CS 240 — Data Structures and Data Management

Module 11: External Memory

M. Petrick O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2020

References: Goodrich & Tamassia 20.1-20.3, Sedgewick 16.4

Outline

= External Memory
= Motivation
= External sorting
= External Dictionaries
= 2-4Trees
= (a, b)-Trees
= B-Trees

Outline

= External Memory
= Motivation

Different levels of memory

= Memory hierarchy for current computer architectures
= Registers: super fast, very small
= cacheLl, L2: very fast, less small
= main memory: fast, large
= disk or cloud: slow, very large
= from 1000 to 1,000,000 times slower than main memory

= Desirable to minimize transfer between slow/fast memory
" Focus on main (internal) memory and disk or cloud (external) memory

= accessing a single location in external memory automatically loads a whole
block (or “page”)
= one block access can take as much time as executing 100,000 CPU
instructions
= need to care about the number of block accesses

" new objective
= revisit ADTs/problems with the objective of minimizing block transfers

n u

(“probes”, “disk transfers”, “page loads”)

Adding External-Memory Model (EMM)
(T T I T T T I T I T T T I T T I I [TTTTII[TT]

external memory —size unbounded

slow access

only in blocks of B cells
B is typically from 1024 to 8192

Suppose time for one block
transfer = time for 100,000 CPU
instructions

internal memory —size M

fast random access

= Algorithm 1
1,0 ' ions + 1,000 block transfers = 1;8d0+1,000-100,000 = $&C + 108 o
n Al ith \dommatmg
gorithm 2 factors
0,0 ions + 10 block transfers = 10:800+10-100,000 =287+ 108

= Cost of computation: number of blocks transferred between internal and external memory

Outline

= External Memory

= External sorting

Sorting in external memory

= Sortarray A of n numbers
= assume n is huge so that A is stored in blocks in external memory

= Heapsort was optimal in time and space in RAM model
= poor memory locality: each iteration can access far apart indices of A

HEEE EENENENEETEEEEEEEEE EEEEEEEEEEEE
\ J J1 J1 { J1 J

block block block block block block block

= accesses 2 blocks, but put only 2 elements in order
= and all the other data read in the block is not used
= heapsort does not adapt well to data stored in external memory

= Mergesort adapts well to array stored in external memory
= access consecutive locations of A4, ideal for reading in blocks

ll l\ J1 J 1 J1 J1]

block block block block block block block

= accesses 2 blocks, and puts all their elements in order

Mergesort: non-recusive view

= Several rounds of merging adjacent pairs of sorted runs (run = subarray)
= inround i, merge sorted runs of size 2¢

= Graphical notation «_sortedrun >

—r ¢—r —P> —P> ¢—rP +—P +—P +—P — P — P ¢— P — P —P —P> —> —>

341112 |67 8 |12(31| 1|3 |15(18|32| 9 |16| 4 |13 size 20

I I I I I I I I
merge merge merge merge merge merge merge merge

» d [
» N »

& » d » d » d » d » d » d
< » € » N » € » ¥ » N » €

11(34(2 |67 8 |12 1 (313 (15|18|32| 9 |16| 4 |13 size 21

\ I\ I\ I\)

merge merge merge merge

v
A
v

A
v
A

v
A

log, n

2 |11 (34671 |8 |12|31| 3 [15(18(32| 4 | 9 |13]|16 size 22

Y)
merge merge

v

A

112|138 (|11(12(31(34(3 |4 |9 |13|15(16|18|32 size 23

merge

1|2 |3 |8|11|12(31|34|3 |4 |9 |13|15]|16 (18|32 |sortedarray

2-way Merge

= Two sorted runs

2 (113467 1| 8 |12]|31

| |

current current
front front

" Put a pointer at the front of each sorted run
= callit ‘current front’

= Repeatedly find the smallest element among current fronts
= move the smallest element into sorted result array
= advance current front of corresponding sorted run

= Array to store sorted result

1

2-way Merge

Two sorted runs

2

11

34

67

12

31

Put a pointer at the front of each sorted run

= callit ‘current front’

Repeatedly find the smallest element among current fronts
= move the smallest element into sorted result array
= advance current front of corresponding sorted run

Array to store sorted result

1

2

8

11

12

31

34

64

done!

