Tutorial 5: October 19

1. Insert the numbers $12,11,13,10,20$ into an empty skip-list using the coin flips HHTHTHTTHHHT.
2. Show that the expected height of a skip-list with n keys is in $O(\log n)$.
3. In this problem, we will explore an alternate implementation of a min-ordered priority queue. That is, implement a data structure such that inserting a new element into the priority queue takes $O(\log n)$ expected time, while deleting the minimum element from the priority queue takes $O(1)$ expected time.
4. Consider a linked list with the keys $k_{1}, k_{2}, \ldots, k_{n}$ in that order. Give a sequence of n searches such that the Move-To-Front heurstic uses $O(n)$ comparisons while the Transpose heuristic uses $\Omega\left(n^{2}\right)$ comparisons.
