
CS 240 – Data Structures and Data Management

Module 11: External Memory

M. Petrick V. Sakhnini O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2021

version 2021-07-26 11:32

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 1 / 43

Outline

1 External Memory
Motivation
Stream-based algorithms
External sorting
External Dictionaries
2-4 Trees
a-b-Trees
B-Trees
Extendible Hashing

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021

Outline

1 External Memory
Motivation
Stream-based algorithms
External sorting
External Dictionaries
2-4 Trees
a-b-Trees
B-Trees
Extendible Hashing

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021

Different levels of memory

Current architectures:
registers (very fast, very small)
cache L1, L2 (still fast, less small)
main memory
disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory
hierarchy into account, avoiding transfers as much as possible?

Observation: Accessing a single location in external memory
(e.g. hard disk) automatically loads a whole block (or “page”).

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 2 / 43

The External-Memory Model (EMM)

CPU

random access (fast)

transfer in blocks of B cells (slow)

internal memory – size M

. . .
external memory – size unbounded

New objective: revisit all algorithms/data structures with the objective of
minimizing block transfers (“probes”, “disk transfers”, “page loads”)
Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 3 / 43

Outline

1 External Memory
Motivation
Stream-based algorithms
External sorting
External Dictionaries
2-4 Trees
a-b-Trees
B-Trees
Extendible Hashing

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021

Streams and external memory
If input and output are handles via streams, then we automatically use
Θ(n

B) block transfers.

transfer when fulltransfer when empty

external
memory

internal memory∗ ∗ ∗ ∗ ∗
↑
tail

↑
top work on

. . .∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
next block of input

∗∗∗∗∗
for next block of input

So can do the following with Θ(n
B) block transfers:

Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore
(This assumes that pattern P fits into internal memory.)
Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 4 / 43

Outline

1 External Memory
Motivation
Stream-based algorithms
External sorting
External Dictionaries
2-4 Trees
a-b-Trees
B-Trees
Extendible Hashing

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021

Sorting in external memory

Recall: The sorting problem:
Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.
Heapsort was optimal in time and space in RAM model
But: Heapsort accesses A at indices that are far apart
 typically one block transfer per array access
 typically Θ(n log n) block transfers.
Can we do better?

Mergesort adapts well to external memory. Recall algorithm:
I Split input in half
I Sort each half recursively → two sorted parts
I Merge sorted parts.

Key idea: Merge can be done with streams.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 5 / 43

Merge

Merge(S1, S2, S)
S1, S2: input streams that are in sorted order, S: output stream
1. while S1 or S2 is not empty do
2. if (S1 is empty) S.append(S2.pop())
3. else if (S2 is empty) S.append(S1.pop())
4. else if (S1.top() < S2.top()) S.append(S1.pop())
5. else S.append(S2.pop())

transfer block
when empty

transfer block
when full

internal memory

Here B = 4

S1
↑

11 8 3

S2
↑

6
↑

S12

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 6 / 43

Mergesort in external memory

Merge uses streams S1, S2, S.
⇒ Each block in the stream only transferred once.
So Merge takes Θ(n

B) block-transfers.
Recall: Mergesort uses dlog2 ne rounds of merging.

⇒ Mergesort uses O(n
B · log2 n) block-transfers.

Not bad, but we can do better.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 7 / 43

Towards d-way Mergesort
Observe: We had space left in internal memory during merge.

transfer block
when empty

transfer block
when full

S1
↑

11 8 3

S2
↑

6
↑

S12

We use only three blocks, but typically M � 3B.
Idea: We could merge d parts at once.
Here d ≈ M

B − 1 so that d+1 blocks fit into internal memory.

transfer block
when empty

transfer block
when full

S1
↑

11 8 3

S2
↑

6

S3
↑

12 10 5 4

S4
↑

9 7

↑

S12

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 8 / 43

d-way merge
d-way-merge(S1, . . . ,Sd , S)
S1, . . . ,Sd : input streams that are in sorted order, S: output stream
1. P ← empty min-oriented priority queue
2. for i ← 1 to d do P.insert((Si .top(),i))