Time to merge two sequences each of size k is O(2k)

Running time of MergeSort with 2-way Merge

O®(log, n) rounds

Time for each round

time to merge 2 sequences each of size k is O(2k)

in one round, need to merge 1/(2k) sequences pairs

k

k

k

k

k

k

k

k

&
<

» d
» €

» d
» €

» d
» ¥

» d
» N

» d
» €

» d
» N

[
»

11

34

2

12

1

31

3

15

18

32

9

16

4

13

\

A

I\

Y
merge

Y
merge

Y
merge

Y
merge

* one round of merge sort takes @(Zk : n/(Zk)) =0(n) time

Total time for mergesort is O(n log, n)

d-way Mergesort

= Example: d = 4

Can generalize mergesort to merge d sorted runs at one time
d = 2 gives standard mergesort

log, n
= Jogyn = og,

the largeris d the less rounds

How to merge d sorted runs efficiently?
d-Way merge

rounds

—mr—r ¢ —r —r ¢ — —P ¢ —P ¢ —P ¢— P P P C— P —P —> —> —>

34111 2 (67| 8 (12|31 1|3 (15|18 (32| 9 |16| 4 |13 size 49

: \ Y |)\)\)

b?) d-way merge d-\;vay merge d-V\'/ay merge d-way merge

O < > < > < > < »
— 2 |111(34|67|(1 | 8 (12|31 3 |15|18(32| 4 | 9 |13 |16 size 41

]

|
d-way merge
1 (2 (3|8 |11|112(31(34|3 |4 |9 |13|15(16| 18| 32| sorted array

d-way Merge
- d=3

2 (11341 8|9 12|1 11 | 31

21134|8 9 11211 (1131|1518 |32} 9 [12|13

= Need efficient data structure to find the minimum among d current fronts

d-way Merge with Min-Heap

= Use min heap to find the smallest element among of d current fronts
= (key,value) = (element, sorted run)

= d=4
|2 11| 34 67|_T 8 |12 31|3 15| 18 32|4 9

T |

merged output

1) insert(2,0), insert(1,1),
insert(3,2), insert(4,3)

d-way Merge with Min-Heap

|2 11 | 34 67|1 8 |12 31|3 15 | 18 32|4 9 |13 |16

T T | |

mergedoutput | 1 | 2 | 3

1) insert(2,0), insert(1,1), 2) deleteMin()=(1,1) 3) insert(8,1)
|nsersert(4,3) @ @
(50> G L G g5 G

(4,35 <D
4) deleteMin() = (2,0)) insertm'o 6) deleteMin() = (3,2)

32 TG A2

d-way Merge with Min Heap Pseudo Code

d-Way-Merge(S1,...,S4)
S1,...,S84 are sorted sets (arrays/lists/stacks/queues)
P <« empty min-priority queue
S « empty set
// P always holds current front elements of S4,...,5d
fori « 1toddo
P.insert((first element of S; i))
while P is not empty do
(x,i) < deleteMin(P) // removes current front of S; from P
remove x from S;and append itto S
if S;is not empty do
// current front of S; is not represented in P, add it
P.insert((first element of S; i))

d-way Merge with Min Heap Time Complexity

= Merging d sequences each of size k
= dk iterations, at each iteration

= one deleteMin() on heap of size d heap
[] of
O(log, d) sized

= oneinsert() on heap of size d
» O(og,d)
= Total timeis O(dk log, d)

d-way Mergesort Complexity In Internal Memory

= Jog,n rounds
= Time complexity for one round
= time to merge d sequences of sizeis k is O(kd log, d)
= for one round of mergesort have to do n/(dk) of these merges

= time for one round is G) kd log, d = 0(n log; d)
no advantage

log, n ini |
= Total time O(logzn-nlog,d) = (‘ﬂ.gi\ %\i) = 0(n log, n) |r:n|2:gr:5

d-way Mergesort Complexity In External Memory

= How do we gain advantage in external memory?
= we only count block accesses

= Jog,;n rounds
= time for each round is O(n d) ©O(n), or better, in block accesses

= Totaltime O(logyn-n d) = @(@haﬁ)
O(n) block ©(nlog,n)
accesses block accesses

d-Way Mergesort in External Memory

Internal memory

M Y= 3 block size

External memory B =2

——

|
n = 32

Cannot merge in external memory directly, have to transfer to internal memory
= only internal memory has access to CPU
Algorithm is largely the same, but for maximum block access efficiency
= make d as large as possible
= |ess rounds of mergesort
= for any transferred block, all data from that block should be used for sorting

d-Way Merge in External Memory

= External memory block size
B =2
sorted run sorted run sorted run /_A_\
current current current
front front front

