CS 240 — Data Structures and Data Management

Module 11: External Memory

M. Petrick O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2020

References: Goodrich & Tamassia 20.1-20.3, Sedgewick 16.4

Outline

= External Memory
= Motivation
= External sorting
= External Dictionaries
= 2-4 Trees
= (a, b)-Trees
= B-Trees

Outline

= External Memory
= Motivation

Different levels of memory

= Memory hierarchy for current computer architectures
= Registers: super fast, very small
= cache L1, L2: very fast, less small
= main memory: fast, large
= disk or cloud: slow, very large
= from 1000 to 1,000,000 times slower than main memory

= Desirable to minimize transfer between slow/fast memory
" Focus on main (internal) memory and disk or cloud (external) memory

= accessing a single location in external memory automatically loads a whole
block (or “page”)
= one block access can take as much time as executing 100,000 CPU
instructions
= need to care about the number of block accesses

= new objective
= revisit ADTs/problems with the objective of minimizing block transfers

n u

(“probes”, “disk transfers”, “page loads”)

Adding External-Memory Model (EMM)
(T T I T I T T T I T I T T I I T I I I I TTT]

external memory — size unbounded

slow access

only in blocks of B cells
B is typically from 1024 to 8192

Suppose time for one block
transfer = time for 100,000 CPU
instructions

internal memory —size M

fast random access

= Algorithm 1
1,0 ions + 1,000 block transfers = 1;8d0+1,000-100,000 = & + 10% o
. | ithm 2 \dommatmg
Algorithm factors
0, ions + 10 block transfers = 10;800+10-100,000 =>4 + 106

= Cost of computation: number of blocks transferred between internal and external memory

Outline

= External Memory

= External sorting

Sorting in external memory

= Sort array A of n numbers
= assume n is huge so that A is stored in blocks in external memory

= Heapsort was optimal in time and space in RAM model
= poor memory locality: each iteration can access far apart indices of A

NN EEEENEEEEFEEEEEEEEE EEEENEEEEEEE
\ J J 1 J1 { J1 J

block block block block block block block

= accesses 2 blocks, but put only 2 elements in order
= and all the other data read in the block is not used
= heapsort does not adapt well to data stored in external memory

= Mergesort adapts well to array stored in external memory
= access consecutive locations of A4, ideal for reading in blocks

Il l\ J 1 J 1 J1 J1]

block block block block block block block

= accesses 2 blocks, and puts all their elements in order

Mergesort: non-recusive view

= Several rounds of merging adjacent pairs of sorted runs (run = subarray)
= inround i, merge sorted runs of size 2!

= Graphical notation = «_sorted run >

+—r 4——P —rP —rP ¢—rP ¢—rP ¢—rP ¢— P t— P t— P ¢—P ¢—P —P —P —» —»

34111 2 (67 8 (12|31 1|3 |15(18(32| 9 |16| 4 |13 size 20

I I I I I I Y I
merge merge merge merge merge merge merge merge

+— e — e — P — P P >

11(34(2 |67 8 (12| 1 (313 |15|18|32| 9 (16| 4 |13 size 21

\ A N A J

merge merge merge merge

A
v
A
v
A
v
A
v

log, n

2 (1134|671 |8 (12|31 3 |15(18|32| 4 | 9 |13 |16 size 22

[[
merge merge

A
v
A
v

1123 |8(11]12(311(34| 3|4 |9 |13|15|16/|18]32 size 23

merge

1|2|3|8(11|12(31(34|3 |4 |9 |13|15|16|18|32 |sortedarray

2-way Merge

= Two sorted runs

2 (1134|671 |8 |12|31

| |

current current
front front

= Put a pointer at the front of each sorted run
= callit ‘current front’

= Repeatedly find the smallest element among current fronts
= move the smallest element into sorted result array
= advance current front of corresponding sorted run

= Array to store sorted result

1

2-way Merge

= Two sorted runs

2 (1134|671 |8 |12|31

T T

= Put a pointer at the front of each sorted run
= callit ‘current front’

= Repeatedly find the smallest element among current fronts
= move the smallest element into sorted result array
= advance current front of corresponding sorted run

= Array to store sorted result

1|2

2-way Merge

= Two sorted runs

2 (1134|671 |8 |12|31

= Put a pointer at the front of each sorted run
= callit ‘current front’

= Repeatedly find the smallest element among current fronts
= move the smallest element into sorted result array
= advance current front of corresponding sorted run

= Array to store sorted result

112 |8

2-way Merge

= Two sorted runs

2 (1134|671 |8 |12|31

= Put a pointer at the front of each sorted run
= callit ‘current front’

= Repeatedly find the smallest element among current fronts
= move the smallest element into sorted result array
= advance current front of corresponding sorted run

= Array to store sorted result

112 |8

2-way Merge

Two sorted runs

2

11

34

67

12

31

Put a pointer at the front of each sorted run

= callit ‘current front’

Repeatedly find the smallest element among current fronts
= move the smallest element into sorted result array
= advance current front of corresponding sorted run

Array to store sorted result

1

2

8

11

12

31

34

64

done!

