
CS 240 – Data Structures and Data Management

Module 11: External Memory

M. Petrick O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2020

References: Goodrich & Tamassia 20.1-20.3, Sedgewick 16.4

Outline

▪ External Memory

▪ Motivation

▪ External sorting

▪ External Dictionaries

▪ 2-4 Trees

▪ (a, b)-Trees

▪ B-Trees

Outline

▪ External Memory

▪ Motivation

▪ External sorting

▪ External Dictionaries

▪ 2-4 Trees

▪ (a, b)-Trees

▪ B-Trees

Different levels of memory
▪ Memory hierarchy for current computer architectures

▪ Registers: super fast, very small

▪ cache L1, L2: very fast, less small

▪ main memory: fast, large

▪ disk or cloud: slow, very large

▪ from 1000 to 1,000,000 times slower than main memory

▪ Desirable to minimize transfer between slow/fast memory

▪ Focus on main (internal) memory and disk or cloud (external) memory

▪ main memory: fast, large

▪ disk or cloud: slow, very large

▪ accessing a single location in external memory automatically loads a whole
block (or “page”)

▪ one block access can take as much time as executing 100,000 CPU
instructions

▪ need to care about the number of block accesses

▪ new objective

▪ revisit ADTs/problems with the objective of minimizing block transfers
(“probes”, “disk transfers”, “page loads”)

Adding External-Memory Model (EMM)

CPU

slow access
only in blocks of 𝐵 cells

▪ Cost of computation: number of blocks transferred between internal and external memory

internal memory – size M

. . .

external memory – size unbounded

fast random access

𝐵 is typically from 1024 to 8192

▪ Algorithm 1

1,000 CPU instructions + 1,000 block transfers

▪ Algorithm 2

10,000 CPU instructions + 10 block transfers

dominating
factors

= 1,000+1,000⋅100,000 = 103 + 108

= 10,000+10⋅100,000 = 104 + 106

Suppose time for one block
transfer = time for 100,000 CPU
instructions

Outline

▪ External Memory

▪ Motivation

▪ External sorting

▪ External Dictionaries

▪ 2-4 Trees

▪ (a, b)-Trees

▪ B-Trees

▪ Extendible Hashing

Sorting in external memory

▪ Sort array 𝐴 of 𝑛 numbers
▪ assume 𝑛 is huge so that 𝐴 is stored in blocks in external memory

▪ Heapsort was optimal in time and space in RAM model
▪ poor memory locality: each iteration can access far apart indices of 𝐴

▪ Mergesort adapts well to array stored in external memory
▪ access consecutive locations of 𝐴, ideal for reading in blocks

block block block block block block block

block block block block block block block

▪ accesses 2 blocks, and puts all their elements in order

▪ accesses 2 blocks, but put only 2 elements in order

▪ and all the other data read in the block is not used

▪ heapsort does not adapt well to data stored in external memory

Mergesort: non-recusive view
▪ Several rounds of merging adjacent pairs of sorted runs (run = subarray)

▪ in round 𝑖, merge sorted runs of size 2𝑖

▪ Graphical notation

merge merge merge merge

size 21

2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

merge merge

size 22

34 11 2 67 8 12 31 1 3 15 18 32 9 16 4 13

merge

size 20

merge merge merge merge mergemerge merge

11 34 2 67 8 12 1 31 3 15 18 32 9 16 4 13

1 2 3 8 11 12 31 34 3 4 9 13 15 16 18 32

merge

sorted array1 2 3 8 11 12 31 34 3 4 9 13 15 16 18 32

size 23

sorted run

lo
g
2
𝑛

2-way Merge
▪ Two sorted runs

2 11 34 67 1 8 12 31

▪ Array to store sorted result

▪ Put a pointer at the front of each sorted run

▪ call it ‘current front’

1

current
front

current
front

▪ Repeatedly find the smallest element among current fronts

▪ move the smallest element into sorted result array

▪ advance current front of corresponding sorted run

2-way Merge
▪ Two sorted runs

2 11 34 67 1 8 12 31

done!