* Internalmemory [l 11 F

T

current current current
front front front

= Key observation
= do not need to transfer the full sorted run in internal memory to do d-way merge

= at some point sorted runs will become so large that even one sorted
run will not fit into the internal memory

= enough to transfer the block that contains current front from each sorted run
= |etis call it the active block

= could transfer more than one block, but transferring exactly one block lets us
perform d-way merge with a larger d

d-Way Merge in External Memory

= External memory block size
B =2
sorted run sorted run sorted run sorted run ——
|
n =32

Partition internal memory
Internal (M = 8):

S=[=sianian

In our example, looks like can perform 4-way merge (d = 4)
But no, need to have some space for merged result
= again, one block of memory is enough

d-Way Merge in External Memory

= External memory block size
B =2
sorted run sorted run sorted run —
|
n = 32

Partition internal memory
Internal (M = 8):

LI

51 S, S3 S
In the example, can perform 3-way merge

In general
o : M
= partition in approximately S sequences
M
= performd = i 1 way merge

= first d sequences for storing active blocks of sorted runs
= |ast sequence for storing results of the merged result

d-Way merge in External Memory
= External (B = 2)

5 10 | 22 | 28 | 29 | 33 | 37 | 39 II 8 21 30 | 31 4 | 45 | 52 54|l 1 12 | 13 | 35 | 36 | 42 | 49 | §3

(d = 3, priority queue not shown)

= Example: 3-way merge
= always bring elements from/to external memory in full blocks

d-Way merge in External Memory
= External (B = 2)

5 10 - 29 | 33 | 37| 39 _ 30 | 31 | 40 | 45 | 52 54_ 13 | 35 | 36 | 42 | 49 | 53

T -
S1 S, S S
22 | 28 21 12 (d = 3, priority queue not shown)

| T

= Example: 3-way merge
= always bring elements from/to external memory in full blocks
= merge in internal memory until any sequence becomes full/empty

d-Way merge in External Memory
= External (B = 2)

5 10 | 22 | 28 | 29 | 33 - 8 21 | 30 | 31 | 40 | 45 - 1 12 | 13 | 35 | 36 | 42 -

&
<«

sorted ’
Internal (M = 8):

(d = 3, priority queue not shown)

51 S5 S3 S

= Example: 3-way merge
= always bring elements from/to external memory in full blocks
= merge in internal memory until any sequence becomes full/empty

= Done with the first 3 sorted runs, continue with all other sorted runs in sets of 3
= until all sorted runs are processed

= Total number of block transfers for one round is ©(n/B)

= external array has size n, brought into internal memory in full blocks of size B
= copied back to external memory in full blocks of size B

d-way Mergesort In External Memory

log, n
log, d

= Each round makes ®(n/B) external memory block accesses

rounds

= Jlogyn =

n logzn
B log, d

= with d-way merge sort, © (g -log, n) =0 () block accesses

= 2-way (standard) mergesort, © (% -log, n) block accesses

= d-way mergesort has savings factor log, d over 2-way mergesort

= we made d as large as possible so that one round makes @(n/B) block
accesses

= n/Bis the smallest number of block accesses needed to do one
round of mergesort

= if we made d any larger would need more than n/B block accesses
for each round

Mergesort in External M emory: Initialization

= External (B = 2)

5 28 | 22 | 10 | 33 | 29 | 37 | 8 30 | 54 | 40 | 31 | 52 | 21 | 45 | 35 | 11 | 42 | 53 | 13 | 12 | 49 | 36 | 4 14 127 |9 4 | 3 32

Internal (M = 8):

= Smart initialization can further reduce block transfers

= Mergesort starts with initial runs of size 1 and creates sorted runs of size d
after one round

—d 4@ 4 d 4 d . d . d j d) d,

= cost of one round is ®(n/B) block transfers

"= The larger the initial sorted runs are, the less rounds mergesort takes

= (Can we create sorted runs of size larger than d using only ®(n/B) of block
transfers?