Time to merge two sequences each of size k is O(2k)

Running time of MergeSort with 2-way Merge

= O(log, n) rounds
= Time for each round
= time to merge 2 sequences each of size k is ©(2k)
*= inoneround, need to merge n/(2k) sequences pairs

4 k k k k k k k

+— r— e — P — P — P — P — > ¢—>

11(34(2 |67 8 |12 1 (31| 3 |15|18|32| 9 |16 4 |13

\ N N N J
| Y I I
merge merge merge merge

= one round of merge sort takes ©(2k - n/(2k)) = 0(n) time

= Total time for mergesort is @(n log, n)

d-way Mergesort

d = 2 gives standard mergesort
" Example: d = 4

Can generalize mergesort to merge d sorted runs at one time

—r 4——P —rP —rP ¢—rP ¢+—rP ¢—rP ¢— P t— P ¢— P t—P ¢—P ¢—P —P —» —»

34111 2 (678 (12|31 1| 3

logy n

15|18 (32| 9 |16| 4 | 13| size 40
| dovvay merge d-way merge d-way merge d-way merge

<2 11 | 34 67;:1 8 |12 31;43 15 | 18 3;4 9 |13 16= size 41
1 (2 (3|8 |11|112(31(34|3 |4 |9 |13|15(16| 18| 32| sorted array

log, n
= Jogyn = logzd rounds

the larger is d the less rounds

How to merge d sorted runs efficiently?
= d-Way merge

d-way Merge

= d=3

2 (1134 8 912|1 11 | 31

21134|8 9 1121 (1131151832} 9 |12|13

= Need efficient data structure to find the minimum among d current fronts

d-way Merge with Min-Heap

= Use min heap to find the smallest element among of d current fronts
= (key,value) = (element, sorted run)

" d=4
|2 11 | 34 67|ﬁ 8 |12 31|3 15| 18 32|4 9

T T

merged output

1) insert(2,0), insert(1,1),
insert(3,2), insert(4,3)

d-way Merge with Min-Heap

merged output

11

34

67|1

12

31|3

15

18

32|4

13

16

E
|

T

|

1

1) insert(2,0), insert(1,1),
insert(3,2), insert(4,3)

2)

deleteMin() = (1,1)

d-way Merge with Min-Heap

IZ 11| 34 67|1 8 |12 31|3 151 18 32|4 9 11316
merged output | 1
1) insert(2,0), insert(1,1), 2) deleteMin() =(1,1) 3) insert(8,1)
insert(3,2), insert(4,3) m
= o G o=
(2,00 3,20 (43> (3,20
(4,35 <D

= Heap must have current fronts from all sorted runs
= unless some sorted run ends

d-way Merge with Min-Heap

|2 11 | 34 67|1 8 |12 31|3 15 | 18 32|4 9 |13 |16

T | T |

merged output | 1 | 2

1) insert(2,0), insert(1,1), 2) deleteMin() =(1,1) 3) insert(8,1)
|nsersert(4,3) m @
(30> G 0 QG G G

(435 (81
4) deleteMin() =(2,0)

(3,25

d-way Merge with Min-Heap

|2 11 | 34 67|1 8 |12 31|3 15| 18 32|4 9 (13|16

T | | |

merged output | 1 | 2

insert(2,0), insert(1,1), 2) deleteMin() = insert(8,1)
|nsersert(4 3) @ @
30> G 0 QG G G
(43> (810>
4) deleteMin() =(2,0) insert(11, 0
@

d-way Merge with Min-Heap

|2 11 | 34 67|1 8 |12 31|3 15| 18 32|4 9 (13|16

T T | T

mergedoutput | 1 | 2 | 3

1) insert(2,0), insert(1,1), 2) deleteMin()=(1,1) 3) insert(8,1)
insert(3,2), insert(4,3) @
50> B L0 G G G
4,32 <D
4) deleteMin() = (2,0) - insert(“'o 6) deleteMin() = (3,2)
(3,25 T3S B (4,3

d-way Merge with Min Heap Pseudo Code

d-Way-Merge(S1,...,S4)
S1,...,S4 are sorted sets (arrays/lists/stacks/queues)
P <« empty min-priority queue
S « empty set
// P always holds current front elements of S4,...,S5d
fori « 1toddo
P.insert((first element of S; i))
while P is not empty do
(x,i) < deleteMin(P) // removes current front of S; from P
remove x from S;and append itto S
if S;is not empty do
// current front of S; is not represented in P, add it
P.insert((first element of S; i))

d-way Merge with Min Heap Time Complexity

= Merging d sequences each of size k
= dk iterations, at each iteration

= one deleteMin() on heap of size d heap
= 0O(log, d) of

sized
= oneinsert() on heap of size d
= 0(log,d)

= Total time is O(dk log, d)

d-way Mergesort Complexity In Internal Memory

= Jogyn rounds
= Time complexity for one round
= time to merge d sequences of sizeis k is O(kd log, d)
= for one round of mergesort have to do n/(dk) of these merges

