CS 240 - Data Structures and Data Management

Module 11: External Memory

M. Petrick
O. Veksler
Based on lecture notes by many previous cs240 instructors
David R. Cheriton School of Computer Science, University of Waterloo

Winter 2020

References: Goodrich \& Tamassia 20.1-20.3, Sedgewick 16.4

Outline

- External Memory
- Motivation
- External sorting
- External Dictionaries
- 2-4 Trees
- (a, b)-Trees
- B-Trees

Outline

- External Memory
- Motivation
- External sorting
- External Dictionaries
- 2-4 Trees
- (a, b)-Trees
- B-Trees

Different levels of memory

- Memory hierarchy for current computer architectures
- Registers: super fast, very small
- cache L1, L2: very fast, less small
- main memory: fast, large
- disk or cloud: slow, very large
- from 1000 to 1,000,000 times slower than main memory
- Desirable to minimize transfer between slow/fast memory
- Focus on main (internal) memory and disk or cloud (external) memory
- accessing a single location in external memory automatically loads a whole block (or "page")
- one block access can take as much time as executing 100,000 CPU instructions
- need to care about the number of block accesses
- new objective
- revisit ADTs/problems with the objective of minimizing block transfers ("probes", "disk transfers", "page loads")

Adding External-Memory Model (EMM)

external memory - size unbounded

Suppose time for one block transfer = time for 100,000 CPU instructions

- Algorithm 1

1,000 CPU instructions $+1,000$ block transfers $=1,000+1,000 \cdot 100,000=10^{3}+10^{8}$

- Algorithm 2
fast random access

10,000 CPU instructions +10 block transfers $=10,000+10 \cdot 100,000=104+10^{64}$

- Cost of computation: number of blocks transferred between internal and external memory

Outline

- External Memory
- Motivation
- External sorting
- External Dictionaries
- 2-4 Trees
- (a, b)-Trees
- B-Trees
- Extendible Hashing

Sorting in external memory

- Sort array A of n numbers
- assume n is huge so that A is stored in blocks in external memory
- Heapsort was optimal in time and space in RAM model
- poor memory locality: each iteration can access far apart indices of A

- accesses 2 blocks, but put only 2 elements in order
- and all the other data read in the block is not used
- heapsort does not adapt well to data stored in external memory
- Mergesort adapts well to array stored in external memory
- access consecutive locations of A, ideal for reading in blocks

- accesses 2 blocks, and puts all their elements in order

Mergesort: non-recusive view

- Several rounds of merging adjacent pairs of sorted runs (run = subarray)
- in round i, merge sorted runs of size 2^{i}
- Graphical notation \qquad

2-way Merge

- Two sorted runs

- Put a pointer at the front of each sorted run
- call it 'current front'
- Repeatedly find the smallest element among current fronts
- move the smallest element into sorted result array
- advance current front of corresponding sorted run
- Array to store sorted result

2-way Merge

- Two sorted runs

- Put a pointer at the front of each sorted run
- call it 'current front'
- Repeatedly find the smallest element among current fronts
- move the smallest element into sorted result array
- advance current front of corresponding sorted run
- Array to store sorted result

2-way Merge

- Two sorted runs

- Put a pointer at the front of each sorted run
- call it 'current front'
- Repeatedly find the smallest element among current fronts
- move the smallest element into sorted result array
- advance current front of corresponding sorted run
- Array to store sorted result

2-way Merge

- Two sorted runs

- Put a pointer at the front of each sorted run
- call it 'current front'
- Repeatedly find the smallest element among current fronts
- move the smallest element into sorted result array
- advance current front of corresponding sorted run
- Array to store sorted result

2-way Merge

- Two sorted runs

- Put a pointer at the front of each sorted run
- call it 'current front'
- Repeatedly find the smallest element among current fronts
- move the smallest element into sorted result array
- advance current front of corresponding sorted run
- Array to store sorted result

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 8 & 11 & 12 & 31 & 34 & 64 \\
\text { done! } \\
\hline
\end{array}
$$

- Time to merge two sequences each of size k is $\Theta(2 k)$

Running time of MergeSort with 2-way Merge

- $\Theta\left(\log _{2} n\right)$ rounds
- Time for each round
- time to merge 2 sequences each of size k is $\Theta(2 k)$
- in one round, need to merge $n /(2 k)$ sequences pairs

