(n(n + |\Sigma_S|))$ (using MSD or LSD radix sort) and often better

Encoding is theoretically possible in O(n) time, assuming $|\Sigma_S| = O(1)$:

- Sorting cyclic shifts of S is equivalent to sorting the suffixes of $S \cdot S$ that have length > n
- This can be done by traversing the suffix tree of $S \cdot S$

Decoding cost: $O(n + |\Sigma_S|)$ (faster than encoding)

Encoding and decoding both use O(n) space.

They need *all* of the text (no streaming possible). BWT is a **block compression method**.

BWT tends to be slower than other methods, but (combined with MTF, modified RLE and Huffman) gives better compression.

Outline

- Compression
 - Elicoullig Dasic
 - Run Longth Encoding
 - Kun-Length Encoding
 - bzip2
 - Burrows-Wheeler Transform
 - Lempel-Ziv-Welch

Longer Patterns in Input

Huffman and RLE take advantage of frequent/repeated single characters.

Observation: Certain substrings are much more frequent than others.

- English text:
 Most frequent digraphs: TH, ER, ON, AN, RE, HE, IN, ED, ND, HA
 Most frequent trigraphs: THE, AND, THA, ENT, ION, TIO, FOR, NDE
- HTML: "<a href", "<img src", "
"
- Video: repeated background between frames, shifted sub-image

Ingredient 1 for Lempel-Ziv-Welch compression: take advantage of such substrings *without* needing to know beforehand what they are.

Adaptive Dictionaries

ASCII, UTF-8, and RLE use *fixed* dictionaries.

In Huffman, the dictionary is not fixed, but it is *static*: the dictionary is the same for the entire encoding/decoding.

Ingredient 2 for LZW: adaptive encoding:

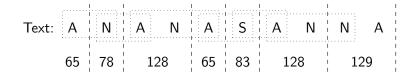
- There is a fixed initial dictionary D_0 . (Usually ASCII.)
- For $i \ge 0$, D_i is used to determine the *i*th output character
- After writing the *i*th character to output, both encoder and decoder update D_i to D_{i+1}

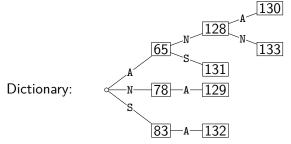
Encoder and decoder must both know how the dictionary changes.

LZW Overview

- Start with dictionary D_0 for $|\Sigma_S|$. Usually $\Sigma_S = ASCII$, then this uses codenumbers $0, \dots, 127$.
- Every step adds to dictionary a multi-character string, using codenumbers 128, 129,
- Encoding:
 - ▶ Store current dictionary D_i as a trie.
 - Parse trie to find longest prefix w already in D_i. So all of w can be encoded with one number.
 - ► Add to dictionary the *substring that would have been useful*: add *wK* where *K* is the character that follows *w* in *S*.
 - ► This creates one child in trie at the leaf where we stopped.
- Output is a list of numbers. This is usually converted to bit-string with fixed-width encoding using 12 bits.
 - ► This limits the codenumbers to 4096.

LZW Example





 $Final\ output: \ \underbrace{000001000001}_{65} \underbrace{000001000001}_{78} \underbrace{0000010000000}_{128} \underbrace{000001000001}_{65} \underbrace{0000010000001}_{83} \underbrace{0000010000000}_{128} \underbrace{0000010000000}_{129}$

Petrick (SCS, UW)

LZW encoding pseudocode

```
LZW-encode(S)
S: stream of characters
       Initialize dictionary D with ASCII in a trie
     idx \leftarrow 128
3. while there is input in S do
4
            v \leftarrow \text{root of trie } D
            K \leftarrow S.peek()
5.
            while (v has a child c labelled K)
6
                  v \leftarrow c; S.pop()
7.
                  if there is no more input in S break
8
                                                           (goto 10)
9.
                  K \leftarrow S.peek()
            output codenumber stored at v
10.
            if there is more input in S
11.
                  create child of v labelled K with codenumber idx
12.
13.
                  idx++
```

LZW decoding

Same idea: build dictionary while reading string.