▪ Time to merge two sequences each of size 𝑘 is Θ(2𝑘)

11 12 31 34 64

▪ Array to store sorted result

1 2 8

▪ Put a pointer at the front of each sorted run

▪ call it ‘current front’

▪ Repeatedly find the smallest element among current fronts

▪ move the smallest element into sorted result array

▪ advance current front of corresponding sorted run

Running time of MergeSort with 2-way Merge

▪ one round of merge sort takes Θ 2𝑘 ⋅ 𝑛/ 2𝑘 = Θ(𝑛) time

▪ Total time for mergesort is Θ(𝑛 log2 𝑛)

11 34 2 67 8 12 1 31 3 15 18 32 9 16 4 13

𝑘 𝑘

merge merge merge merge

𝑘 𝑘 𝑘 𝑘 𝑘 𝑘

▪ Θ log2 𝑛 rounds

▪ Time for each round

▪ time to merge 2 sequences each of size 𝑘 is Θ(2𝑘)

▪ in one round, need to merge 𝑛/(2𝑘) sequences pairs

𝑑-way Mergesort
▪ Can generalize mergesort to merge 𝑑 sorted runs at one time

▪ 𝑑 = 2 gives standard mergesort

▪ Example: 𝑑 = 4

𝑑-way merge

size 41

34 11 2 67 8 12 31 1 3 15 18 32 9 16 4 13 size 40

𝑑-way merge 𝑑-way merge𝑑-way merge

2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

sorted array

𝑑-way merge

1 2 3 8 11 12 31 34 3 4 9 13 15 16 18 32

▪ log𝑑 𝑛 =
log2 𝑛

log2 𝑑
rounds

▪ the larger is 𝑑 the less rounds

▪ How to merge 𝑑 sorted runs efficiently?
▪ 𝑑-Way merge

lo
g
𝑑
𝑛

𝑑-way Merge
▪ 𝑑 = 3

2 11 34 8 9 12 1 11 31

▪ 𝑑 = 5

2 11 34 8 9 12 1 11 31 15 18 32 9 12 13

▪ 𝑑 = 16

34 11 2 67 8 12 31 1 3 15 18 32 9 16 4 13

▪ Need efficient data structure to find the minimum among 𝑑 current fronts

𝑑-way Merge with Min-Heap
▪ Use min heap to find the smallest element among of 𝑑 current fronts

▪ (key,value) = (element, sorted run)

▪ 𝑑 = 4
2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

1,1

2,0 3,2

4,3

1) insert(2,0), insert(1,1),
insert(3,2), insert(4,3)

merged output

𝑑-way Merge with Min-Heap

2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

1 2

6) deleteMin() = (3,2)

4,3

11,0 8,1

3merged output

5) insert(11,0)

3,2

4,3 8,1

11,0

4) deleteMin() = (2,0)

3,2

4,3 8,1

3) insert(8,1)

2,0

4,3 3,2

8,1

1,1

2,0 3,2

4,3

1) insert(2,0), insert(1,1),
insert(3,2), insert(4,3)

2) deleteMin() = (1,1)

2,0

4,3 3,2

𝑑-way Merge with Min Heap Pseudo Code
d-Way-Merge(𝑆1, . . . , 𝑆𝑑)
𝑆1, . . . , 𝑆𝑑 are sorted sets (arrays/lists/stacks/queues)

𝑃 ← empty min-priority queue

𝑆 ← empty set

// 𝑃 always holds current front elements of 𝑆1, . . . , 𝑆𝑑

for 𝑖 ← 1 to 𝑑 do

𝑃.insert((first element of 𝑆𝑖 , 𝑖))

while 𝑃 is not empty do

(𝑥, 𝑖) ← deleteMin(𝑃) // removes current front of 𝑆𝑖 from 𝑃

remove 𝑥 from S𝑖 and append it to 𝑆

if 𝑆𝑖 is not empty do

// current front of 𝑆𝑖 is not represented in 𝑃, add it

𝑃.insert((first element of 𝑆𝑖 , 𝑖))

𝑑-way Merge with Min Heap Time Complexity

▪ Merging 𝑑 sequences each of size 𝑘

▪ 𝑑𝑘 iterations, at each iteration

heap
of

size 𝑑

▪ one deleteMin() on heap of size 𝑑

▪ Θ(log2 𝑑)

▪ one insert() on heap of size 𝑑

▪ Θ(log2 𝑑)

▪ Total time is Θ(𝑑𝑘 log2 𝑑)

