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Lower bound for search

The fastest realizations of ADT Dictionary require ©(log n) time to search
among n items. Is this the best possible?
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Lower bound for search

The fastest realizations of ADT Dictionary require ©(log n) time to search
among n items. Is this the best possible?

Theorem: In the comparison model (on the keys),
Q(log n) comparisons are required to search a size-n dictionary.

Proof: via decision tree

==jl

But can we beat the lower bound for special keys?
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Binary Search

Recall the run-times in a sorted array:
e insert, delete: ©(n)
e search: ©(log n)

Binary-search(A, n, k)

A: Sorted array of size n, k: key
{+0
r<n-—1
while (¢ < r)

1
2
3
4 m+ L%J

5. if (Alm] < k) then{=m+1

6 else if (k < A[m]) then r =m—1

7 else return m

8 if (k= A[{]) return ¢

9 else return “not found, but would be between ¢—1 and ¢"
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Interpolation Search: Motivation

binary-search(A[¢, r], k): Compare at index |

¢ 1

l+r

2
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Interpolation Search: Motivation

binary-search(A[(, r], k): Compare at index 5| = ¢+ [1(r — ()]

¢ $ r
| 40 | | 120 |

Question: If keys are numbers, where would you expect key k = 1007
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Interpolation Search: Motivation

binary-search(A[(, r], k): Compare at index 5| = ¢+ [1(r — ()]

¢ $ r
| 40 | | 120 |

Question: If keys are numbers, where would you expect key k = 1007

interpolation-search(A[¢, r], k): Compare at index ¢ + Lﬁ%{]z—](r - K)J
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Interpolation Search Example

0 1 2 3 4 5 6 7 8 9 10
[ o] 1| 2 [ 3 [449]450]600] 800 |1000]1200]1500]

interpolation-search(A[0..10],449):
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Interpolation Search Example

0 1 2 3 4 5 6 7 8 9 10
[ o] 1| 2 [ 3 [449]450]600] 800 |1000]1200]1500]
¢ 1+ r

interpolation-search(A[0..10],449):

o Initially £ =0, r=n—1=10, m=/{+ | {555-5(10-0)| =(+2 =2
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Interpolation Search Example

0 1 2 3 4 5 6 7 8 9 10
[ o] 1| 2 [ 3 [449]450]600] 800 |1000]1200]1500]
¢ 4 r

interpolation-search(A[0..10],449):
o Initially £ =0, r=n—1=10, m=/{+ | {555-5(10-0)| =(+2 =2

0 (=3,r=10, m="{(+ |[{5=2(10-3)] =(+2=5
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Interpolation Search Example

0 1 2 3 4 5 6 7 8 9 10
[ o] 1| 2 [ 3 [449]450]600] 800 |1000]1200]1500]
4 ~r

interpolation-search(A[0..10],449):
o Initially £ =0, r=n—1=10, m={+ | {555-5(10-0)| =(+2 =2
0 (=3,r=10, m="{(+ |[{5=2(10-3)] =(+2=5

0 (=3, r=4m=/(+|72373(4—3)] =(+1=4, found at A[4]
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Interpolation Search Example

0 1 2 3 4 5 6 7 8 9 10
[ o] 1| 2 [ 3 [449]450]600] 800 |1000]1200]1500]

interpolation-search(A[0..10],449):
o Iitially £ =0, r=n—1=10, m=(+ | £2-0(10-0)| =¢+2 =2

1500—-0
0 (=3,r=10, m={+|{55>3(10-3)] =0+2=5
o (=3 r=4m="_0+|43"3(4—3)] =(+1=4, found at A[4]

Works well if keys are uniformly distributed:
@ Can show: the array in which we recurse into has size \/n on average.
o Recurrence relation is T(v&8)(n) = T(@8)(/n) + O(1).
o This resolves to T(2V8)(n) € O(loglog n).

But: Worst case performance ©(n)
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Interpolation Search

@ Code very similar to binary search, but compare at interpolated index

@ Need a few extra tests to avoid crash due to A[{] = A[r]

interpolation-search(A, n, k)
A: Sorted array of size n, k: key
1. (+0
. r<n-—1
3. while (¢ < r)&&(A[r]! = A[{])&&(k > A[{])&&(k < A[r]))

4. m < (+ LAk[r_]é[ﬁ]&] (r—=20)]

if (Alm] < k) then/=m+1
else if (k < A[m]) then r=m—1
else return m
if (k= A[{]) return ¢
else return “not found, but would be between /—1 and ¢"

© o NG
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Outline

© Lower bound

© Interpolation Search

© Tries

@ Standard Tries
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Tries: Introduction

Trie (also know as radix tree): A dictionary for bitstrings.
(Should know: string, word, |w|, alphabet, prefix, suffix, comparing words,....)