Dictionary maps numbers to strings.
 To save space, store string as code of prefix + one character.

• Example: 67 65 78 32 66 129 133

	Code #	String	
	32		
		•	
		•	
	65	A	
D =	66	В	
	67	C	
	78	N	
		•	
	83	S	

C----- Ctuing

	decodes	Code #	String (human)	String (computer)
input	ιο	Code #	(numan)	(computer)
67	C			
65	A	128	CA	67, A
78	N	129	AN	65, N
32	П	130	N⊔	78, ⊔
66	В	131	⊔B	32, B
129	AN	132	BA	66, A
133	???	133		

LZW decoding: the catch

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

- We know: 133 encodes ANx_1 (for unknown x_1)
- We know: Next step uses $133 = ANx_1$
- So $x_1 = A$ and 133 encodes ANA

Generally: If code number is about to be added to D, then it encodes

"previous string + first character of previous string"

LZW decoding pseudocode

```
LZW-decode(C)
C: stream of integers
    D \leftarrow \text{dictionary that maps } \{0, \dots, 127\} \text{ to ASCII}
2. idx \leftarrow 128
3. S \leftarrow \text{empty string}
4. code \leftarrow C.pop(); s \leftarrow D(code); S.append(s)
5. while there are more codes in C do
             s_{prev} \leftarrow s; code \leftarrow C.pop()
6.
7.
            if code < idx
                  s \leftarrow D(code)
8
9.
            else if code = idx // special situation!
10.
                  s \leftarrow s_{prev} + s_{prev}[0]
           else FAIL // Encoding was invalid
11.
12.
            S.append(s)
13. D.insert(idx, s_{prev} + s[0])
       idx++
14.
       return S
 15.
```

LZW decoding example revisited

• Example: 67 65 78 32 66 129 133 83

	Code #	String	
	32	ш	
	65	A	
D =	66	В	
	67	C	
	78	N	
	83	S	

input	decodes to	Code #	String (human)	String (computer)
67	C			
65	A	128	CA	67, A
78	N	129	AN	65, N
32		130	N⊔	78, ⊔
66	В	131	⊔B	32, B
129	AN	132	BA	66, A
133	ANA	133	ANA	129, A
83	S	134	ANAS	133, S

Lempel-Ziv-Welch discussion

- ullet Encoding: O(|S|) time, uses a trie of encoded substrings to store the dictionary
- Decoding: O(|S|) time, uses an array indexed by code numbers to store the dictionary.
- Encoding and decoding need to go through the string only once and do not need to see the whole string
 - ⇒ can do compression while streaming the text
- \bullet Compresses quite well ($\approx 45\%$ on English text).

Brief history:

```
LZ77 Original version ("sliding window")

Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ...

DEFLATE used in (pk)zip, gzip, PNG
```

LZ78 Second (slightly improved) version
Derivatives: LZW, LZMW, LZAP, LZY, ...
LZW used in compress, GIF (patent issues!)

Compression summary

Huffman	Run-length encoding	Lempel-Ziv- Welch	bzip2 (uses Burrows-Wheeler)
variable-length	variable-length	fixed-length	multi-step
single-character	multi-character	multi-character	multi-step
2-pass, must send dictionary	1-pass	1-pass	not streamable
60% compression on English text	bad on text	45% compression on English text	70% compression on English text
optimal 01-prefix- code	good on long runs (e.g., pictures)	good on English text	better on English text
requires uneven frequencies	requires runs	requires repeated substrings	requires repeated substrings
rarely used directly	rarely used directly	frequently used	used but slow
part of pkzip, JPEG, MP3	fax machines, old picture-formats	GIF, some variants of PDF, compress	bzip2 and variants