= time for one round is @ kd log, d = 0(n log; d)
no advantage

log, n i |
= Total time O(logzn-nlog,d) = (‘ﬂg; %‘g}i) = 0(n log; n) ”:n';tf;:\j

d-way Mergesort Complexity In External Memory

= How do we gain advantage in external memory?
= we only count block accesses

= log,;n rounds
= time for each round is O@(n ©®(n), or better, in block accesses

= Totaltime O(log,;n - n d) = @(EIBQ)
®(n) block ©(nlog,;n)
accesses block accesses

d-Way Mergesort in External Memory

Internal memory

M Y= 3 block size

External memory b =2

——

|
n =32

Cannot merge in external memory directly, have to transfer to internal memory
= onlyinternal memory has access to CPU
Algorithm is largely the same, but for maximum block access efficiency
= make d as large as possible
= |ess rounds of mergesort
= for any transferred block, all data from that block should be used for sorting

d-Way Merge in External Memory

= External memory block size
B =2
sorted run sorted run sorted run —
current current current
front front front

= Internal memory [R F

T

current current current
front front front

= Key observation
= do not need to transfer the full sorted run in internal memory to do d-way merge

= at some point sorted runs will become so large that even one sorted
run will not fit into the internal memory

= enough to transfer the block that contains current front from each sorted run
= letis call it the active block

= could transfer more than one block, but transferring exactly one block lets us
perform d-way merge with a larger d

d-Way Merge in External Memory
External memory

sorted run sorted run sorted run

sorted run

block size
B =2
(_A_\

n =32
Partition internal memory
Internal (M = 8):

D:ID:ID:ID:I

In our example, looks like can perform 4-way merge (d = 4)
But no, need to have some space for merged result
= again, one block of memory is enough

d-Way Merge in External Memory
External memory

sorted run sorted run sorted run

block size
B =2
(_A_\

|
n =32

Partition internal memory
Internal (M = 8):

LI

51 S, S3 S
In the example, can perform 3-way merge

In general
. . M
" partition in approximately — sequences
M
= performd = o 1 way merge

= first d sequences for storing active blocks of sorted runs
= |ast sequence for storing results of the merged result

d-Way merge in External Memory
= External (B = 2)

5 10 | 22 | 28 | 29 | 33 | 37 | 39 I] 8 21 30 | A 40 | 45 | 52 54|I 1 12 | 13 | 35 | 36 | 42 | 49 | 53

(d = 3, priority queue not shown)

= Example: 3-way merge
= always bring elements from/to external memory in full blocks

d-Way merge in External Memory
= External (B = 2)

- 22 | 28 | 29 | 33 | 37 | 39 _ 30 | 31 | 40 | 45 | 52 | 54 _ 13 | 35 | 36 | 42 | 49 | 53

5110 8 | 21 11 | 12 (d = 3, priority queue not shown)

= Example: 3-way merge
= always bring elements from/to external memory in full blocks

d-Way merge in External Memory
= External (B = 2)

- 22 | 28 | 29 | 33 | 37 | 39 _ 30 | 31 | 40 | 45 | 52 | 54 _ 13 | 35 | 36 | 42 | 49 | 53

Sl 52 53 S
10 8 | 21 11 | 12 5 (d = 3, priority queue not shown)

= Example: 3-way merge

= always bring elements from/to external memory in full blocks
= merge in internal memory until any sequence becomes full/empty

d-Way merge in External Memory

= External (B = 2)

29

33

37

39 _ 30 | 31 | 40 | 45 | 52 | 54 _ 13 | 35 | 36 | 42 | 49 | 53

T

T T

51

52

S, S

10

21

- (d = 3, priority queue not shown)

12

T

T

= Example: 3-way merge

always bring elements from/to external memory in full blocks
merge in internal memory until any sequence becomes full/empty

= Sequence S is full
empty it back into external memory and continue merging
not in-place external merging, need to empty into new external space

d-Way merge in External Memory

= External (B = 2)

29

33

37

3

40

45

52 | 54 _ 13 | 35 | 36 | 42 | 49 | 53

T

T

T

51

52

10

21

12

T

T

= Example: 3-way merge

= Sequenc

(d = 3, priority queue not shown)

always bring elements from/to external memory in full blocks
merge in internal memory until any sequence becomes full/empty

e Sis full

empty it back into external memory and continue merging
not in-place external merging, need to empty into new external space
continue merging

d-Way merge in External Memory
= External (B = 2)

- 22 | 28 | 29 | 33 | 37 | 39 _ 30 | 31 | 40 | 45 | 52 | 54 _ 13 | 35 | 36 | 42 | 49 | 53

21 11 | 12 10 (d = 3, priority queue not shown)
= Example: 3-way merge

= always bring elements from/to external memory in full blocks
= merge in internal memory until any sequence becomes full/empty

= Sequence Sy is empty
= bring the next block from the first sorted run
= becomes the next active block from §;

d-Way merge in External Memory
= External (B = 2)

5 10 - 29 | 33 | 37 | 39 _ 30 | 31 | 40 | 45 | 52 | 54 _ 13 | 35 | 36 | 42 | 49 | 53

21 11 | 12 10 (d = 3, priority queue not shown)