𝑑-way Mergesort Complexity In Internal Memory

▪ log𝑑 𝑛 rounds

▪ Time complexity for one round

▪ time to merge 𝑑 sequences of size is 𝑘 is Θ(𝑘𝑑 log2 𝑑)

▪ for one round of mergesort , have to do 𝑛/(𝑑𝑘) of these merges

▪ time for one round is Θ
𝑛

𝑑𝑘
𝑘𝑑 log2 𝑑

▪ Total time Θ(log𝑑 𝑛 ⋅ 𝑛 log2 𝑑) = Θ
log2 𝑛

log2 𝑑
⋅ 𝑛 log2 𝑑 = Θ 𝑛 log2 𝑛

no advantage
in internal
memory

= Θ(𝑛 log2 𝑑)

𝑑-way Mergesort Complexity In External Memory

▪ log𝑑 𝑛 rounds

▪ time for each round is Θ(𝑛 log2 𝑑)

▪ Total time Θ log𝑑 𝑛 ⋅ 𝑛 log2 𝑑 = Θ 𝑛 log2 𝑛

▪ How do we gain advantage in external memory?

▪ we only count block accesses

Θ 𝑛 , or better, in block accesses

Θ 𝑛 block
accesses

Θ 𝑛 𝐥𝐨𝐠𝒅 𝒏
block accesses

d-Way Mergesort in External Memory

block size

▪ External memory

▪ Internal memory

𝑀 = 8

𝑛 = 32

𝐵 = 2

▪ Cannot merge in external memory directly, have to transfer to internal memory

▪ only internal memory has access to CPU

▪ Algorithm is largely the same, but for maximum block access efficiency

▪ make 𝑑 as large as possible

▪ less rounds of mergesort

▪ for any transferred block, all data from that block should be used for sorting

d-Way Merge in External Memory
block size▪ External memory
𝐵 = 2

sorted run sorted run sorted run

current
front

current
front

current
front

▪ Key observation
▪ do not need to transfer the full sorted run in internal memory to do 𝑑-way merge

▪ at some point sorted runs will become so large that even one sorted
run will not fit into the internal memory

▪ enough to transfer the block that contains current front from each sorted run

▪ let is call it the active block

current
front

current
front

current
front

▪ Internal memory

▪ could transfer more than one block, but transferring exactly one block lets us
perform 𝑑-way merge with a larger 𝑑

d-Way Merge in External Memory
block size

▪ External memory

▪ Partition internal memory

𝑛 = 32

𝐵 = 2
sorted run sorted run sorted run

Internal (M = 8):

𝑆1 𝑆2 𝑆3

▪ In our example, looks like can perform 4-way merge (𝑑 = 4)

▪ But no, need to have some space for merged result

▪ again, one block of memory is enough

𝑆4

sorted run

d-Way Merge in External Memory
block size

▪ External memory

▪ Partition internal memory

𝑛 = 32

𝐵 = 2
sorted run sorted run sorted run

Internal (M = 8):

𝑆1 𝑆2 𝑆3 𝑆

▪ In the example, can perform 3-way merge

▪ In general

▪ partition in approximately
𝑀

𝐵
sequences

▪ perform 𝑑 ≈
𝑀

𝐵
− 1 way merge

▪ first 𝑑 sequences for storing active blocks of sorted runs

▪ last sequence for storing results of the merged result

𝑑-Way merge in External Memory
▪ External (𝐵 = 2)

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

▪ Example: 3-way merge

▪ always bring elements from/to external memory in full blocks

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53

𝑑-Way merge in External Memory

22 28 21 12

5 8 10 11

(𝑑 = 3, priority queue not shown)

▪ Example: 3-way merge
▪ always bring elements from/to external memory in full blocks

▪ merge in internal memory until any sequence becomes full/empty

▪ External (𝐵 = 2)
5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53

𝑆1 𝑆2 𝑆3 𝑆

𝑑-Way merge in External Memory

Internal (M = 8):

𝑆1 𝑆2 𝑆3 𝑆

5 8 10 11 12 13 21 22 28 29 30 31 33 35 36 37 39 40 42 45 49 52 53 53

sorted

(𝑑 = 3, priority queue not shown)

▪ Done with the first 3 sorted runs, continue with all other sorted runs in sets of 3
▪ until all sorted runs are processed