- one round of merge sort takes $\Theta(2 k \cdot n /(2 k))=\Theta(n)$ time
- Total time for mergesort is $\Theta\left(n \log _{2} n\right)$

d-way Mergesort

- Can generalize mergesort to merge d sorted runs at one time
- $d=2$ gives standard mergesort
- Example: $d=4$

1	2	3	8	11	12	31	34	3	4	9	13	15	16	18	32
sorted array															

- $\log _{d} n=\frac{\log _{2} n}{\log _{2} d}$ rounds
- the larger is d the less rounds
- How to merge d sorted runs efficiently?
- d-Way merge

d-way Merge

- $d=3$

- $d=5$

2	1	1	34	8	9	12	1	11	3	1	15	18	32	9	12	13	3

- $d=16$

34	11	2	67	8	12	31	1	3	15	18	32	9	16	4	13
\uparrow															

- Need efficient data structure to find the minimum among d current fronts

d-way Merge with Min-Heap

- Use min heap to find the smallest element among of d current fronts
- (key,value) = (element, sorted run)
- $d=4$

merged output \square
\square

1) insert(2,0), insert(1,1), insert(3,2), insert(4,3)

d-way Merge with Min-Heap

1) $\operatorname{insert}(2,0)$, insert $(1,1), \quad 2) \quad$ delete $\operatorname{Min}()=(1,1)$ insert(3,2), insert(4,3)

d-way Merge with Min-Heap

- Heap must have current fronts from all sorted runs
- unless some sorted run ends

d-way Merge with Min-Heap

d-way Merge with Min-Heap

d-way Merge with Min-Heap

d-way Merge with Min Heap Pseudo Code

```
d-Way-Merge( }\mp@subsup{S}{1}{},\ldots,\mp@subsup{S}{d}{}
S},\ldots,\mp@subsup{S}{d}{}\mathrm{ are sorted sets (arrays/lists/stacks/queues)
    P}\leftarrow\mathrm{ empty min-priority queue
    S}\leftarrow\mathrm{ empty set
    // P always holds current front elements of S1,\ldots,Sd
    for }i\leftarrow1\mathrm{ to }d\mathrm{ do
        P.insert((first element of Si,i))
    while P is not empty do
        (x,i)\leftarrowdeleteMin}(P)// removes current front of Si from P
        remove }x\mathrm{ from }\mp@subsup{S}{i}{}\mathrm{ and append it to }
        if S}\mp@subsup{S}{i}{}\mathrm{ is not empty do
        // current front of Si is not represented in P, add it
        P.insert((first element of Si,i))
```


d-way Merge with Min Heap Time Complexity

- Merging d sequences each of size k
- $d k$ iterations, at each iteration
- one deleteMin() on heap of size d
- $\Theta\left(\log _{2} d\right)$

- one insert() on heap of size d
- $\Theta\left(\log _{2} d\right)$
- Total time is $\Theta\left(d k \log _{2} d\right)$

d-way Mergesort Complexity In Internal Memory

- $\log _{d} n$ rounds
- Time complexity for one round
- time to merge d sequences of size is k is $\Theta\left(k d \log _{2} d\right)$
- for one round of mergesort , have to do $n /(d k)$ of these merges
- time for one round is $\Theta\left(\frac{n}{d k} k d \log _{2} d\right)=\Theta\left(n \log _{2} d\right)$
- Total time $\Theta\left(\log _{d} n \cdot n \log _{2} d\right)=\Theta\left(\frac{\log _{2} n}{\log _{2} d} \cdot n \log _{2} d\right)=\Theta\left(n \log _{2} n\right) \begin{gathered}\begin{array}{c}\text { no advantage } \\ \text { in internal } \\ \text { memory }\end{array}\end{gathered}$

d-way Mergesort Complexity In External Memory

- How do we gain advantage in external memory?
- we only count block accesses
- $\log _{d} n$ rounds
- time for each round is $\Theta\left(n \log _{2} d\right) \quad \Theta(n)$, or better, in block accesses
- Total time $\Theta\left(\log _{d} n \cdot n \log _{2} d\right)=\Theta(n \log 2 n)$

$$
\begin{array}{ll}
\Theta(n) \text { block } & \Theta\left(n \log _{d} n\right) \\
\text { accesses } & \text { block accesses }
\end{array}
$$