T
= Example: 3-way merge

= always bring elements from/to external memory in full blocks
= merge in internal memory until any sequence becomes full/empty

= Sequence Sy is empty
= bring the next block from the first sorted run

= continue blockwise merge as before

d-Way merge in External Memory
= External (B = 2)

5 10 - 29 | 33 | 37 | 39 _ 30 | 31 | 40 | 45 | 52 | 54 _ 13 | 35 | 36 | 42 | 49 | 53

S, S, S, S

22 | 28 21 12 - (d = 3, priority queue not shown)

= Example: 3-way merge
= always bring elements from/to external memory in full blocks
= merge in internal memory until any sequence becomes full/empty

= Sequence S is full
= empty it back into external memory and continue merging

d-Way merge in External Memory
= External (B = 2)

5 10 - 29 | 33 | 37 | 39 _ 30 | 31 | 40 | 45 | 52 | 54 _ 13 | 35 | 36 | 42 | 49 | 53

T+ .

S1 S, S S
22 | 28 21 12 (d = 3, priority queue not shown)

T]

= Example: 3-way merge
= always bring elements from/to external memory in full blocks
= merge in internal memory until any sequence becomes full/empty

d-Way merge in External Memory
= External (B = 2)

5 10 | 22 | 28 | 29 | 33 - 8 21 | 30 | 31 | 40 | 45 - 1 12 | 13 | 35 | 36 | 42 -

»
&
< »

sorted
Internal (M = 8):

(d = 3, priority queue not shown)

51 S, S3 S

= Example: 3-way merge
= always bring elements from/to external memory in full blocks
= merge in internal memory until any sequence becomes full/empty

= Done with the first 3 sorted runs, continue with all other sorted runs in sets of 3
= until all sorted runs are processed

= Total number of block transfers for one round is ®(n/B)

= external array has size n, brought into internal memory in full blocks of size B
= copied back to external memory in full blocks of size B

d-way Mergesort In External Memory

log, n

rounds
log, d

" Jogy,n =

* Each round makes @(n/B) external memory block accesses

n log, n

block accesses
B log,d

= with d-way merge sort, © (g -loggy n) = @(

= 2-way (standard) mergesort, © (% -log, n) block accesses

= d-way mergesort has savings factor log, d over 2-way mergesort

= we made d as large as possible so that one round makes @(n/B) block
accesses

» n/Bis the smallest number of block accesses needed to do one
round of mergesort

= if we made d any larger would need more than n/B block accesses
for each round

Mergesort in External M emory: Initialization

= External (B = 2)

5 28 | 22 10 | 33 | 29 | 37 | 8 30 | 54 | 40 | A 52 | 2 45 | 35 | 11 42 | 53 13 12 | 49 | 36 | 4 14 | 27 | 9 4 1 3 32

Internal (M = 8):

= Smart initialization can further reduce block transfers

= Mergesort starts with initial runs of size 1 and creates sorted runs of size d
after one round

<d<d_.,d_+<d;<d;<d d d

= cost of one round is ®(n/B) block transfers

A
A 4
A

= The larger the initial sorted runs are, the less rounds mergesort takes

= (Can we create sorted runs of size larger than d using only ®(n/B) of block
transfers?

= j.e.the same computational cost as the first round of mergesort

Mergesort in External M emory: Initialization

= External (B = 2)

5 28 | 22 | 10 | 33 | 29 | 37 | 8 30 | 54 | 40 | A 52 | 21 | 45 | 35 | 11 | 42 | 83 | 13 | 12 | 49 | 36 | 4 14 | 27 | 9 4 | 3 32

Internal (M = 8):

= Can created sorted runs of size M using only ®(n/B) of block transfers
s M>dr~—=—1
B

= Sort external memory chunks that fit into internal memory (size M chunks)

Mergesort in External M emory: Initialization

= External (B = 2)

5 28 | 22 | 10 | 33 | 29 | 37 | 8 30 | 54 | 40 | A 52 | 21 | 45 | 35 | 11 | 42 | 83 | 13 | 12 | 49 | 36 | 4 14 | 27 | 9 4 | 3 32

Internal (M = 8):

39 5128 (2210|3329 |37

= Can created sorted runs of size M using only ®(n/B) of block transfers
= Sort external memory chunks that fit into internal memory (size M chunks)
= copy the first chunk

Mergesort in External M emory: Initialization

= External (B = 2)

5 28 | 22 | 10 | 33 | 29 | 37 | 8 30 | 54 | 40 | A 52 | 21 | 45 | 35 | 11 | 42 | 83 | 13 | 12 | 49 | 36 | 4 14 | 27 | 9 4 | 3 32

Internal (M = 8):

5 1022 |28 29|33 |37 |39

= Smart initialization can further reduce block transfers

= Sort external memory chunks that fit into internal memory (size M chunks)
= copy the first chunk
= sortin the internal memory

Mergesort in External M emory: Initialization

= External (B = 2)

10 | 22 | 28 | 29 | 33 | 37 | 39 | 8 30 | 54 | 40 | 3 52 | 21 | 45 | 35 | 11 | 42 | 83 | 13 | 12 | 49 | 36 | 4 14 | 27 | 9 4 | 3 32