= j.e.the same computational cost as the first round of mergesort

Mergesort in External M emory: Initialization

= External (B = 2)

5 28 | 22 | 10 | 33 | 29 | 37 | 8 30 | 54 | 40 | 31 | 52 | 21 | 45 | 35 | 11 | 42 | 53 | 13 | 12 | 49 | 36 | 4 14 | 27 | 9 4 1 3 32

Internal (M = 8):

= Can created sorted runs of size M using only ®(n/B) of block transfers
s M>d~2-1
B

= Sort external memory chunks that fit into internal memory (size M chunks)

Mergesort in External M emory: Initialization

= External (B = 2)

& » &
< L]

sorted run sorted run

»
»

Internal (M = 8):

8 21|30 |31|40|45]|52 | 54

= Smart initialization can further reduce block transfers

= Sort external memory chunks that fit into internal memory (size M chunks)
= copy the next chunk
= sortininternal memory
= copy back to external memory

= Copy, sort, copy back the rest of them

Mergesort in External M emory: Initialization

= External (B = 2)
Llelz]alal=[a]=]s[a]a]a]a]e]a]a]n]e]a]s]s]a]a]=]s[s]s Ju[u]a]=]u]

& » «¢ > & » & »
< » N | | » < »

sorted run sorted run sorted run sorted run

Internal (M = 8):

= Smart initialization creates sorted runs of length M

= O(n/B) block transfers
= each chunk of size M is copied in full blocks of size B

Mergesort in External Memory: Total Cost in Block
Transfers

Initialization creates n/M sorted runs of length M

= O(n/B) block transfers
Each round increases size of a sorted run by a factor of d

— dt_n t =1 2
M‘\d'd '...'d’ =n = —M = —Ong

4t
At most log; n/M rounds of merging create sorted array
= eachround ®(n/B) block transfers

= Total number of block transfers: O (glogd n/M)

= betterthan © (g -log 4 n) without smart initialization

= Can show that d-way Mergesort with d = M /B is optimal to minimize block
transfers for sorting in external memory

" up to constant factors

Outline

= External Memory

= External Dictionaries

Dictionaries in External Memory AVL troc

= Tree-based dictionary implementations
have poor memory locality
= if an operation accesses m nodes, it

must access m spaced-out memory
locations

= Inan AVL tree, O(log n) blocks are loaded in the worst case

= Better solution
= trees that store more keys inside a node, smaller height
= B-treesis one example

= first consider special case of B-trees: 2-4 trees
= 2-4trees also used for dictionaries in internal memory
"= may be even faster than AVL-trees

= first analyze their performance in internal memory, and then (for
B-trees) in external memory

Outline

= External Memory

= 2-4 Trees

2-4 Trees Motivation

= Binary Search tree supports efficient search with special key ordering

key k

keys< k keys >

T, T,
= Need nodes that store more than one key
= how to support efficient search?

key k1 key k2 key k3

keys< f i <keys< ko ke <keys< Ik keys> 3

= Need more properties to ensure tree is balanced and insert, delete are
efficient

2-4 Trees

= Structural properties
= Every node is either

= 1-node: one KVP and two subtrees (possibly empty), or

3-node

1-node

10| 12
2-node 2-node
314 6| 8 1
N /\
o ¢ 0o ¢ 0 ¢ @ 0

= 2-node: two KVPs and three subtrees (possibly empty), or

= 3-node: three KVPs and four subtrees (possibly empty)

= allowing 3 types of nodes simplifies insertion/deletion

= All empty subtrees are at the same level

3-node

15
//

@(Z)(Z)(Z)

empty subtrees

= necessary for ensuring height is logarithmic in the number of KVP stored

= Order property: keys at any node are between the keys in the subtrees

key k1

key k>

key k3

keys< k1 \ /Iy <keys<

k> z<keys< k:

>k3

T, T/

subtree immediately to the left of kz

subtree immediately to the right of k>

2-4 Tree Example

= Empty subtrees are not part of height

computation
" height=1 \

ANA N TR

= Often do not show empty subtrees

3| 4 6| 8 1 13| 14| 15

2-4 Tree: Search Example

Search

Similar to search in BST

Search(k) compares key k to ki1, k2, k3, and either finds k
among k1, k2, k3 or figures out which subtree to recurse into

if key is not in tree, search returns parent of empty tree where
search stops

= key can be inserted at that node
Search(15)

5/ 10| 12

not found
3|4 6| 8 1 13| 14| 16

/ A\ﬂ : \‘ returned node
?