// each item in P keeps track of its input-steam
3. while P is not empty do
4. (x , i)← P.deleteMin()
5. S.append(Si .pop())
6. if Si is not empty do
7. P.insert((Si .top(),i))

transfer block
when empty

transfer block
when full

S1
↑

11 8 3

S2
↑

6

S3
↑

12 10 5 4

S4
↑

9 7

↑

S12

P

3, 1

4, 3

7, 4

6, 2

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 9 / 43

d-way merge

We use a min-oriented priority queue P to find the next item to add
to the output.

I This is irrelevant for the number of block transfers.
I But there is no space-overhead needed for a priority queue.

(Recall: heaps are typically implemented as arrays.)
I And with this the run-time (in RAM-model) is O(n log d).

The items in P store not only the next key but also the index of the
stream that contained the item.

I With this, can efficiently find the stream to reload from.
We assume d is such that d + 1 blocks and P fit into main memory.
The number of block transfers then is again O(n

B).

How does d-way merge help to improve external sorting?

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 10 / 43

Towards d-way Mergesort

Recall: Mergesort uses dlog2 ne rounds of splitting-and-merging.
array of size 64

array of size 32

array of size 16 array of size 16

array of size 32

array of size 16 array of size 16

dlog2 ne

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 11 / 43

Towards d-way Mergesort

Observe: If we split and merge d-ways, there are fewer rounds.
array of size 64

array of size 21 array of size 22 array of size 21

dlog3 ne

Number of rounds is now dlogd ne
We choose d such that each round uses Θ(n

B) block transfers.
(Then the number of block transfers is Θ(logd n · n

B).)
Two further improvements:

I Proceed bottom-up (while-loops) rather than top-down (recursions).
I Save more rounds by starting immediately with runs of length M.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 12 / 43

d-way mergesort

External (B = 2):
39 5 28 22 10 33 29 37 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15 43 2 17 6 46 23 20 1 24 7 18 47 26 16 48 50

Internal (M = 8):

1 Create n
M sorted runs of length M. Θ(n

B) block transfers
2 Merge the first d ≈ M

B − 1 sorted runs using d-Way-Merge
3 Keep merging the next runs to reduce # runs by factor of d
 one round of merging. Θ(n

B) block transfers
4 Keep doing rounds until only one run is left

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 13 / 43

d-way mergesort
We have logd (n

M) rounds of merging:
I n

M runs after initialization
I n

M /d runs after one round.
I n

M /d
k runs after k rounds ⇒ k ≤ logd (n

M).
We have O(n

B) block-transfers per round.
d ≈ M

B − 1.
⇒ Total # block transfers is proportional to

logd (n
M) · n

B) ∈ O
(

logM/B(n
M) · n

B
)

One can prove lower bounds in the external memory model:
We require Ω

(
logM/B(n

M)· n
B
)

block transfers in any comparison-
based sorting algorithm.

(The proof is beyond the scope of the course.)

d-way mergesort is optimal (up to constant factors)!

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 14 / 43

Outline

1 External Memory
Motivation
Stream-based algorithms
External sorting
External Dictionaries
2-4 Trees
a-b-Trees
B-Trees
Extendible Hashing

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021

Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

Recall: AVL-trees were optimal in time and space in RAM model
Θ(log n) run-time ⇒ O(log n) block transfers per operation
But: Inserts happen at varying locations of the tree.
 nearby nodes are unlikely to be on the same block
 typically Θ(log n) block transfers per operation
We would like to have fewer block transfers.