▪ Total number of block transfers for one round is Θ 𝑛/𝐵
▪ external array has size 𝑛, brought into internal memory in full blocks of size 𝐵

▪ copied back to external memory in full blocks of size 𝐵

▪ Example: 3-way merge
▪ always bring elements from/to external memory in full blocks

▪ merge in internal memory until any sequence becomes full/empty

▪ External (𝐵 = 2)
5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53

𝑑-way Mergesort In External Memory

▪ log𝑑 𝑛 =
log2 𝑛

log2 𝑑
rounds

▪ Each round makes Θ(𝑛/𝐵) external memory block accesses

▪ with 𝑑-way merge sort, Θ
𝑛

𝐵
⋅ log𝑑 𝑛 = Θ

𝑛

𝐵
⋅
log2 𝑛

𝐥𝐨𝐠𝟐 𝒅
block accesses

▪ 2-way (standard) mergesort, Θ
𝑛

𝐵
⋅ log2 𝑛 block accesses

▪ 𝑑-way mergesort has savings factor log2 𝑑 over 2-way mergesort

▪ we made 𝑑 as large as possible so that one round makes Θ(𝑛/𝐵) block
accesses

▪ 𝑛/𝐵 is the smallest number of block accesses needed to do one
round of mergesort

▪ if we made 𝑑 any larger would need more than 𝑛/𝐵 block accesses
for each round

Mergesort in External Memory: Initialization

Internal (M = 8):

▪ Smart initialization can further reduce block transfers

▪ Mergesort starts with initial runs of size 1 and creates sorted runs of size 𝑑
after one round

▪ External (𝐵 = 2)

39 5 28 22 10 33 29 37 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15

𝑑 𝑑𝑑 𝑑 𝑑 𝑑 𝑑𝑑

▪ cost of one round is Θ(𝑛/𝐵) block transfers

▪ The larger the initial sorted runs are, the less rounds mergesort takes

▪ Can we create sorted runs of size larger than 𝑑 using only Θ(𝑛/𝐵) of block
transfers?

▪ i.e. the same computational cost as the first round of mergesort

Internal (M = 8):

▪ External (𝐵 = 2)

39 5 28 22 10 33 29 37 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15

Mergesort in External Memory: Initialization

▪ Can created sorted runs of size 𝑀 using only Θ(𝑛/𝐵) of block transfers

▪ 𝑀 > 𝑑 ≈
𝑀

𝐵
− 1

▪ Sort external memory chunks that fit into internal memory (size 𝑀 chunks)

Mergesort in External Memory: Initialization

Internal (M = 8):

▪ External (𝐵 = 2)

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15

8 21 30 31 40 45 52 54

sorted run

▪ Smart initialization can further reduce block transfers

▪ Sort external memory chunks that fit into internal memory (size 𝑀 chunks)

▪ copy the next chunk

▪ sort in internal memory

▪ copy back to external memory

▪ Copy, sort, copy back the rest of them

sorted run

Mergesort in External Memory: Initialization

Internal (M = 8):

▪ External (𝐵 = 2)

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44

sorted run sorted run sorted run sorted run

▪ Smart initialization creates sorted runs of length 𝑀
▪ Θ(𝑛/𝐵) block transfers

▪ each chunk of size 𝑀 is copied in full blocks of size 𝐵

Mergesort in External Memory: Total Cost in Block
Transfers

▪ Initialization creates 𝑛/𝑀 sorted runs of length 𝑀

▪ Θ(𝑛/𝐵) block transfers

▪ At most log𝑑 𝑛/𝑀 rounds of merging create sorted array

▪ each round Θ(𝑛/𝐵) block transfers

▪ Total number of block transfers: 𝑂
𝑛

𝐵
log𝑑𝑛/𝑀

▪ better than Θ
𝑛

𝐵
⋅ log𝑑 𝑛 without smart initialization

▪ Can show that 𝑑-way Mergesort with 𝑑 ≈ 𝑀/𝐵 is optimal to minimize block
transfers for sorting in external memory