2-4 Tree operations

(k,v «root, p «<empty subtree)
if v represents empty subtree
return “not found, would be in p”
let To, k1,...,ka, Tqbe keys and subtrees at v, in order
ifk > kq
I <« maximal index such thatk; < k
ifki = k
return “at ith key in v”
else (k,T;,v)
else (k,To,v)

Example: 2-4 tree Insert

= Example: 24Treelnsert(17)
= first stepis 24TreeSearch(17)

Example: 2-4 tree Insert

= Example: 24Treelnsert(17)

= Split root node
= need new root

2-4 Tree Insert Pseudocode

24Treelnsert(k)
v « 24TreeSearch(k) //node where k should be
add k and an empty subtree in key-subtree-list of v
while v has 4 keys (overflow — node split)

let To, k1,..., ks, T4 be keys and subtrees at v, in order
if (v has no parent) create a parent of v (empty)

p < parent of v

v' « new node with keys k1, k; and subtrees T, T1, T>
v'"" < new node with key k4and subtrees T3, T4
replace < v > by < v, ks, v" > in key-subtree-list of p

v « p //continue checking for overflow upwards

k’

k’)

v \U”
k4 node split> ki ks ka

/

To T,

T>

T3 Ty To Tq1 T, T3z Tas

2-4 Tree: Left and Right Sibling

= Left sibling of a node is a subtree tree of the parent node which is

immediately to the left

= Right sibling of a node is a subtree tree of the parent node which is

immediately to the right

5/ 10

12

3| 4 6| 8

Jeft sibling

/%

= Any node (except the root) must have

a left or a right sibling (or both)

right sibling -

13

16

illegal p

b

2-4 Tree: Inorder Successor

= |norder successor of key k stored in node v is the smallest key in the
subtree of v “immediately to the right” of k

12

10 16

3|4 11] |13]14 17

m/m NN D

inorder successor
of key 5

2-4 Tree Delete

= Example: (51)

= Search for key to delete
= can delete keys only from a node with empty subtrees

= replace key with in-order successor

36

25

2N /

18 51

/T /\ /\ /]

12 56

F36 bdb db6bdbéb bbb

2-4 Tree Delete

= Example: (28)
= transfer from a rich sibling
= together with a subtree

36

20 48

NN

18 25

ARAN /\ /\

12 24 31|33 62

(5 dh d0ddbdbds 4540

2-4 Tree Delete Summary

= |f key not at a node with empty subtrees, swap with inorder successor
= Delete key and one empty subtree from node
= |f underflow

= |f there is a sibling with more than one key, transfer
= no further underflows caused
= do not forget to transfer a subtree as well

= convention: if two siblings have more than one key, transfer
with the right sibling

= |f all siblings have only one key, merge

= there must be at least one sibling, unless root
= jfroot, delete

= convention: if both siblings have only one key, merge with the
right sibling

" merge may cause underflow at the parent node, continue to
the parent and fix it, if necessary

Deletion from a 2-4 Tree

24TreeDelete(k)
w « 24TreeSearch(k) //node containing k
if wis not a node with only leaf children
v <« leaf containing predecessor or successor k' of k
replace k by k' inw
delete k’ and an empty subtree in key-subtree-list of v
while v has 0 keys // underflow
if v is the root, delete it and break
p < parentofv
if v has sibling u with 2 or more keys // transfer/rotate
let u be that sibling
if u is a right sibling // say p contains < v, k,u >
replace key k inp by u. k,
remove < u.To,u. k1 > fromu and append < k,u.To >tov
else // symmetrical procedure if u is a left sibling
else // merge/repeat
if v has a right sibling
v’ «<new node with list (v.To, k, u.To, u. k1,u.T1)
replace<v,k,u> by<v>inp
VeDp
else ... // symmetrically with left sibling

Outline

= External Memory

= (a, b)-Trees

(a,b)-Trees

2-4 Tree is a specific type of (a, b)-tree
(a, b)-tree satisfies

each node has at least a subtrees, unless it is the root
= root must have at least 2 subtrees

each node has at most b subtrees
if node has k subtrees, then it stores k — 1 key-value pairs (KVPs)
all empty subtrees are at the same level
keys in the node are between keys in the corresponding subtrees

35
14| 20| 26 384415056
10112 |16(1822]24|128|30|32||34|36(/40|42|/46|48|/ 5254|5860
Sib b ibh o b b baos dob obb seb ses

(3,5)-tree, also a valid (3, 6)-tree

(a, b)-Trees: Root

Why special condition for the root?