A

»
|

sorted run

Internal (M = 8):

5 102228 29|33 |37 |39

= Smart initialization can further reduce block transfers

= Sort external memory chunks that fit into internal memory (size M chunks)
= copy the first chunk
= sortinthe internal memory
= copy back to external memory

Mergesort in External M emory: Initialization

= External (B = 2)

& »
< |

sorted run

Internal (M = 8):

8 30|54 |40 |31|52|21 |45

= Smart initialization can further reduce block transfers
= Sort external memory chunks that fit into internal memory (size M chunks)
= copy the next chunk

Mergesort in External M emory: Initialization

= External (B = 2)

& »
< |

sorted run

Internal (M = 8):

8 21|30 |31|40|45]|52 | 54

= Smart initialization can further reduce block transfers

= Sort external memory chunks that fit into internal memory (size M chunks)
= copy the next chunk
= sortininternal memory

Mergesort in External M emory: Initialization

= External (B = 2)

& » & »
<« L] >

sorted run sorted run

Internal (M = 8):

8 21|30 |31|40|45]|52 | 54

= Smart initialization can further reduce block transfers

= Sort external memory chunks that fit into internal memory (size M chunks)
= copy the next chunk
= sortininternal memory
= copy back to external memory

= Copy, sort, copy back the rest of them

Mergesort in External M emory: Initialization

= External (B = 2)
[e[z]a]afs[a]w]s [a]a]aa]e]a]a]u]alo[s]n]elafals [+]s [u]u]ala]u]

& » ¢ » & » & »
<« » W » X » < |

sorted run sorted run sorted run sorted run

Internal (M = 8):

= Smart initialization creates sorted runs of length M
= ©O(n/B) block transfers

= each chunk of size M is copied in full blocks of size B

Mergesort in External Memory: Total Cost in Block
Transfers

Initialization creates n/M sorted runs of length M

* ®(n/B) block transfers
Each round increases size of a sorted run by a factor of d

M-d-d--d =n = d=l = t=logg—
\ Y) M M
dt
At most log; n/M rounds of merging create sorted array
= each round ®(n/B) block transfers

= Total number of block transfers: O (glogd n/M)

= better than © (g -logy n) without smart initialization

= Canshow that d-way Mergesort with d = M /B is optimal to minimize block
transfers for sorting in external memory

= up to constant factors

Outline

= External Memory

= External Dictionaries

Dictionaries in External Memory AVL tree

= Tree-based dictionary implementations
have poor memory locality
= if an operation accesses m nodes, it

must access m spaced-out memory
locations

* Inan AVL tree, @(log n) blocks are loaded in the worst case

= Better solution
= trees that store more keys inside a node, smaller height
= B-trees is one example

= first consider special case of B-trees: 2-4 trees
= 2-4 trees also used for dictionaries in internal memory
" may be even faster than AVL-trees

= first analyze their performance in internal memory, and then (for
B-trees) in external memory

Outline

= External Memory

u 2-4 Trees

2-4 Trees Motivation

= Binary Search tree supports efficient search with special key ordering

key k

keys< k
TO T1
= Need nodes that store more than one key
= how to support efficient search?

key k1 key k> key k3

keys< k1 o <keys< k ke, <keys< Ik keys> ks

= Need more properties to ensure tree is balanced and insert, delete are
efficient

5| 10| 12| 3-node

2-4 Trees

2-node 2-node 1-node 3-node

3| 4 6|8 i} 13| 14| 15

. N /\ VAR

= Structural properties o & 0 @ @ 0 o 0 o 0 0 0

= Every node is either empty subtrees

= 1-node: one KVP and two subtrees (possibly empty), or
= 2-node: two KVPs and three subtrees (possibly empty), or
= 3-node: three KVPs and four subtrees (possibly empty)
= allowing 3 types of nodes simplifies insertion/deletion
= All empty subtrees are at the same level
= necessary for ensuring height is logarithmic in the number of KVP stored

= Order property: keys at any node are between the keys in the subtrees

key k1 key k> key k3

keys< k1 ki <keys< k2 2 <keys< k keys> k3

To T, /‘ T, \ Ts
subtree immediately to the right of k>

subtree immediately to the left of k2

2-4 Tree Example

Empty subtrees are not part of height

computation
= height=1

10

12

3

4

/2 {0

Often do not show empty subtrees

\

10

12

13

14

15

2-4 Tree: Search Example

Search

Similar to search in BST

Search(k) compares key k to ki1, k2, k3, and either finds k
among k1, k2, k3 or figures out which subtree to recurse into

if key is not in tree, search returns parent of empty tree where
search stops

= key can be inserted at that node
Search(15)

5| 10| 12

not found
3| 4 6| 8 n 13| 14| 16

/\0 m A returned node
1)

2-4 Tree operations

24TreeSearch(k, v «root, p «<empty subtree)
if v represents empty subtree
return “not found, would be in p”
let To, k1,...,ka, Tqabe keys and subtrees at v, in order

ifk > k1
I « maximalindexsuchthatk; < k
ifk; = k

return “at ith key inv”
else 24TreeSearch(k,T;,v)
else 24TreeSearch(k, To,v)