▪ up to constant factors

𝑀 ⋅ 𝑑 ⋅ 𝑑 ⋅ … ⋅ 𝑑 = 𝑛

𝑑𝑡

⇒ 𝑑𝑡 =
𝑛

𝑀
⇒ 𝑡 = log𝑑

𝑛

𝑀

▪ Each round increases size of a sorted run by a factor of 𝑑

Outline

▪ External Memory

▪ Motivation

▪ External sorting

▪ External Dictionaries

▪ 2-4 Trees

▪ (a, b)-Trees

▪ B-Trees

Dictionaries in External Memory

▪ Tree-based dictionary implementations
have poor memory locality

▪ if an operation accesses 𝑚 nodes, it
must access 𝑚 spaced-out memory
locations

7

2

4

9

3

1

5

8 10

AVL tree

block 1

block 10

block 7

block 5

▪ In an AVL tree, Θ(log 𝑛) blocks are loaded in the worst case

▪ Better solution

▪ trees that store more keys inside a node, smaller height

▪ B-trees is one example

▪ first consider special case of B-trees: 2-4 trees

▪ 2-4 trees also used for dictionaries in internal memory

▪ may be even faster than AVL-trees

▪ first analyze their performance in internal memory, and then (for
B-trees) in external memory

Outline

▪ External Memory

▪ Motivation

▪ External sorting

▪ External Dictionaries

▪ 2-4 Trees

▪ (a, b)-Trees

▪ B-Trees

2-4 Trees Motivation
▪ Binary Search tree supports efficient search with special key ordering

key 𝑘1 key 𝑘2 key 𝑘3

keys< 𝑘1 𝑘1<keys< 𝑘2 𝑘2<keys< 𝑘3 keys> 𝑘3

key 𝑘

keys< 𝑘

𝑇0

keys> 𝑘

𝑇1

▪ Need nodes that store more than one key

▪ how to support efficient search?

▪ Need more properties to ensure tree is balanced and insert, delete are
efficient

2-4 Trees

▪ Structural properties

▪ Every node is either
▪ 1-node: one KVP and two subtrees (possibly empty), or

▪ 2-node: two KVPs and three subtrees (possibly empty), or

▪ 3-node: three KVPs and four subtrees (possibly empty)

key 𝑘1 key 𝑘2 key 𝑘3

keys< 𝑘1 𝑘1<keys< 𝑘2 𝑘2<keys< 𝑘3 keys> 𝑘3

𝑇0 𝑇1 𝑇2 𝑇3

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 156 8

∅ ∅ ∅

1-node

3-node

3-node2-node 2-node

empty subtrees

▪ allowing 3 types of nodes simplifies insertion/deletion

▪ All empty subtrees are at the same level

▪ necessary for ensuring height is logarithmic in the number of KVP stored

▪ Order property: keys at any node are between the keys in the subtrees

subtree immediately to the right of 𝑘2subtree immediately to the left of 𝑘2

2-4 Tree Example

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 156 8

∅ ∅ ∅

▪ Often do not show empty subtrees
5 10 12

113 4 13 14 156 8

▪ Empty subtrees are not part of height
computation

▪ height = 1

2-4 Tree: Search Example

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 166 8

∅ ∅ ∅

▪ Search

▪ Similar to search in BST

▪ Search(𝑘) compares key 𝑘 to 𝑘1, 𝑘2 , 𝑘3, and either finds 𝑘
among 𝑘1, 𝑘2 , 𝑘3 or figures out which subtree to recurse into

▪ if key is not in tree, search returns parent of empty tree where
search stops

▪ key can be inserted at that node

▪ Search(15)

not found

returned node

2-4 Tree operations

24TreeSearch(𝑘, 𝑣 ←root, 𝑝 ←empty subtree)

if 𝑣 represents empty subtree

return “not found, would be in 𝑝”

let 𝑇0, 𝑘1, . . . , 𝑘𝑑 , 𝑇𝑑 be keys and subtrees at 𝑣, in order

if 𝑘 ≥ 𝑘1
𝑖 ← maximal index such that 𝑘𝑖 ≤ 𝑘

if 𝑘𝑖 = 𝑘

return “at 𝑖th key in 𝑣 ”

else 24TreeSearch(𝑘, 𝑇𝑖 , 𝑣)

else 24TreeSearch(𝑘, 𝑇0, 𝑣)

13 14 16

Example: 2-4 tree Insert

▪ Example: 24TreeInsert(17)