d-Way Mergesort in External Memory

- Internal memory

block size
- External memory

$$
n=32
$$

- Cannot merge in external memory directly, have to transfer to internal memory
- only internal memory has access to CPU
- Algorithm is largely the same, but for maximum block access efficiency
- make d as large as possible
- less rounds of mergesort
- for any transferred block, all data from that block should be used for sorting

d-Way Merge in External Memory

- External memory

- Key observation
- do not need to transfer the full sorted run in internal memory to do d-way merge
- at some point sorted runs will become so large that even one sorted run will not fit into the internal memory
- enough to transfer the block that contains current front from each sorted run
- let is call it the active block
- could transfer more than one block, but transferring exactly one block lets us perform d-way merge with a larger d

d-Way Merge in External Memory

- External memory
block size

- Partition internal memory

- In our example, looks like can perform 4-way merge $(d=4)$
- But no, need to have some space for merged result
- again, one block of memory is enough

d-Way Merge in External Memory

- External memory
block size
sorted run sorted run sorted run

$$
B=2
$$

$$
n=32
$$

- Partition internal memory

- In the example, can perform 3-way merge
- In general
- partition in approximately $\frac{M}{B}$ sequences
- perform $d \approx \frac{M}{B}-1$ way merge
- first d sequences for storing active blocks of sorted runs
- last sequence for storing results of the merged result

d-Way merge in External Memory

- External $(B=2)$

5	10	22	28	29	33	37	39	8	21	30	31	40	45	52	54	11	12	13	35	36	42	49	53

($d=3$, priority queue not shown)

- Example: 3-way merge
- always bring elements from/to external memory in full blocks

d-Way merge in External Memory

- External $(B=2)$

$$
(d=3, \text { priority queue not shown })
$$

- Example: 3-way merge
- always bring elements from/to external memory in full blocks

d-Way merge in External Memory

- External $(B=2)$

($d=3$, priority queue not shown)
- Example: 3-way merge
- always bring elements from/to external memory in full blocks
- merge in internal memory until any sequence becomes full/empty

d-Way merge in External Memory

- External $(B=2)$

- Example: 3-way merge
- always bring elements from/to external memory in full blocks
- merge in internal memory until any sequence becomes full/empty
- Sequence S is full
- empty it back into external memory and continue merging
- not in-place external merging, need to empty into new external space

d-Way merge in External Memory

- External $(B=2)$

\square

($d=3$, priority queue not shown)
- Example: 3-way merge
- always bring elements from/to external memory in full blocks
- merge in internal memory until any sequence becomes full/empty
- \quad Sequence S is full
- empty it back into external memory and continue merging
- not in-place external merging, need to empty into new external space
- continue merging

d-Way merge in External Memory

- External $(B=2)$

\square

($d=3$, priority queue not shown)
- Example: 3-way merge
- always bring elements from/to external memory in full blocks
- merge in internal memory until any sequence becomes full/empty
- Sequence S_{1} is empty
- bring the next block from the first sorted run
- becomes the next active block from S_{1}

d-Way merge in External Memory

- External $(B=2)$

\square

($d=3$, priority queue not shown)
- Example: 3-way merge
- always bring elements from/to external memory in full blocks
- merge in internal memory until any sequence becomes full/empty
- Sequence S_{1} is empty
- bring the next block from the first sorted run
- continue blockwise merge as before

d-Way merge in External Memory

- External $(B=2)$

5	10	22	28	29	33	37	39	8	21	30	31	40	45	52	54	11	12	13	35	36	42	49	53

- Example: 3-way merge
- always bring elements from/to external memory in full blocks
- merge in internal memory until any sequence becomes full/empty
- \quad Sequence S is full
- empty it back into external memory and continue merging

d-Way merge in External Memory

- External $(B=2)$

\square

($d=3$, priority queue not shown)
- Example: 3-way merge
- always bring elements from/to external memory in full blocks
- merge in internal memory until any sequence becomes full/empty

d-Way merge in External Memory

- External $(B=2)$

sorted

Internal ($M=8$):

S_{1}

S_{2}

S_{3}

S
($d=3$, priority queue not shown)