@ Comes from retrieval, but pronounced “try”

@ A tree based on bitwise comparisons: Edge labelled with
corresponding bit

@ Similar to radix sort: use individual bits, not the whole key

root

1
0/.\1/ 0>.\1 0/‘\1
T/ 00l 3/ 0>k1 0)<1 \3
le ° e 0111 1100 \3 [1110]
1 1
00011 ? T 11010
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More on tries

Assumption: Dictionary is prefix-free: no string is a prefix of another

@ Assumption satisfied if all strings have the same length.

@ Assumption satisfied if all strings end with ‘end-of-word’ character $.

Example: A trie for {00$,0001$,0100%,011$,0110$,110%,1101%,111$}
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More on tries

Assumption: Dictionary is prefix-free: no string is a prefix of another

@ Assumption satisfied if all strings have the same length.

@ Assumption satisfied if all strings end with ‘end-of-word’ character $.

Example: A trie for {00$,0001$,0100%,011$,0110$,110%,1101%,111$}

Then items (keys) are stored only in the leaf nodes
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Tries: Search

@ start from the root and the most significant bit of x

o follow the link that corresponds to the current bit in x;
return failure if the link is missing

@ return success if we reach a leaf (it must store x)

@ else recurse on the new node and the next bit of x

Trie::search(v < root, d < 0, x)
v: node of trie; d: level of v, x: word stored as array of chars
if vis a leaf

return v
else

let v/ be child of v labelled with x[d]

if there is no such child

return “not found”
else Trie::search(v', d + 1, x)

Nooaswb=
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Tries: Search Example

Example: Trie::search(011$)

[010019] [011019]
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Tries: Search Example

Example: Trie::search(011$)

[010019] [011019]
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Tries: Search Example

Example: Trie::search(011$)

[010019] [011019]
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Tries: Search Example

Example: Trie::search(011$)

[010019] [011019]
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Tries: Search Example

Example: Trie::search(011$) successful

[010019] [011019]
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Tries: Search Example

Example: Trie::search(0111$)

[010019] [011019]

Petrick (SCS, UW) CS240 — Module 6 Fall 2020 10 / 23



Tries: Search Example

Example: Trie::search(0111$) unsuccessful

/\1

0 1

3/ $>\noo 1-child .
.
1
}
$

011§ e 1105
1
3
$

<

111%

A
-
$

1101%

[010019] [011019]
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Tries: Insert & Delete

e Trie:insert(x)
» Search for x, this should be unsuccessful
» Suppose we finish at a node v that is missing a suitable child.
Note: x has extra bits left.
» Expand the trie from the node v by adding necessary nodes that
correspond to extra bits of x.

o Trie::delete(x)
» Search for x
> let v be the leaf where x is found
» delete v and all ancestors of v until we reach an ancestor that has two
children.
e Time Complexity of all operations: ©(|x|)
|x|: length of binary string x, i.e., the number of bits in x
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Tries: Insert Example

Example: Trie::insert(0111$)
— T
- \I
5'\1 OAI
® no 1-child $y(1 \;
:

111$

|01001$] [01101$]
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Tries: Insert Example

Example: Trie::insert(0111$)

00%
\I E/ $>g\1 $ 1 \;
. ¢ [0115] ¢ e 1105 ®» [1115
$ 1 1 $ $
00015 g g [01119] 1101$
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Tries: Delete Example

Example: Trie::delete(01001%)

w-o-r—e-o-e
=)
=
=
&
&
4%/
-
e
=
[
Qe
uai/'_‘
Bloe”
A
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Tries: Delete Example

Example: Trie::delete(01001%)

T A
$ o 1 0" 1
003 e e
1 $0| 1 $1 $
: \; 1108 \; 1115
1
0001% ¢ [01115 1101%
$
01101%
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Outline
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@ Variations of Tries
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Variation 1 of Tries: No leaf labels

Do not store actual keys at the leaves.

@ The key is stored implicitly through the characters along the path to
the leaf. It therefore need not be stored again.

@ This halves the amount of space needed.

0/'\/1 \; /'\/ \’
0 1 1
ke = 2 ' e 2
0 0 1 01 $ 0 0 1 0 1
5] » & w & 9 T N
1 0 %o $1 ¢ 1 0 $0 $1 $
g Tl011$]llp[110$]:[111$] * ¢ o 8 d 8 b
oo0is] ¢ S S
01001$][01101$ : :
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Variation 2 of Tries: Allow Proper Prefixes

Allow prefixes to be in dictionary.

@ Internal nodes may now also represent keys.
Use a flag to indicate such nodes.

@ No need for end-of-word character $

@ Now a trie of bitstrings is a binary tree. Can express 0-child and
1-child implicitly via left and right child.

@ More space-efficient.