Better solution: design a tree-structure that guarantees that many nodes
on search-paths are within one block.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 15 / 43

Idealized structure
block of external memory

Idea: Store subtrees in one block of memory.
If block can hold subtree of size b−1, then block covers height log b

⇒ Search-path hits Θ(log n)
log b blocks ⇒ Θ(logb n) block-transfers

Block acts as one node of a multiway-tree (b−1 KVPs, b subtrees)

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 16 / 43

Towards B-trees

Idea: Define multiway-tree
I One node stores many KVPs
I Always true: b−1 KVPs ⇔ b subtrees

To allow insert/delete, we permit varying numbers of KVPs in nodes
This gives much smaller height than for AVL-trees
⇒ fewer block transfers

Study first one special case: 2-4-trees
I Also useful for dictionaries in internal memory
I May be faster than AVL-trees even in internal memory

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 17 / 43

Outline

1 External Memory
Motivation
Stream-based algorithms
External sorting
External Dictionaries
2-4 Trees
a-b-Trees
B-Trees
Extendible Hashing

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021

2-4 Trees

Structural property: Every node is either
1-node: one KVP and two subtrees (possibly empty), or
2-node: two KVPs and three subtrees (possibly empty), or
3-node: three KVPs and four subtrees (possibly empty).

Order property: The keys at a node are between the keys in the subtrees.
With this, search is much like in binary search trees.

key k1 key k2 key k3

keys <k1 k1< keys <k2 k2< keys <k3 k3< keys

Another structural property: All empty subtrees are at the same level.
This is important to ensure small height.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 18 / 43

2-4 Tree example

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

Empty trees do not count towards height
I This tree has height 1

Easy to show: Height is in O(log n), where n = # KVPs.
I Layer i has at least 2i nodes for i = 0, . . . , h
I Each node has at least one KVP.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 19 / 43

2-4 Tree Operations

Search is similar to BST:
I Compare search-key to keys at node
I If not found, recurse in appropriate subtree

Example: search(15) not found

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 20 / 43

2-4 Tree operations

24Tree::search(k, v ← root, p ← NIL)
k: key to search, v : node where we search, p: parent of v
1. if v represents empty subtree
2. return “not found, would be in p”
3. Let 〈T0, k1, . . . , kd ,Td〉 be key-subtree list at v
4. if k ≥ k1
5. i ← maximal index such that ki ≤ k
6. if ki = k
7. return key-value pair at ki
8. else 24Tree::search(k,Ti , v)
9. else 24Tree::search(k,T0, v)

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 21 / 43

Insertion in a 2-4 tree
Example: insert(17)

Do 24Tree::search and add key and empty subtree at leaf.
If the leaf had room then we are done.
Else overflow: More keys/subtrees than permitted.
Resolve overflow by node splitting.

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

10 11

∅ ∅ ∅

13 14 16 17

∅ ∅ ∅ ∅ ∅

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 22 / 43

2-4 Tree operations

24Tree::insert(k)
1. v ← 24Tree::search(k) // leaf where k should be
2. Add k and an empty subtree in key-subtree-list of v
3. while v has 4 keys (overflow node split)
4. Let 〈T0, k1, . . . , k4,T4〉 be key-subtree list at v
5. if (v has no parent) create a parent of v without KVPs
6. p ← parent of v
7. v ′ ← new node with keys k1, k2 and subtrees T0,T1,T2
8. v ′′ ← new node with key k4 and subtrees T3,T4
9. Replace 〈v〉 by 〈v ′, k3, v ′′〉 in key-subtree-list of p
10. v ← p

k ′ k ′′

k1 k2 k3 k4
T0 T1 T2 T3 T4

p

v −→
k ′ k3 k ′′

k1 k2
T0 T1 T2

k4
T3 T4

p

v ′ v ′′

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 23 / 43

Towards 2-4 Tree Deletion
For deletion, we symmetrically will have to handle underflow
(too few keys/subtrees)
Crucial ingredient for this: immediate sibling

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

Observe: Any node except the root has an immediate sibling.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 24 / 43

2-4 Tree Deletion
Example:

24Tree::search, then trade with successor if KVP is not at a leaf.
If underflow:

I If immediate sibling has extras, rotate/transfer
I Else node merge (this affects the parent!)