- Example: 3-way merge
- always bring elements from/to external memory in full blocks
- merge in internal memory until any sequence becomes full/empty
- Done with the first 3 sorted runs, continue with all other sorted runs in sets of 3
- until all sorted runs are processed
- Total number of block transfers for one round is $\Theta(n / B)$
- external array has size n, brought into internal memory in full blocks of size B
- copied back to external memory in full blocks of size B

d-way Mergesort In External Memory

- $\log _{d} n=\frac{\log _{2} n}{\log _{2} d}$ rounds
- Each round makes $\Theta(n / B)$ external memory block accesses
- with d-way merge sort, $\Theta\left(\frac{n}{B} \cdot \log _{d} n\right)=\Theta\left(\frac{n}{B} \cdot \frac{\log _{2} n}{\log _{2} d}\right)$ block accesses
- 2-way (standard) mergesort, $\Theta\left(\frac{n}{B} \cdot \log _{2} n\right)$ block accesses
- d-way mergesort has savings factor $\log _{2} d$ over 2-way mergesort
- we made d as large as possible so that one round makes $\Theta(n / B)$ block accesses
- n / B is the smallest number of block accesses needed to do one round of mergesort
- if we made d any larger would need more than n / B block accesses for each round

Mergesort in External Memory: Initialization

- External $(B=2)$

39	5	28	22	10	33	29	37	8	30	54	40	31	52	21	45	35	11	42	53	13	12	49	36	4	14	27	9	44	3	32	15

Internal ($M=8$):

- Smart initialization can further reduce block transfers
- Mergesort starts with initial runs of size 1 and creates sorted runs of size d after one round

- cost of one round is $\Theta(n / B)$ block transfers
- The larger the initial sorted runs are, the less rounds mergesort takes
- Can we create sorted runs of size larger than d using only $\Theta(n / B)$ of block transfers?
- i.e. the same computational cost as the first round of mergesort

Mergesort in External Memory: Initialization

- External $(B=2)$

39	5	28	22	10	33	29	37	8	30	54	40	31	52	21	45	35	11	42	53	13	12	49	36	4	14	27	9	44	3	32	15

Internal ($M=8$):

- Can created sorted runs of size M using only $\Theta(n / B)$ of block transfers
- $\quad M>d \approx \frac{M}{B}-1$
- Sort external memory chunks that fit into internal memory (size M chunks)

Mergesort in External Memory: Initialization

- External $(B=2)$

Internal ($M=8$):

39	5	28	22	10	33	29	37

- Can created sorted runs of size M using only $\Theta(n / B)$ of block transfers
- Sort external memory chunks that fit into internal memory (size M chunks)
- copy the first chunk

Mergesort in External Memory: Initialization

- External $(B=2)$

39	5	28	22	10	33	29	37	8	30	54	40	31	52	21	45	35	11	42	53	13	12	49	36	4	14	27	9	44	3	32	15

Internal ($M=8$):

5	10	22	28	29	33	37	39

- Smart initialization can further reduce block transfers
- Sort external memory chunks that fit into internal memory (size M chunks)
- copy the first chunk
- sort in the internal memory

Mergesort in External Memory: Initialization

- External $(B=2)$

5	10	22	28	29	33	37	39	8	30	54	40	31	52	21	45	35	11	42	53	13	12	49	36	4	14	27	9	44	3	32	15

sorted run

Internal ($M=8$):

5	10	22	28	29	33	37	39

- Smart initialization can further reduce block transfers
- Sort external memory chunks that fit into internal memory (size M chunks)
- copy the first chunk
- sort in the internal memory
- copy back to external memory

Mergesort in External Memory: Initialization

- External $(B=2)$

5	10	22	28	29	33	37	39	8	30	54	40	31	52	21	45	35	11	42	53	13	12	49	36	4	14	27	9	44	3	32	15

sorted run

Internal ($M=8$):

8	30	54	40	31	52	21	45

- Smart initialization can further reduce block transfers
- Sort external memory chunks that fit into internal memory (size M chunks)
- copy the next chunk

Mergesort in External Memory: Initialization

- External $(B=2)$

5	10	22	28	29	33	37	39	8	30	54	40	31	52	21	45	35	11	42	53	13	12	49	36	4	14	27	9	44	3	32	15

sorted run

Internal ($M=8$):

8	21	30	31	40	45	52	54

- Smart initialization can further reduce block transfers
- Sort external memory chunks that fit into internal memory (size M chunks)
- copy the next chunk
- sort in internal memory

Mergesort in External Memory: Initialization

- External $(B=2)$

5	10	22	28	29	33	37	39	8	21	30	31	40	45	52	54	35	11	42	53	13	12	49	36	4	14	27	9	44	3	32	15