0/.\/1 \I
o “m
$ 0 01 01
E(?g$0 $’(1: <
¢ o d 8 d ® 0 < \
$ 1 1 $
E e ¢ :
$ $
5 5
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Variations 3 of Tries

Pruned Trie: Stop adding nodes to trie as soon as the key is unique.
@ A node has a child only if it has at least two descendants.
o Note that now we must store the full keys (why?)
@ Saves space if there are only few bitstrings that are long.
o

Could even store infinite bitstrings (e.g. real numbers)

0 1

$’\O/ \0’\1 oAl
00$] [0001§]  [010013] e $ﬁ(1

$70

This is in practice the most efficient version of tries, but the operations get
a bit more complicated.
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Outline

© Lower bound

© Interpolation Search

© Tries

@ Compressed Tries
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Variation 4 of Tries

Compressed Trie: compress paths of nodes with only one child

@ Each node stores an index, corresponding to the depth in the
uncompressed trie.

» This gives the next bit to be tested during a search

@ A compressed trie with n keys has at most n — 1 internal nodes

0 ™1 1 /@\
$(; :Al 0A1 m \/Cg\

s » ¢ w £ o
1 0o _$o $1 8 <:§ (:> -111$
g o [0115| ® 110$]? 111$ $ @/
00015 é é 11015 [008] m 1001 @ m 1101$

010019 [01101% m m

Also known as Patricia-Tries:
Practical Algorithm to Retrieve Information Coded in Alphanumeric
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Compressed Tries: Search

@ start from the root and the bit indicated at that node
o follow the link that corresponds to the current bit in x;
return failure if the link is missing
o if we reach a leaf, expicitly check whether word stored at leaf is x
@ else recurse on the new node and the next bit of x

CompressedTrie::search(v < root, x)
v: node of trie; x: word
if vis a leaf
return stremp(x, v.key)
d + index stored at v
if x has at most d bits
return “not found”
v’ < child of v labelled with x[d]
if there is no such child
return “not found”
CompressedTrie::search(v', x)

© O NSO REWN -
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Compressed Tries: Search Example
Example: CompressedTrie::search(10%)

@ @ i
$ 0
00$] (00015 MC@

mm
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Compressed Tries: Search Example

Example: CompressedTrie::search(10$) unsuccessful

0/@\1
/@\/ \/‘\no $-child
0" 1 o 1
@ of
s 0 0

1 $ 1
o68) 0co1S) [oT001S (3
$ o0
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Compressed Tries: Search Example
Example: CompressedTrie::search(101$)

@ @ i
$ 0
00$] (00015 MC@

mm
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Compressed Tries: Search Example
Example: CompressedTrie::search(101$) unsuccessful

@ @ @ o
[003] ooors) ozoets] (3)

s 0
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Compressed Tries: Search Example
Example: CompressedTrie::search(1$)

@ @ s
$ 0
005 MMC@

mm
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Compressed Tries: Search Example

Example: CompressedTrie::search(1$) unsuccessful

0/@\1
/@{ »\x too short
0 1 0 1
@ of

$ 0 0

1 $ 1
o68) 0co1S) [oT001S (3
$ o0
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Compressed Tries: Insert & Delete

e Compressed Trie::delete(x):

» Perform search(x)

» Remove the node v that stored x

» Compress along path to v whenever possible.
e Compressed Trie::insert(x):

» Perform search(x)
» Let v be the node where the search ended.
» Conceptually simplest approach:
* Uncompress path from root to v.
* Insert x as in an uncompressed trie.
* Compress paths from root to v and from root to x.
But it can also be done by only adding those nodes that are needed,
see the textbook for details.

e All operations take O(|x|) time.

Petrick (SCS, UW) CS240 — Module 6 Fall 2020 20 /23



Multiway Tries: Larger Alphabet

@ To represent strings over any fixed alphabet ¥

@ Any node will have at most |X| 4 1 children (one child for the
end-of-word character $)

e Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

$/+\
be$ ; ”\, /‘\
r $ [ P
i ben$ ;/ \;
bear$
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Compressed Multiway Tries

@ Variation: Compressed multi-way tries: compress paths as before

e Example: A compressed trie holding strings {bear$, ben$, be$, soul$,
soup$}
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Multiway Tries: Summary

@ Operations search(x), insert(x) and delete(x) are exactly as for tries
for bitstrings.

@ Run-time O(|x| - (time to find the appropriate child))
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Multiway Tries: Summary

@ Operations search(x), insert(x) and delete(x) are exactly as for tries
for bitstrings.

@ Run-time O(|x| - (time to find the appropriate child))

Each node now has up to |X| 4 1 children. How should they be stored?
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Multiway Tries: Summary

@ Operations search(x), insert(x) and delete(x) are exactly as for tries
for bitstrings.

@ Run-time O(|x| - (time to find the appropriate child))

Each node now has up to |X| 4 1 children. How should they be stored?

Solution 1: Array of size |X| + 1 for each node.
Complexity: O(1) time to find child, O(|X|n) space.

Solution 2: List of children for each node.
Complexity: O(|X|) time to find child, O(#children) space.

Solution 3: Dictionary (AVL-tree?) of children for each node.
Complexity: O(log(#children)) time, O(#children) space.

Best in theory, but not worth it in practice unless |X| is huge.

In practice, use hashing (keys are in (typically small) range X).
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