▪ first step is 24TreeSearch(17)

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 166 8

∅ ∅ ∅

Example: 2-4 tree Insert

▪ Example: 24TreeInsert(17)

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

17

∅ ∅

13 14

∅ ∅ ∅

▪ Split root node
▪ need new root

12

5 10 16

2-4 Tree Insert Pseudocode
24TreeInsert(𝑘)

𝑣 ← 24TreeSearch(𝑘) //node where k should be

add 𝑘 and an empty subtree in key-subtree-list of 𝑣

while 𝑣 has 4 keys (overflow → node split)

let 𝑇0, 𝑘1, . . . , 𝑘4, 𝑇4be keys and subtrees at 𝑣 , in order

if (𝑣 has no parent) create a parent of 𝑣 (empty)

𝑝 ← parent of 𝑣

𝑣′← new node with keys 𝑘1, 𝑘2and subtrees 𝑇0, 𝑇1, 𝑇2
𝑣 ′′ ← new node with key 𝑘4 and subtrees 𝑇3, 𝑇4
replace < 𝑣 > by < 𝑣′, 𝑘3, 𝑣 ′′ > in key-subtree-list of 𝑝

𝑣 ← 𝑝 //continue checking for overflow upwards

𝑘’ 𝑘’’

𝑘1 𝑘2 𝑘3 𝑘4

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4

𝑘’ 𝑘3 𝑘’’

𝑘1 𝑘2

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4

node split 𝑘4

𝑣′ 𝑣′′

2-4 Tree: Left and Right Sibling

▪ Left sibling of a node is a subtree tree of the parent node which is
immediately to the left

▪ Right sibling of a node is a subtree tree of the parent node which is
immediately to the right

13 14 16

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

left sibling right sibling

▪ Any node (except the root) must have
a left or a right sibling (or both)

𝑝

𝑣

illegal

3

2-4 Tree: Inorder Successor
▪ Inorder successor of key 𝑘 stored in node 𝑣 is the smallest key in the

subtree of 𝑣 “immediately to the right” of 𝑘

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

17

∅ ∅

13 14

∅ ∅ ∅

12

5 10 16

inorder successor
of key 5

5 10

2-4 Tree Delete

36

25

18 21

12 19 24

31

28 33

43

41

39 42

51

48 56 62

▪ Example: delete(51)

▪ Search for key to delete

∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

▪ can delete keys only from a node with empty subtrees

▪ replace key with in-order successor

56

36

20

12

48

41

39 42

56

51 62

2-4 Tree Delete
▪ Example: delete(28)

▪ transfer from a rich sibling

▪ together with a subtree

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

19 24

∅ ∅

31 33

2518

2-4 Tree Delete Summary

▪ If key not at a node with empty subtrees, swap with inorder successor

▪ Delete key and one empty subtree from node

▪ If underflow

▪ If there is a sibling with more than one key, transfer

▪ no further underflows caused

▪ do not forget to transfer a subtree as well

▪ convention: if two siblings have more than one key, transfer
with the right sibling

▪ If all siblings have only one key, merge

▪ there must be at least one sibling, unless root

▪ if root, delete

▪ convention: if both siblings have only one key, merge with the
right sibling

▪ merge may cause underflow at the parent node, continue to
the parent and fix it, if necessary

Deletion from a 2-4 Tree
24TreeDelete(𝑘)

𝑤 ← 24TreeSearch(𝑘) //node containing k

if w is not a node with only leaf children

𝑣 ← leaf containing predecessor or successor 𝑘′of 𝑘

replace 𝑘 by 𝑘’ in 𝑤

delete 𝑘’ and an empty subtree in key-subtree-list of 𝑣

while 𝑣 has 0 keys // underflow

if 𝑣 is the root, delete it and break

𝑝 ← parent of 𝑣

if 𝑣 has sibling 𝑢 with 2 or more keys // transfer/rotate

let 𝑢 be that sibling

if 𝑢 is a right sibling // say 𝑝 contains < 𝑣, 𝑘, 𝑢 >

replace key 𝑘 in 𝑝 by 𝑢. 𝑘1
remove < 𝑢. 𝑇0, 𝑢. 𝑘1 > from 𝑢 and append < 𝑘, 𝑢. 𝑇0 > to 𝑣

else // symmetrical procedure if 𝑢 is a left sibling

else // merge/repeat

if 𝑣 has a right sibling

𝑣’ ←new node with list 𝑣. 𝑇0, 𝑘, 𝑢. 𝑇0, 𝑢. 𝑘1, 𝑢. 𝑇1
replace < 𝑣, 𝑘, 𝑢 > by < 𝑣 > in 𝑝