36

25

18 21

12 19 24

31

28 33

43

41

39 42

51

48 56 62

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 25 / 43

Deletion from a 2-4 Tree

24Tree::delete(k)
1. v ← 24Tree::search(k) // node containing k
2. if v is not leaf
3. swap k with its successor k ′ and v with leaf containing k ′

4. delete k and one empty subtree in v
5. while v has 0 keys (underflow)
6. if parent p of v is NIL, delete v and break
7. if v has immediate sibling u with 2 or more keys (transfer/rotate)
8. transfer the key of u that is nearest to v to p
9. transfer the key of p between u and v to v
10. transfer the subtree of u that is nearest to v to v
11. break
12. else (merge & repeat)
13. u ← immediate sibling of v
14. transfer the key of p between u and v to u
15. transfer the subtree of v to u
16. delete node v and set v ← p

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 26 / 43

2-4 Tree summary

A 2-4 tree has height O(log n)
I In internal memory, all operations have run-time O(log n).
I This is no better than AVL-trees in theory.

(Though 2-4-trees are faster than AVL-trees in practice, especially when converted
to binary search trees called red-black trees. No details.)

A 2-4 tree has height Ω(log n)
I Level i contains at most 4i nodes
I Each node contains at most 3 KVPs

So not significantly better than AVL-trees w.r.t. block transfers.

But we can generalize the concept to decrease the height.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 27 / 43

Outline

1 External Memory
Motivation
Stream-based algorithms
External sorting
External Dictionaries
2-4 Trees
a-b-Trees
B-Trees
Extendible Hashing

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021

a-b-Trees
A 2-4 tree is an a-b-tree for a = 2 and b = 4.

An a-b-tree satisfies:
Each node has at least a subtrees, unless it is the root.
The root has at least 2 subtrees.
Each node has at most b subtrees.
If a node has d subtrees, then it stores d−1 key-value pairs (KVPs).
Empty subtrees are at the same level.
The keys in the node are between the keys in the corresponding
subtrees.

Requirement: a ≤ db/2e = b(b + 1)/2c.

search, insert, delete then work just like for 2-4 trees, after re-defining
underflow/overflow to consider the above constraints.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 28 / 43

a-b-tree example

A 3-6-tree
38

14 20 26 32

10 12

∅ ∅ ∅

16 18

∅ ∅ ∅

22 24

∅ ∅ ∅

28 30

∅ ∅ ∅

34 36

∅ ∅ ∅

44 50 62

40 42

∅ ∅ ∅

46 48

∅ ∅ ∅

52 54 56 58 60

∅ ∅ ∅ ∅ ∅ ∅

64 66

∅ ∅ ∅

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 29 / 43

a-b-tree insertion

insert(55):
38

14 20 26 32

10 12

∅ ∅ ∅

16 18

∅ ∅ ∅

22 24

∅ ∅ ∅

28 30

∅ ∅ ∅

34 36

∅ ∅ ∅

44 50 62

40 42

∅ ∅ ∅

46 48

∅ ∅ ∅

52 54 55 56 58 60

∅ ∅ ∅ ∅ ∅ ∅ ∅

64 66

∅ ∅ ∅

Overflow now means b keys (and b + 1 subtrees)
Node split ⇒ new nodes have ≥ b(b−1)/2c keys
Since we required a ≤ b(b+1)/2c, this is ≥ a−1 keys as required.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 30 / 43

Height of an a-b-tree
Recall: n = numbers of KVPs (not the number of nodes)
What is smallest possible number of KVPs in an a-b-tree of height-h?

Level Nodes
0 ≥ 1
1 ≥ 2
2 ≥ 2a
3 ≥ 2a2
· · · · · ·
h ≥ 2ah−1

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅ ∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

nodes ≥ 1︸︷︷︸
root: ≥1 KVP

+
∑h−1

i=0 2ai︸ ︷︷ ︸
others: ≥a−1 KVPs

n = # KVPs ≥ 1 + (a − 1)
∑h−1

i=0 2ai = 1 + 2(a − 1) ah

a−1 = 1 + 2ah

Therefore the height of an a-b-tree is O(loga(n)) = O(log n/ log a
)
.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 31 / 43

a-b-trees as implementations of dictionaries

Analysis (if entire a-b-tree is stored in internal memory):
search, insert, and delete each requires visiting Θ(height) nodes
Height is O(log n/ log a).
Recall: a ≤ db/2e required for insert and delete

⇒ choose a = db/2e to minimize the height.