Example: 2-4 tree Insert

= Example: 24Treelnsert(17)
= first step is 24TreeSearch(17)

Example: 2-4 tree Insert

Example: 24Treelnsert(17)

10

11

/)

split

m overfow

O 0 0 0 ¢

Example: 2-4 tree Insert

Example: 24Treelnsert(17)

10

11

Example: 2-4 tree Insert

= Example: 24Treelnsert(17)

overflow

1l
/N

Example: 2-4 tree Insert

= Example: 24Treelnsert(17)

= Split root node
" pneed new root

Example: 2-4 tree Insert

= Example: 24Treelnsert(17)

= Split root node
= pneed new root

2-4 Tree Insert Pseudocode

24Treelnsert(k)

add k and

v « 24TreeSearch(k) //node where k should be

an empty subtree in key-subtree-list of v

while v has 4 keys (overflow — node split)

let To, k1,..., ks, T4 be keys and subtrees at v, in order
if (v has no parent) create a parent of v (empty)

p <« parent of v

v' < new node with keys k1, kzand subtrees Ty, T1, T2
v'"" « new node with key k4and subtrees T3, T4
replace < v > by < v', k3, v"" > in key-subtree-list of p

v « p //continue checking for overflow upwards

k’ k’)

v \U”
ka4 node split> ki |k ka

/]

To T1 T

\ NVENVAN

Tz T4 To T1 T, T3 Ty

2-4 Tree: Left and Right Sibling

= Left sibling of a node is a subtree tree of the parent node which is

immediately to the left

= Right sibling of a node is a subtree tree of the parent node which is

immediately to the right

16

5/ 10| 12
left sibling right sibling
3|4 6| 8 13
/@\a
= Any node (except the root) must have illegal p

a left or a right sibling (or both)

2-4 Tree: Inorder Successor

= |norder successor of key k stored in node v is the smallest key in the
subtree of v “immediately to the right” of k

12

10 16

3| 4 11} 13|14 17

m/m NN D

inorder successor
of key 5

2-4 Tree Delete

= Example: delete(51)

= Search for key to delete
= can delete keys only from a node with empty subtrees

= replace key with in-order successor

25

2N /

18

/

\ /\ /\

12

51

s

56

62

F b8 bdb db6bdb8b dbdbh

2-4 Tree Delete

Example: delete(51)
Search for key to delete

can delete keys only from a node with empty subtrees

replace key with in-order successor

delete key 51 and an empty

25

subtree

36

43

SN SN

18

/

12

\ /\ /\

lavawallaPal ave M)

/\

62

2-4 Tree Delete

= Example: delete(51)
= Search for key to delete

SN N
IV A A

(i bdb db8b8bdb dbd |

2-4 Tree Delete

= Example: delete(43)

= Search for key to delete
= can delete keys only from a node with empty subtrees
= replace key with in-order successor

25

NN

FERAY /\ /|

F b8 bdb db6bdbdb dbdbb

2-4 Tree Delete

= Example: delete(43)

= Search for key to delete
can delete keys only from a node with empty subtrees

replace key with in-order successor

delete key 43
= and a subtree

25

2N

18

/

\ /\ /\

12

'avavatliaVadade

AN

/\

62

(Z)

2-4 Tree Delete

= Example: delete(43)
= ‘rich’ right sibling, transfer key from sibling, with help from the parent
= sibling is ‘rich’ if it is a 2-node or 3-node
= ‘adjacent’ subtree from sibling is also transferred

36

25 48

SN N

18 51

VRN / \ / \ /

19 56 | 62

Fbd b db & bdbd b b

2-4 Tree Delete

= Example: delete(43)
= ‘rich’ right sibling, transfer key from sibling, with help from the parent
= sibling is ‘rich’ if it is a 2-node or 3-node
= ‘adjacent’ subtree from sibling is also transferred

36

- 48

AN \ti%‘iza's
IV AR (AN

g 28 42

SO0 DaANG B

2- 4 Tree Delete

Id/()
ch(19)

ANV AN
I AN

B iy

2-4 Tree Delete

= Example: delete(19)
= first search(19)
= then delete key 19 (and an empty subtree) from the node
= |eft and right siblings exist, but not ‘rich’, cannot transfer

36

25 48

SN N
A A

33 42 62

(b6bdb8b 4540

2-4 Tree Delete

= Example: delete(19)

= |eft and right siblings exist, but not ‘rich’, cannot transfer
= merge with right sibling with help from parent

36

25 48

RNV
/ /\ /\ /\

FE D I e

2-4 Tree Delete

= Example: delete(19)

= |eft and right siblings exist, but not ‘rich’, cannot transfer
= merge with right sibling with help from parent
= all subtrees merged together as well

36

25 48

VANNVAN
A A /\ A

33 42 62

MM%JWW% (b)

2-4 Tree Delete

= Example: delete(42)
= first search(42)
= delete key 42 with one empty subtree

25

N \56
AN

AT S AO8 A5

2-4 Tree Delete

= Example: delete(42)
= first search(42)