Internal ($M=8$):

8	21	30	31	40	45	52	54

- Smart initialization can further reduce block transfers
- Sort external memory chunks that fit into internal memory (size M chunks)
- copy the next chunk
- sort in internal memory
- copy back to external memory
- Copy, sort, copy back the rest of them

Mergesort in External Memory: Initialization

- External $(B=2)$

$$
\text { Internal (} M=8 \text {): }
$$

- Smart initialization creates sorted runs of length M
- $\Theta(n / B)$ block transfers
- each chunk of size M is copied in full blocks of size B

Mergesort in External Memory: Total Cost in Block Transfers

- Initialization creates n / M sorted runs of length M
- $\Theta(n / B)$ block transfers
- Each round increases size of a sorted run by a factor of d

$$
M \cdot \underbrace{d \cdot d \cdot \ldots \cdot d}_{d^{t}}=n \Rightarrow d^{t}=\frac{n}{M} \Rightarrow t=\log _{d} \frac{n}{M}
$$

- At most $\log _{d} n / M$ rounds of merging create sorted array
- each round $\Theta(n / B)$ block transfers
- Total number of block transfers: $O\left(\frac{n}{B} \log _{d} n / M\right)$
- better than $\Theta\left(\frac{n}{B} \cdot \log _{d} n\right)$ without smart initialization
- Can show that d-way Mergesort with $d \approx M / B$ is optimal to minimize block transfers for sorting in external memory
- up to constant factors

Outline

- External Memory
- Motivation
- External sorting
- External Dictionaries
- 2-4 Trees
- (a, b)-Trees
- B-Trees

Dictionaries in External Memory

- Tree-based dictionary implementations have poor memory locality
- if an operation accesses m nodes, it must access m spaced-out memory locations

- In an AVL tree, $\Theta(\log n)$ blocks are loaded in the worst case
- Better solution
- trees that store more keys inside a node, smaller height
- B-trees is one example
- first consider special case of B-trees: 2-4 trees
- 2-4 trees also used for dictionaries in internal memory
- may be even faster than AVL-trees
- first analyze their performance in internal memory, and then (for B-trees) in external memory

Outline

- External Memory
- Motivation
- External sorting
- External Dictionaries
- 2-4 Trees
- (a, b)-Trees
- B-Trees

2-4 Trees Motivation

- Binary Search tree supports efficient search with special key ordering

- Need nodes that store more than one key
- how to support efficient search?

- Need more properties to ensure tree is balanced and insert, delete are efficient

2-4 Trees

- Structural properties

- Every node is either
- 1-node: one KVP and two subtrees (possibly empty), or
- 2-node: two KVPs and three subtrees (possibly empty), or
- 3-node: three KVPs and four subtrees (possibly empty)
- allowing 3 types of nodes simplifies insertion/deletion
- All empty subtrees are at the same level
- necessary for ensuring height is logarithmic in the number of KVP stored
- Order property: keys at any node are between the keys in the subtrees

2-4 Tree Example

- Empty subtrees are not part of height computation
- height $=1$

- Often do not show empty subtrees

2-4 Tree: Search Example

- Search
- Similar to search in BST
- Search (k) compares key k to k_{1}, k_{2}, k_{3}, and either finds k among k_{1}, k_{2}, k_{3} or figures out which subtree to recurse into
- if key is not in tree, search returns parent of empty tree where search stops
- key can be inserted at that node
- Search(15)

2-4 Tree operations

```
24TreeSearch( }k,v\leftarrow\mathrm{ root, }p\leftarrow\mathrm{ empty subtree)
    if}v\mathrm{ represents empty subtree
        return "not found, would be in p"
    let T}\mp@subsup{T}{0}{},\mp@subsup{k}{1}{},\ldots,\mp@subsup{k}{d}{},\mp@subsup{T}{d}{}\mathrm{ be keys and subtrees at }v\mathrm{ , in order
    if }k\geq\mp@subsup{k}{1}{
        i}\leftarrow\mathrm{ maximal index such that }\mp@subsup{k}{i}{}\leq
        if }\mp@subsup{k}{i}{}=
        return "at ith key in v"
        else 24TreeSearch( }k,\mp@subsup{T}{i}{},v
    else 24TreeSearch(k,T}\mp@subsup{T}{0}{},v
```