Work at node can be done in O(log b) time.

Total cost: O
(log n

log a · (log b)
)

= O(log n · log b
log b − 1) = O(log n)

This is still no better than AVL-trees.

The main motivation for a-b-trees is external memory .

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 32 / 43

Outline

1 External Memory
Motivation
Stream-based algorithms
External sorting
External Dictionaries
2-4 Trees
a-b-Trees
B-Trees
Extendible Hashing

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021

B-trees
A B-tree is an a-b-tree tailored to the external memory model.

Every node is one block of memory (of size B).
b is chosen maximally such that a node with b−1 KVPs (hence b−1
value-references and b subtree-references) fits into a block.
b is called the order of the B-tree. Typically b ∈ Θ(B).
a is set to be db/2e as before.

• 32 v • 58 v • •

• 14 v • 20 v • 26 v •

•
10
v
•
12
v
•

•

•
16
v
•
18
v
•

•

•
22
v
•
24
v
•

•

•
28
v
•
30
v
•

•

• 38 v • 44 v • 50 v •

•
34
v
•
36
v
•

•

•
40
v
•
42
v
•

•

•
46
v
•
48
v
•

•

•
52
v
•
54
v
•
56
v
•

• 64 v • 70 v • •

•
60
v
•
62
v
•

•

•
66
v
•
68
v
•

•

•
72
v
•
74
v
•

•

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 33 / 43

B-tree in external memory

Close-up on one node in one block:

transfer
if T1
needed internal memory

external memory
. . .

• • • • • • •
parent T0

k1 v1
T1

k2 v2
T2

k3 v3
T3

k4 v4
T4

k5 v5
T5

unused (node not full)

In this example: 17 computer-words fit into one block, so the B-tree can
have order 6.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 34 / 43

B-tree analysis

• 32 v • 58 v • •

• 14 v • 20 v • 26 v •

•
10
v
•
12
v
•

•

•
16
v
•
18
v
•

•

•
22
v
•
24
v
•

•

•
28
v
•
30
v
•

•

• 38 v • 44 v • 50 v •

•
34
v
•
36
v
•

•

•
40
v
•
42
v
•

•

•
46
v
•
48
v
•

•

•
52
v
•
54
v
•
56
v
•

• 64 v • 70 v • •

•
60
v
•
62
v
•

•

•
66
v
•
68
v
•

•

•
72
v
•
74
v
•

•

search, insert, and delete each requires visiting Θ(height) nodes
Work within a node is done in internal memory ⇒ no block-transfer.
The height is Θ

(
loga n

)
= Θ

(
logB n

)
(presuming a = db/2e ∈ Θ(B))

So all operations require Θ(logB n) block transfers.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 35 / 43

B-tree summary

All operations require Θ(logB n) block transfers.
This is asymptotically optimal.

In practice, height is a small constant.
I Say n = 250, and B = 215. So roughly b = 214, a = 213.
I B-tree of height 4 would have ≥ 1 + 2a4 > 250 KVPs.
I So height is 3.

There are some variations that are even better in practice (no
details).

B-trees are hugely important for storing data bases (cs448)

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 36 / 43

Outline

1 External Memory
Motivation
Stream-based algorithms
External sorting
External Dictionaries
2-4 Trees
a-b-Trees
B-Trees
Extendible Hashing

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021

Dictionaries for Integers in External Memory

Recall: Direct Addressing allowed for O(1) insert and delete if keys
are integers in {0, . . . ,M − 1}
If keys are too big, use hashing to map them to (smaller) integers.
Expected run-time of operations is O(1) if load factor α is kept small
This does not adapt well to external memory.

I We must occasionally re-hash to keep α small.
I And re-hashing must load all n/B blocks.
I This is unacceptably slow.