Needed for (a,b)-trees storing very few KVP
(3,5) tree storing only 1 KVP

Could not build it if forced the root to have at least 3 children
= remember # keys at any node is one less than number of subtrees

(a,b)-Trees

= Ifa <[b/2], then , , work just like for 2-4 trees
= straightforward redefinition of underflow and overflow
= For example, for (3,5)-tree
= atleast 3 children, at most 5
= each node is at least a 2-node, at most a 4-node
= during insert, overflow if get a 5-node

N
55|60
= split results in 2-nodes, and 2-nodes are smallest allowed nodes

2 node 2 node
o
N NN\

= |If a > [b/2], for example (4,5)-tree, cannot split like before
= equal (best possible) split results in two 2 nodes, which is not allowed

Height of (a, b)-tree

= Height = number of levels not counting empty subtrees

height =1

AN
Ny~

1 13| 14

N AN

Height of (a, b)-tree

= Consider (a,b)-tree with smallest number of KVP and of height h
= red node (the root) has 1 KVP, blue nodes have (a — 1) KVP

L 4

level # of nodes

0 1

1 2a°

2 2al

3 202 0000 0000 0000 0000

B ogh-l ©00
h-1 h-1

1 +z. 2a'(a—1) =1+2(a— 1)2. at =2a" -1

= S -1

* Letn the number of KVP in any (a, b)-tree of height h a— 1

n>2a"—1 and, therefore, loganT+1 > h

= Height of tree withn KVPsis O(log, n)

Useful Fact about (a, b)-trees
= number of of KVP = number of empty subtrees — 1 in any (a, b)-tree

Proof: put one stone on each empty subtree and pass the stones up the tree. Each node keeps 1 stone per
KVP, and passes the rest to its parent. Since for each node, #KVP = # children — 1, each node will pass
only 1 stone to its parent. This process stops at the root, and the root will pass 1 stone outside the tree.
At the end, each KVP has 1 stone, and 1 stone is outside the tree.

Useful Fact about (a, b)-trees

Outline

= External Memory

u B-Trees

B-trees

» AB-tree of ordermisa (|[m/2], m)-tree [m/2] — 1tom — 1 KVPs
= 2-4treeis a B-tree of order 4 /
= atleast 2, at most 4 subtrees / / \ \ \

= Example: B-tree of order 6
= atleast 3, at most 6 subtrees
= node must be at least 2-node, at most 5-node

/
@@@@@@(A@@Q) o 0 0

= Overflow if geta 6-node = Underflow if get a 1-node
\ = transfer, if have a 3, 4 or 5-node
D ’ sibling, merge if all siblings are

38 2-nodes

55 | 60 38
NN\ ||

B-trees in Internal Memory

A B-tree of order misa ([m/2], m)-tree
= Sedgewick uses M rather than m
Analysis if stored in internal memory

insert, and delete

5|71 9121427 29

= search require ©(height) node operations

height is O(log, n) = 0 [—81_) = o (187
clght1s U086 1) = logm/2) ~ \logm

= each node operation is O(logm) time

logn

= total cost for each search <

logm
= analysis for insert and delete is the same

No better than 2-4-trees or AVL-trees

[m/2] — 1tom — 1 KVPs

T

each node stores its KVPs in a dictionary that supports O (log m) search,

-logm) = O(logn)

Dictionaries in External Memory

Main applications of B-trees is to store dictionaries in external memory
AVL tree or 2-4 tree, need to load ®(logn) blocks in the worst case

Instead, use a B-tree of order m
= m s chosen so that an m-node fits into a single block
= typicallym € O(B)

B B
x A il

T L [S| | [

Node that if m-node fills block B completely, then blocks are at least half-full
= since each node is at least an [m/2]-node
= not much storage wasted

Each operation can be done with @(height) block transfers
The height of a B-tree is ©(log,, n) = 0(logg n)

i . logn
O(loggn) =06 (log B)

Large savings of block transfers, log B factor compared to AVL trees

Example of B-tree usage

> 1 node (root)

............... 200 nodes
d © 2002 nodes
UULULUUULULLL UYL UYL L uuLYLLLLLLYN 2003 empty subtrees

= PB-tree of order 200
= node fits into one block of external memory
= B-tree of order 200 and height 2 can store up to 2003 — 1 KVPs
= from the ‘useful fact’ proven before

= jf store root in internal memory, then only 2 block reads are
needed to retrieve any item

B-tree variations

- For practical purposes, some variations are better
= B-trees with pre-emptive splitting/merging
= during search for insert, split any node close to overflow
= during search for delete, merge any node close to underflow
= caninsert/delete at leaf and stop, this halves block transfers
= B*-trees: Only leaves have KVPs, link leaves sequentially
" interior nodes store duplicates of keys to guide search-path
= twice as many items

= |arger m since interior nodes do not hold values
= Cache-oblivious trees: What if we do not know B?

= build a hierarchy of binary trees

= each node vin binary tree T “hides” a
binary tree T' of size O(+/n)

= achieves O(logg n) block transfers without knowing B