= the only sibling is not ‘rich’, perform merge

25

36

48

SN SN
e [\

/)

24

Iadran)

/\

41

y

e

o e

2-4 Tree Delete

= Example: delete(42)
= first search(42)

= the only sibling is not ‘rich’, perform merge
= subtrees from two nodes become subtrees of merged node

36

25 48

VANWAN
AN TR

(b dbh dbdb Ay 4540

2-4 Tree Delete

= Example: delete(42)
" merge operation can cause underflow at the parent node
= continue fixing the tree upwards, possibly all the way to the root

36

25 48

VANWAN
AN TR

(5 dbh dbdb 7% 4540

2-4 Tree Delete

= Example: delete(42)

= the only sibling is not ‘rich’, perform a merge

/)

25

24

Iadran)

/\

36

AN,

48

28

e an:

&

51 62

6 b6 b

2-4 Tree Delete

= Example: delete(42)

= the only sibling is not ‘rich’, perform a merge

= subtrees are merged as well
= continue fixing the tree upwards

25

36

2N

/\

Iy any

underflow
48 | 56
41 62

340 4

y 434 b

2-4 Tree Delete

= Example: delete(42)
= the only sibling is not ‘rich’, perform a merge

\.

18 48 56

36

/1

28 3 39 41 62

aw@a wl ran e e

2-4 Tree Delete

= Example: delete(42)
= the only sibling is not ‘rich’, perform merge
= underflow at parent node
= jtisthe root, delete root

. underflow

\4856
/) /\ /1

33 41 62

(b dbb dbdb dh /M&

2-4 Tree Delete

= Example: delete(42)
= underflow at parent node
= underflow at the root, delete root
= jtisthe root, delete root

25| 36

/ \.4856
/) /\ /1N

(b §bb K&HHM\JM&

2-4 Tree Delete

= Example: delete(28)
= first search(28)
= delete key 28 with one empty subtree

48

o
N

33 62

b dbdb 4340

2-4 Tree Delete

= Example: delete(28)
= first search(28)
= delete key 28 with one empty subtree

36

25 48

ANNVAN
o Ra o

12 33 62

mma b dbds 45450

2-4 Tree Delete

= Example: delete(28)
= first search(28)
= delete key 28 with one empty subtree
= merge with the only sibling, who is ‘not rich’

36

25 48

SN SN

18 31

[L\ / \ / \

Sl dadabc cataliiade:

2-4 Tree Delete

= Example: delete(28)
= first search(28)
= delete key 28 with one empty subtree
= merge with the only sibling, who is ‘not rich’

36

25 48

VA NVAN
A T A A

12 31133 62

7 7hd) SIS ihds 4bdd

2-4 Tree Delete

= Example: delete(28)
= transfer from a rich sibling

oL

73 S0 iy OS5

2-4 Tree Delete

= Example: delete(28)
= transfer from a rich sibling
= together with a subtree

36

20 48

4 N

18 25

N

12 24 31|33 62

(3 s dbddbdbds 4340

2-4 Tree Delete Summary

= |f key not at a node with empty subtrees, swap with inorder successor
= Delete key and one empty subtree from node
= |f underflow
= |f there is a sibling with more than one key, transfer
= no further underflows caused
= do not forget to transfer a subtree as well

= convention: if two siblings have more than one key, transfer
with the right sibling

= |f all siblings have only one key, merge

= there must be at least one sibling, unless root
= if root, delete

= convention: if both siblings have only one key, merge with the
right sibling

" merge may cause underflow at the parent node, continue to
the parent and fix it, if necessary

Deletion from a 2-4 Tree

24TreeDelete(k)
w « 24TreeSearch(k) //node containing k
if w is not a node with only leaf children
v <« leaf containing predecessor or successor k' of k
replace k by k' inw
delete k’ and an empty subtree in key-subtree-list of v
while v has 0 keys // underflow
if v is the root, delete it and break
p < parentof v
if v has sibling u with 2 or more keys // transfer/rotate
let u be that sibling
if u is a right sibling // say p contains < v, k,u >
replace key k in p by u. k;

remove < u.To,u. k1 > fromu and append < k,u.To >tov

else // symmetrical procedure if u is a left sibling
else // merge/repeat
if v has a right sibling

v’ «new node with list (v.To, k, u.To, u. k1,u.T1)

replace < v,k,u> by<v>inp
Vep
else ... // symmetrically with left sibling

Outline

= External Memory

= (a, b)-Trees

(a,b)-Trees

(a, b)-tree satisfies

2-4 Tree is a specific type of (a, b)-tree

each node has at least a subtrees, unless it is the root
= root must have at least 2 subtrees

each node has at most b subtrees
if node has k subtrees, then it stores k — 1 key-value pairs (KVPs)
all empty subtrees are at the same level
keys in the node are between keys in the corresponding subtrees

35
14120 | 26 38|44 |50 | 56
1012 |16(1822|24|128]|30|32|{34|36(/40|42|/46|48|/ 52|54 58|60
Jib 366 bbb b o b babb sbb abo sob bob

(3,5)-tree, also a valid (3, 6)-tree

(a,b)-Trees: Root

Why special condition for the root?