Example: 2-4 tree Insert

- Example: 24Treelnsert(17)
- first step is 24TreeSearch(17)

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)
- Split root node
- need new root

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)
- Split root node
- need new root

2-4 Tree Insert Pseudocode

24Treelnsert(k)

$v \leftarrow 24$ TreeSearch $(k) / /$ node where k should be add k and an empty subtree in key-subtree-list of v
while v has 4 keys (overflow \rightarrow node split)
let $T_{0}, k_{1}, \ldots, k_{4}, T_{4}$ be keys and subtrees at v, in order
if (v has no parent) create a parent of v (empty)
$p \leftarrow$ parent of v
$v^{\prime} \leftarrow$ new node with keys k_{1}, k_{2} and subtrees T_{0}, T_{1}, T_{2}
$v^{\prime \prime} \leftarrow$ new node with key k_{4} and subtrees T_{3}, T_{4} replace $\langle v\rangle$ by $\left\langle v^{\prime}, k_{3}, v^{\prime \prime}\right\rangle$ in key-subtree-list of p $v \leftarrow p / /$ continue checking for overflow upwards

2-4 Tree: Left and Right Sibling

- Left sibling of a node is a subtree tree of the parent node which is immediately to the left
- Right sibling of a node is a subtree tree of the parent node which is immediately to the right

- Any node (except the root) must have a left or a right sibling (or both)

2-4 Tree: Inorder Successor

- Inorder successor of key k stored in node v is the smallest key in the subtree of v "immediately to the right" of k

2-4 Tree Delete

- Example: delete(51)
- Search for key to delete
- can delete keys only from a node with empty subtrees
- replace key with in-order successor

2-4 Tree Delete

- Example: delete(51)
- Search for key to delete
- can delete keys only from a node with empty subtrees
- replace key with in-order successor
- delete key 51 and an empty subtree

2-4 Tree Delete

- Example: delete(51)
- Search for key to delete

2-4 Tree Delete

- Example: delete(43)
- Search for key to delete
- can delete keys only from a node with empty subtrees
- replace key with in-order successor

2-4 Tree Delete

- Example: delete(43)
- Search for key to delete
- can delete keys only from a node with empty subtrees
- replace key with in-order successor

2-4 Tree Delete

- Example: delete(43)
- 'rich' right sibling, transfer key from sibling, with help from the parent
- sibling is 'rich' if it is a 2 -node or 3 -node
- 'adjacent' subtree from sibling is also transferred

2-4 Tree Delete

- Example: delete(43)
- 'rich' right sibling, transfer key from sibling, with help from the parent
- sibling is 'rich' if it is a 2 -node or 3 -node
- 'adjacent' subtree from sibling is also transferred

2-4 Tree Delete

- Example: delete(19)
- first search(19)

2-4 Tree Delete

- Example: delete(19)
- first search(19)
- then delete key 19 (and an empty subtree) from the node
- left and right siblings exist, but not 'rich', cannot transfer

2-4 Tree Delete

- Example: delete(19)
- left and right siblings exist, but not 'rich', cannot transfer
- merge with right sibling with help from parent

2-4 Tree Delete

- Example: delete(19)
- left and right siblings exist, but not 'rich', cannot transfer
- merge with right sibling with help from parent
- all subtrees merged together as well

2-4 Tree Delete

- Example: delete(42)
- first search(42)
- delete key 42 with one empty subtree

2-4 Tree Delete

- Example: delete(42)
- first search(42)
- the only sibling is not 'rich', perform merge

2-4 Tree Delete

- Example: delete(42)
- first search(42)
- the only sibling is not 'rich', perform merge
- subtrees from two nodes become subtrees of merged node

2-4 Tree Delete

- Example: delete(42)
- merge operation can cause underflow at the parent node
- continue fixing the tree upwards, possibly all the way to the root

2-4 Tree Delete

- Example: delete(42)
- the only sibling is not 'rich', perform a merge

2-4 Tree Delete

- Example: delete(42)
- the only sibling is not 'rich', perform a merge
- subtrees are merged as well
- continue fixing the tree upwards

2-4 Tree Delete

- Example: delete(42)
- the only sibling is not 'rich', perform a merge

2-4 Tree Delete

- Example: delete(42)
- the only sibling is not 'rich', perform merge
- underflow at parent node
- it is the root, delete root