𝑣 ← 𝑝

else ... // symmetrically with left sibling

Outline

▪ External Memory

▪ Motivation

▪ External sorting

▪ External Dictionaries

▪ 2-4 Trees

▪ (a, b)-Trees

▪ B-Trees

(𝑎, 𝑏)-Trees
▪ 2-4 Tree is a specific type of (𝑎, 𝑏)-tree

▪ (𝑎, 𝑏)-tree satisfies

▪ each node has at least 𝑎 subtrees, unless it is the root

▪ root must have at least 2 subtrees

▪ each node has at most 𝑏 subtrees

▪ if node has 𝑘 subtrees, then it stores 𝑘 − 1 key-value pairs (KVPs)

▪ all empty subtrees are at the same level

▪ keys in the node are between keys in the corresponding subtrees

∅ ∅ ∅

35

14 20 26 38 44 50 56

10 12 16 18 22 24 28 30 32 52 54 58 6046 4840 4234 36

∅ ∅∅ ∅ ∅ ∅

(3, 5)-tree, also a valid (3, 6)-tree

(𝑎, 𝑏)-Trees: Root

▪ Why special condition for the root?

▪ Needed for (a,b)-trees storing very few KVP

▪ (3,5) tree storing only 1 KVP

35

∅ ∅

▪ Could not build it if forced the root to have at least 3 children

▪ remember # keys at any node is one less than number of subtrees

(𝑎, 𝑏)-Trees

▪ If 𝑎 ≤ 𝑏/2 , then search, insert, delete work just like for 2-4 trees
▪ straightforward redefinition of underflow and overflow

▪ For example, for (3,5)-tree
▪ at least 3 children, at most 5

▪ each node is at least a 2-node, at most a 4-node

▪ during insert, overflow if get a 5-node

38 44 50 55 60

38 44 38 44

2 node 2 node

▪ split results in 2-nodes, and 2-nodes are smallest allowed nodes

▪ If 𝑎 > 𝑏/2 , for example (4,5)-tree, cannot split like before
▪ equal (best possible) split results in two 2 nodes, which is not allowed

Height of (𝑎, 𝑏)-tree

▪ Height = number of levels not counting empty subtrees

13 14 16

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

5 10 12 height = 1

Height of (𝑎, 𝑏)-tree

11

2𝑎0

2𝑎1

2𝑎2

of nodes

0

1

2

h

level

3
………….

2𝑎ℎ−1

▪ Consider (a,b)-tree with smallest number of KVP and of height ℎ

▪ Let 𝑛 the number of KVP in any (𝑎, 𝑏)-tree of height ℎ

= 2𝑎ℎ − 1+
𝑖=0

ℎ−1

2𝑎𝑖 = 𝟏 + 2(𝑎 − 1)
𝑖=0

ℎ−1

𝑎𝑖

𝑎ℎ − 1

𝑎 − 1

▪ Height of tree with 𝑛 KVPs is 𝑂 log𝑎 𝑛

(𝑎 − 1)𝟏

𝑛 ≥ 2𝑎ℎ − 1

▪ red node (the root) has 1 KVP, blue nodes have (𝑎 − 1) KVP

and, therefore, log𝑎
𝑛+1

2
≥ ℎ

11 24

2 6 8 10 12 13 15 27 32 33

11 24

2 6 8 10 12 13 15 27 32 33

Useful Fact about (𝑎, 𝑏)-trees

Proof: Put one stone on each empty subtree and pass the stones up the tree. Each node keeps 1 stone per

KVP, and passes the rest to its parent. Since for each node, #KVP = # children – 1, each node will pass
only 1 stone to its parent. This process stops at the root, and the root will pass 1 stone outside the tree.
At the end, each KVP has 1 stone, and 1 stone is outside the tree.

