
University of Waterloo

CS240 Spring 2021

Assignment 2

Due: Wednesday, June 9 at 5:00pm

The integrity of the grade you receive in this course is very important to you and the
University of Waterloo. As part of every assessment in this course you must read and sign
an Academic Integrity Declaration before you start working on the assessment and submit
it before the deadline of June 9th along with your answers to the assignment; i.e. read,
sign and submit A02-AcInDe.txt now or as soon as possible. The agreement will
indicate what you must do to ensure the integrity of your grade. If you are having difficulties
with the assignment, course staff are there to help (provided it isn’t last minute).

The Academic Integrity Declaration must be signed and submitted on time or
the assessment will not be marked.

Please read http://www.student.cs.uwaterloo.ca/~cs240/s21/guidelines.pdf for guide-
lines on submission. Each question must be submitted individually to MarkUs as
a PDF with the corresponding file names: a2q1.pdf, a2q2.pdf, ... , a2q6.pdf.

It is a good idea to submit questions as you go so you aren’t trying to create several PDF
files at the last minute.
Remember, late assignments will not be marked.
Late assignments, however, can be reviewed for feedback only upon request to the ISAs at
cs240@uwaterloo.ca.
Note: you may assume all logarithms are base 2 logarithms: log = log2.

Problem 1 [4 + 6 = 10 marks]

Consider a heap implemented with an array. Let the kth ancestor of node at index i of the
array be the ancestor of i that is separated from i by k edges. For example, the parent of i
is the 1st ancestor of i.

a) Prove by induction that the kth ancestor of node at index i, if present, is stored at index⌊
i+1
2k
− 1

⌋
. You can use the following equality without a proof: if n,m are integers, and

n is a positive integer, then for a real number x,⌊
x−m

n

⌋
=

⌊
bxc −m

n

⌋
.

b) Suppose we have a max-heap implemented with an array H and storing n keys. Design
an algorithm isAncestor(x,H, i) which takes as an input heap array H, a valid index

1

http://www.student.cs.uwaterloo.ca/~cs240/s21/guidelines.pdf


i in the array and x. This algorithm should return true if key x is stored at one of
the ancestors of node i, false otherwise. The running time of your algorithm should
be O(log log n). You can use the result from part (a) even if you did not do part (a).
You can assume that you have values of 2k for 1 ≤ k ≤ log n pre-computed, so that
computation of 2k takes only O(1) time.

Problem 2 [3+3+5+4=15 Marks]

One potential pitfall of QuickSort is that it does not necessarily perform well if there are
many repeated elements.

a) Assume that you call QuickSort on an array of size n where all elements are the
same. Derive (with an explanation) an asymptotically tight bound on the run-time,
presuming you always use the simple partition-algorithm, listed below.

partition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n

Create empty lists small, equal, and large.
v ← A[p]
for each element x in A

if x < v append x to small
else if x > v append x to large
else append x to equal

i← size(small)
j ← size(equal)
Overwrite A[0 . . . i−1] by elements in small
Overwrite A[i . . . i+ j−1] by elements in equal
Overwrite A[i+j . . . n−1] by elements in large
return i

b) Assume that you call QuickSort on an array of size n where all elements are the
same. Derive (with an explanation) an asymptotically tight bound on the run-time,
presuming you use Hoare’s partition-algorithm from class (listed below).

2



partition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n
1. swap(A[n− 1], A[p])
2. i← −1, j ← n− 1, v ← A[n− 1]
3. loop
4. do i← i+ 1 while A[i] < v
5. do j ← j − 1 while j ≥ i and A[j] > v
6. if i ≥ j then break (goto 9)
7. else swap(A[i], A[j])
8. end loop
9. swap(A[n− 1], A[i])
10. return i

c) One possible improvement to QuickSort is to modify partition so that it returns three
subsets: The left part has items < v, the middle part has items = v, and the right
part has items > v. Describe how to modify Hoare’s algorithm to achieve this. In
particular, fill in the pseudo-code (and explain it) for the following stub:

ThreeWayPartition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n
1. v ← A[p]
2. ...
3. return(i, j)
4. // A[0..i−1] has items < v, A[i..j] has items = v, A[j+1..n−1] has items > v

Your algorithm must have worst-case run-time O(n) and be in-place, i.e., use O(1)
additional space.

d) Describe how ThreeWayPartition can be useful for QuickSort when repeated ele-
ments are allowed. In particular, what modifications would you make to the following
pseudo-code from class?

QuickSort1(A)
A: array of size n
1. if n ≤ 1 then return
2. p← chooseP ivot1(A)
3. i← partition(A, p)
4. QuickSort1(A[0, 1, . . . , i− 1])
5. QuickSort1(A[i+ 1, . . . , n− 1])

Your modifications should be such that if the input array has k distinct elements, then
the worst-case run-time of the algorithm is O(kn). Argue that this holds.

3



Problem 3 [8 marks]

A student designed a data structure and named it an almost-priority-queue. This data
structure allows two operations: insert and extract almost Max, where extract almost Max

outputs either the largest priority or the second largest priority item. Also, extract almost Max

does not tell you whether it extracted the largest or second largest priority item. In case
the data structure has only one element, extract almost Max extracts that element. The
student claims that the worst case running time of both insert and extract almost Max

is o(log n). Prove that the student has made a mistake in the running time analysis of their
data structure.
Hint: Sorting takes Ω(n log n) time.

Problem 4 [3+3+5=11 marks]

Consider the algorithm below, where random(n) returns an integer from the set of {0, 1, 2, . . . , n−
1} uniformly and at random. Array A stores non-repeating integers in the range {0, 1, 2, . . . , n−
1}, and k is an integer between 0 and n− 1.

ArrayAlg(A,n, k)
A: array of size n
1. i← random(n)
2. if A[i] == k then return i
3. else
4. for j = 0 to n do
5. print(‘*’)
6. ArrayAlg(A,n, k)

a) What is the best-case running time of ArrayAlg?

b) What is the worst-case running time of ArrayAlg?

c) Let T (n) be the expected running time of ArrayAlg. Write a recurrence relation for
T (n) and then solve it. Express your answer using Θ notation.

Problem 5 [6 marks]

Let R1, . . . , Rn be n axis-aligned rectangles in the plane for which the corners are points in
the n×n-grid. Thus, for each rectangle Ri the four corners are points where both coordinates
are integers in {1, . . . , n}. Degenerate rectangles (i.e. rectangles of height or width zero) are
allowed. Give an algorithm to sort R1, . . . , Rn by increasing area in O(n) time.

4



Problem 6 [6 marks]

Let A be an array of size n storing numbers 0, 1. It is known that the array starts with 0
ends with 0, and that all 1’s are consecutive. A valid example is A = [0, 1, 1, 1, 0, 0]. Give
an exact (not asymptotic) lower bound on the number of comparisons required to find the
smallest index i and largest index j s.t. A[i] = 1 and A[j] = 1. You can assume that n ≥ 3.

5


	[4 + 6 = 10 marks]
	[3+3+5+4=15 Marks]
	[8 marks]
	[3+3+5=11 marks]
	[6 marks]
	[6 marks]

