Tutorial 4: October 12

1. Consider the problem of sorting an array A of n elements each with multiplicity n / k. That is, A consists of k distinct elements $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$, where each y_{i} occurs n / k times in A. Prove that any algorithm in the comparison model requires $\Omega(n \log k)$ comparisons to sort A in the worst-case.

Note: $\forall m \geq 1,\left(\frac{m}{e}\right)^{m} \leq m!\leq m^{m}$.
2. Consider the AVL Tree shown below and perform the following operations: insert 60 , delete 72 , delete 48.

3. We consider a modified version of AVL trees where the height difference between the right and left subtrees of any node is in the range $[-2,2]$ instead of $[-1,1]$. These are called AVL- 2 trees. Prove that the height of an AVL- 2 tree on n nodes is in $O(\log n)$.