▪ number of of KVP = number of empty subtrees – 1 in any (𝑎, 𝑏)-tree

11 24

2 6 8 10 12 13 15 27 32 33

11 24

2 6 8 10 12 13 15 27 32 33

Useful Fact about (𝑎, 𝑏)-trees

Outline

▪ External Memory

▪ Motivation

▪ External sorting

▪ External Dictionaries

▪ 2-4 Trees

▪ (a, b)-Trees

▪ B-Trees

B-trees
▪ A B-tree of order 𝑚 is a (𝑚/2 ,𝑚)-tree

▪ 2-4 tree is a B-tree of order 4

▪ at least 2, at most 4 subtrees

▪ Example: B-tree of order 6

▪ at least 3, at most 6 subtrees

▪ node must be at least 2-node, at most 5-node

𝑚/2 − 1 to 𝑚 − 1 KVPs

11 24

2 6 8 10 12 13 15 27 32 33

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

▪ Overflow if get a 6-node

38 44 50 55 60

▪ Underflow if get a 1-node

30

▪ transfer, if have a 3, 4 or 5-node
sibling, merge if all siblings are
2-nodes38

B-trees in Internal Memory

▪ A B-tree of order 𝑚 is a (𝑚/2 ,𝑚)-tree

▪ Sedgewick uses 𝑀 rather than 𝑚

▪ Analysis if stored in internal memory

▪ No better than 2-4-trees or AVL-trees

▪ each node stores its KVPs in a dictionary that supports 𝑂(log𝑚) search,
insert, and delete

𝑂
log 𝑛

log𝑚
⋅ log𝑚 = 𝑂(log 𝑛)

= 𝑂
log𝑛

log𝑚/2

▪ each node operation is 𝑂(log𝑚) time

▪ total cost for each search

= 𝑂
log𝑛

log𝑚

▪ search require Θ(ℎ𝑒𝑖𝑔ℎ𝑡) node operations

▪ height is 𝑂 log𝑎 𝑛

𝑚/2 − 1 to 𝑚− 1 KVPs

5 7 9 12 14 27 29

▪ analysis for insert and delete is the same

Dictionaries in External Memory
▪ Main applications of B-trees is to store dictionaries in external memory

▪ AVL tree or 2-4 tree, need to load Θ(log 𝑛) blocks in the worst case

▪ Instead, use a B-tree of order 𝑚
▪ 𝑚 is chosen so that an 𝑚-node fits into a single block

▪ typically 𝑚 ∈ Θ(𝐵)

▪ Node that if 𝑚-node fills block 𝐵 completely, then blocks are at least half-full

▪ since each node is at least an 𝑚/2 -node

▪ not much storage wasted

▪ Each operation can be done with Θ(ℎ𝑒𝑖𝑔ℎ𝑡) block transfers

▪ The height of a B-tree is Θ log𝑚 𝑛 = Θ log𝐵 𝑛

▪ Θ log𝐵 𝑛 = Θ
log 𝑛

log 𝐵

▪ Large savings of block transfers, log𝐵 factor compared to AVL trees

𝐵 𝐵

node 𝑖 node 𝑘

𝐵

node 𝑙

Example of B-tree usage

▪ 𝐵-tree of order 200

▪ node fits into one block of external memory

……………

…………………………………

200 nodes

2002 nodes

2003 empty subtrees

▪ if store root in internal memory, then only 2 block reads are
needed to retrieve any item

1 node (root)

∅∅∅

▪ 𝐵-tree of order 200 and height 2 can store up to 2003 − 1 KVPs
▪ from the ‘useful fact’ proven before

B-tree variations
▪ For practical purposes, some variations are better

▪ B-trees with pre-emptive splitting/merging

▪ during search for insert, split any node close to overflow

▪ during search for delete, merge any node close to underflow

▪ can insert/delete at leaf and stop, this halves block transfers

▪ B+-trees: Only leaves have KVPs, link leaves sequentially

▪ interior nodes store duplicates of keys to guide search-path

▪ twice as many items

▪ larger 𝑚 since interior nodes do not hold values

▪ Cache-oblivious trees: What if we do not know B?

▪ build a hierarchy of binary trees

▪ each node v in binary tree 𝑇 “hides” a
binary tree 𝑇′of size Θ(𝑛)

▪ achieves Θ log𝐵 𝑛 block transfers without knowing 𝐵