Needed for (a,b)-trees storing very few KVP
(3,5) tree storing only 1 KVP

Could not build it if forced the root to have at least 3 children
= remember # keys at any node is one less than number of subtrees

(a,b)-Trees

» |fa < [b/2],then search, insert, delete work just like for 2-4 trees
= straightforward redefinition of underflow and overflow
= For example, for (3,5)-tree
= atleast 3 children, at most 5
= each node is at least a 2-node, at most a 4-node
= during insert, overflow if get a 5-node

— N\ —
55|60
= split results in 2-nodes, and 2-nodes are smallest allowed nodes

2 node 2 node
- -
N NN\

= If a > [b/2], for example (4,5)-tree, cannot split like before
= equal (best possible) split results in two 2 nodes, which is not allowed

Height of (a, b)-tree

= Height = number of levels not counting empty subtrees

5| 10| 12 height = 1

13| 14

T e & 140N

Height of (a, b)-tree

= Consider (a,b)-tree with smallest number of KVP and of height h
= red node (the root) has 1 KVP, blue nodes have (a — 1) KVP

@

level # of nodes

0 1
1 2a°
2 2al
s e Nl AN/
B ogh-1 00
h-1 h-1
1+z 2a(a — 1) =1+2(a—1)z a* =2a" -1
i=0 i=0
a —1
= Letn the number of KVP in any (a, b)-tree of height h a— 1

n>2a"—1 and, therefore, loganT+1 > h

= Height of tree with n KVPsis O(log, n)

Useful Fact about (a, b)-trees
= number of of KVP = number of empty subtrees — 1 in any (a, b)-tree

Proof: put one stone on each empty subtree and pass the stones up the tree. Each node keeps 1 stone per
KVP, and passes the rest to its parent. Since for each node, #KVP = # children — 1, each node will pass
only 1 stone to its parent. This process stops at the root, and the root will pass 1 stone outside the tree.
At the end, each KVP has 1 stone, and 1 stone is outside the tree.

Useful Fact about (a, b)-trees

Outline

= External Memory

u B-Trees

B-trees

» AB-tree of order misa ([m/2], m)-tree [m/2] —1tom — 1 KVPs
= 2-4treeis a B-tree of order 4 /
= atleast 2, at most 4 subtrees / / \ \ \

= Example: B-tree of order 6
= atleast 3, at most 6 subtrees
* node must be at least 2-node, at most 5-node

/
@@@@@@A(b(ﬁ@ o o 0

= Overflow if geta 6-node = Underflow if get a 1-node

= transfer, if have a 3, 4 or 5-node
sibling, merge if all siblings are
38 2-nodes

55| 60 |
NN ||

N —

B-trees in Internal Memory

A B-tree of order misa ([m/2], m)-tree
= Sedgewick uses M rather than m
Analysis if stored in internal memory

insert, and delete

5| 791121427 29

= search require ®(height) node operations

logn logn
i N =0 =0
height is O (log, n) <log m/2> (log m)

» each node operation is O(logm) time

logn

total cost for each search (

logm
= analysis for insert and delete is the same

No better than 2-4-trees or AVL-trees

[m/2] —1tom — 1 KVPs

T

each node stores its KVPs in a dictionary that supports O (log m) search,

-log m) = O(logn)

Dictionaries in External Memory

= Main applications of B-trees is to store dictionaries in external memory
= AVL tree or 2-4 tree, need to load ®(logn) blocks in the worst case

= |nstead, use a B-tree of order m
= mis chosen so that an m-node fits into a single block
= typicallym € O(B)

B B
x x ul

— nodei <: _hode k >. - ﬁodél I>

Node that if m-node fills block B completely, then blocks are at least half-full
= since each node is at least an [m/2]-node
= not much storage wasted

Each operation can be done with ®(height) block transfers
The height of a B-tree is @(log,, n) = O(logg n)

. . logn
O@(loggn) =06 <log B)

Large savings of block transfers, log B factor compared to AVL trees

Example of B-tree usage

1 node (root)

............... 200 nodes
é O 2002 nodes
(AN 2003 empty subtrees

= PB-tree of order 200
= node fits into one block of external memory
= B-tree of order 200 and height 2 can store up to 2003 — 1 KVPs
= from the ‘useful fact’ proven before

= jf store root in internal memory, then only 2 block reads are
needed to retrieve any item

B-tree variations

= For practical purposes, some variations are better
" B-trees with pre-emptive splitting/merging
= during search for insert, split any node close to overflow
= during search for delete, merge any node close to underflow
= caninsert/delete at leaf and stop, this halves block transfers
= Bt*-trees: Only leaves have KVPs, link leaves sequentially
" interior nodes store duplicates of keys to guide search-path
= twice as many items
= |arger m since interior nodes do not hold values
= Cache-oblivious trees: What if we do not know B?
= build a hierarchy of binary trees

= each node vin binary tree T “hides” a
binary tree T’ of size @(+/n)

= achieves O(logg n) block transfers without knowing B