2-4 Tree Delete

- Example: delete(42)
- underflow at parent node
- underflow at the root, delete root
- it is the root, delete root

2-4 Tree Delete

- Example: delete(28)
- first search(28)
- delete key 28 with one empty subtree

2-4 Tree Delete

- Example: delete(28)
- first search(28)
- delete key 28 with one empty subtree

2-4 Tree Delete

- Example: delete(28)
- first search(28)
- delete key 28 with one empty subtree
- merge with the only sibling, who is 'not rich'

2-4 Tree Delete

- Example: delete(28)
- first search(28)
- delete key 28 with one empty subtree
- merge with the only sibling, who is 'not rich'

2-4 Tree Delete

- Example: delete(28)
- transfer from a rich sibling

2-4 Tree Delete

- Example: delete(28)
- transfer from a rich sibling
- together with a subtree

2-4 Tree Delete Summary

- If key not at a node with empty subtrees, swap with inorder successor
- Delete key and one empty subtree from node
- If underflow
- If there is a sibling with more than one key, transfer
- no further underflows caused
- do not forget to transfer a subtree as well
- convention: if two siblings have more than one key, transfer with the right sibling
- If all siblings have only one key, merge
- there must be at least one sibling, unless root
- if root, delete
- convention: if both siblings have only one key, merge with the right sibling
- merge may cause underflow at the parent node, continue to the parent and fix it, if necessary

Deletion from a 2-4 Tree

24TreeDelete (k)

$w \leftarrow 24$ TreeSearch (k) //node containing k
if w is not a node with only leaf children
$v \leftarrow$ leaf containing predecessor or successor k^{\prime} of k
replace k by k^{\prime} in w
delete k^{\prime} and an empty subtree in key-subtree-list of v
while v has 0 keys // underflow
if v is the root, delete it and break
$p \leftarrow$ parent of v
if v has sibling u with 2 or more keys // transfer/rotate let u be that sibling
if u is a right sibling // say p contains $<v, k, u>$
replace key k in p by $u . k_{1}$
remove $<u . T_{0}, u . k_{1}>$ from u and append $<k, u . T_{0}>$ to v
else // symmetrical procedure if u is a left sibling
else // merge/repeat
if v has a right sibling
$v^{\prime} \leftarrow$ new node with list $\left(v . T_{0}, k, u . T_{0}, u . k_{1}, u . T_{1}\right)$
replace $\langle v, k, u\rangle$ by $\langle v\rangle$ in p
$v \leftarrow p$
else ... // symmetrically with left sibling

Outline

- External Memory
- Motivation
- External sorting
- External Dictionaries
- 2-4 Trees
- (a, b)-Trees
- B-Trees

(a, b)-Trees

- 2-4 Tree is a specific type of (a, b)-tree
- (a, b)-tree satisfies
- each node has at least a subtrees, unless it is the root
- root must have at least 2 subtrees
- each node has at most b subtrees
- if node has k subtrees, then it stores $k-1$ key-value pairs (KVPs)
- all empty subtrees are at the same level
- keys in the node are between keys in the corresponding subtrees

$(3,5)$-tree, also a valid $(3,6)$-tree

(a, b)-Trees: Root

- Why special condition for the root?
- Needed for (a, b)-trees storing very few KVP
- $(3,5)$ tree storing only 1 KVP

- Could not build it if forced the root to have at least 3 children
- remember \# keys at any node is one less than number of subtrees

(a, b)-Trees

- If $a \leq\lceil b / 2\rceil$, then search, insert, delete work just like for 2-4 trees
- straightforward redefinition of underflow and overflow
- For example, for $(3,5)$-tree
- at least 3 children, at most 5
- each node is at least a 2-node, at most a 4-node
- during insert, overflow if get a 5-node

- split results in 2-nodes, and 2-nodes are smallest allowed nodes

- If $a>\lceil b / 2\rceil$, for example $(4,5)$-tree, cannot split like before
- equal (best possible) split results in two 2 nodes, which is not allowed

Height of (a, b)-tree

- Height = number of levels not counting empty subtrees

Height of (a, b)-tree

- Consider (a, b)-tree with smallest number of KVP and of height h
- red node (the root) has 1 KVP, blue nodes have $(a-1)$ KVP
level \# of nodes

0	1
1	$2 a^{0}$
2	$2 a^{1}$
3	$2 a^{2}$
\boldsymbol{h}	$2 a^{h-1}$

00000000000000000000̈öööööö000000000000000

$$
\begin{aligned}
& \qquad 1+\sum_{i=0}^{h-1} 2 a^{i}(a-1)=1+2(a-1) \sum_{i=0}^{h-1} a^{i}=2 a^{h}-1 \\
& \text { nber of KVP in any }(a, b) \text {-tree of height } h
\end{aligned}
$$

$$
n \geq 2 a^{h}-1 \quad \text { and, therefore, } \log _{a} \frac{n+1}{2} \geq h
$$

- Height of tree with n KVPs is $O\left(\log _{a} n\right)$

Useful Fact about (a, b)-trees

- number of of KVP = number of empty subtrees -1 in any (a, b)-tree

Proof: Put one stone on each empty subtree and pass the stones up the tree. Each node keeps 1 stone per KVP, and passes the rest to its parent. Since for each node, \#KVP = \# children - 1, each node will pass only 1 stone to its parent. This process stops at the root, and the root will pass 1 stone outside the tree. At the end, each KVP has 1 stone, and 1 stone is outside the tree.

Useful Fact about (a, b)-trees

Outline

- External Memory
- Motivation
- External sorting
- External Dictionaries
- 2-4 Trees
- (a, b)-Trees
- B-Trees

B-trees

- A B-tree of order m is a ($[m / 2\rceil, m$)-tree
- 2-4 tree is a B-tree of order 4
- at least 2 , at most 4 subtrees

- Example: B-tree of order 6
- at least 3, at most 6 subtrees
- node must be at least 2-node, at most 5-node

- Overflow if get a 6-node

- Underflow if get a 1 -node
- transfer, if have a 3, 4 or 5-node sibling, merge if all siblings are 2-nodes

B-trees in Internal Memory

- A B-tree of order m is a $([m / 2\rceil, m)$-tree
- Sedgewick uses M rather than m

- Analysis if stored in internal memory
- each node stores its KVPs in a dictionary that supports $O(\log m)$ search, insert, and delete

5	7	9	12	14	27	29

- search require Θ (height) node operations
- height is $O\left(\log _{a} n\right)=O\left(\frac{\log n}{\log m / 2}\right)=O\left(\frac{\log n}{\log m}\right)$
- each node operation is $O(\log m)$ time
- total cost for each search

$$
O\left(\frac{\log n}{\log m} \cdot \log m\right)=O(\log n)
$$

- analysis for insert and delete is the same
- No better than 2-4-trees or AVL-trees

Dictionaries in External Memory

- Main applications of B-trees is to store dictionaries in external memory
- AVL tree or 2-4 tree, need to load $\Theta(\log n)$ blocks in the worst case
- Instead, use a B-tree of order m
- m is chosen so that an m-node fits into a single block
- typically $m \in \Theta(B)$

- Node that if m-node fills block B completely, then blocks are at least half-full
- since each node is at least an $\lceil m / 2\rceil$-node
- not much storage wasted
- Each operation can be done with $\Theta(h e i g h t)$ block transfers
- The height of a B-tree is $\Theta\left(\log _{m} n\right)=\Theta\left(\log _{B} n\right)$
- $\Theta\left(\log _{B} n\right)=\Theta\left(\frac{\log n}{\log B}\right)$
- Large savings of block transfers, $\log B$ factor compared to AVL trees

Example of B-tree usage

- B-tree of order 200
- node fits into one block of external memory
- B-tree of order 200 and height 2 can store up to $200^{3}-1 \mathrm{KVPs}$
- from the 'useful fact' proven before
- if store root in internal memory, then only 2 block reads are needed to retrieve any item

B-tree variations

- For practical purposes, some variations are better
- B-trees with pre-emptive splitting/merging
- during search for insert, split any node close to overflow
- during search for delete, merge any node close to underflow
- can insert/delete at leaf and stop, this halves block transfers
- B+-trees: Only leaves have KVPs, link leaves sequentially
- interior nodes store duplicates of keys to guide search-path
- twice as many items
- larger m since interior nodes do not hold values
- Cache-oblivious trees: What if we do not know B ?
- build a hierarchy of binary trees
- each node v in binary tree T "hides" a binary tree T^{\prime} of size $\Theta(\sqrt{n})$
- achieves $\Theta\left(\log _{B} n\right)$ block transfers without knowing B