Goal: Data structure for integers that typically uses O(1) block
transfers, and never needs to load all blocks.
Idea: Store trie of links to blocks of integers.

(This is also called extendible hashing, because its primary use is for
dictionaries that store integers that result from hashing.)

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 37 / 43

Trie of blocks – Overview

0

0
1

1

0

1

00101
00000

00***

01000
01010

010**

01101
01110
01111

011**

10101
11010
10000

1****

Internal External

Assumption: We store non-negative
integers (here always written as bit-
strings).

Build trie D (the directory) of inte-
gers in internal memory.

Stop splitting in trie when remaining
items fit in one block.

Each leaf of D refers to block of ex-
ternal memory that stores the items.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 38 / 43

Trie of blocks – operations

0

0
1

1

0

1

00101
00000

00***

01000
01010

010**

01101
01110
01111

011**

10101
11010
10000

1****

Internal External

search(k): Search for k in D until we
reach leaf `. Load block at ` and
search in it.
1 block transfer.

insert(k): Search for k, load block,
then insert k. If this exceeds block-
capacity, split at trie-node and split
blocks (possibly repeatedly).
Typically 2 block transfers.

delete(k): Search for k, load block,
then delete k.
Optional: combine underfull blocks.
2 block transfers.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 39 / 43

Trie of blocks: Insert

TrieOfBlocks::insert(k, v)
(k, v): key-value pair
1. hk ← hash-value of k as a bit-string
2. `← Trie::search(D, hk) // leaf where k should be
3. d ← depth of ` in D
4. transfer block P that ` refers to
5. while P has no room for additional items
6. Split P into two blocks P0 and P1 by (d+1)st digit
7. Create two children `0 and `1 of `, linked to P0 and P1
8. d ← d+1, `← `hk [d],P ← Phk [d]
9. insert (k, v) into P

Note: This may create empty blocks, but this should be rare.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 40 / 43

insert(10110)

0

0
1

1

0

1

00101
00000

01000
01010

01101
01110
01111

10101
10010
10000

0

0
1

1

0

0
1

0

1
1

00101
00000

01000
01010

01101
01110
01111

10010
10000

10101
10110

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 41 / 43

Extendible hashing: saving space
We can save links (hence space in internal memory) with two tricks:

Expand the trie so that all leaves have the same global depth dD.
Store only the leaves, and in an array D of size 2dD .
Operations work as before if each block stores its local depth, i.e.,
the depth of the original trie-node that referred to it.

0
1

0

0
1

1

0

0
1

0

0
1

1

1

00101
00000

01000
01010

01101
01110
01111

10101
11010
10000

000
001
010
011
100
101
110
111

00101
00000 2

01000
01010 3

01101
01110
01111

1

10101
11010
10000

1

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 42 / 43

Extendible hashing discussion

Hashing collisions (= duplicate keys) are resolved within the block
and do not affect the block transfers.
If more items collide than can fit into a block we
extend the hash-function, i.e., make bit-strings longer without
changing the initial bits.
Directory is much smaller than total number of stored keys
→ should fit in internal memory.
If it does not, then strategies similar to B-trees can be applied.
Only 1 or 2 block transfers expected for any operation.
To make more space, we only add one block.
Rarely change the size of the directory.
Never have to move all items. (in contrast to re-hashing!)
Space usage is not too inefficient: one can show that under uniform
distribution assumption each block is expected to be 69% full.

Petrick, Sakhnini, Veksler (SCS, UW) CS240 – Module 11 Spring 2021 43 / 43

	External Memory
	Motivation
	Different levels of memory
	The External-Memory Model (EMM)

	Stream-based algorithms
	Streams and external memory

	External sorting
	Sorting in external memory
	Merge
	Mergesort in external memory
	Towards d-way Mergesort
	d-way merge
	d-way merge
	Towards d-way Mergesort
	Towards d-way Mergesort
	d-way mergesort
	d-way mergesort

	External Dictionaries
	Dictionaries in external memory
	Idealized structure
	Towards B-trees

	2-4 Trees
	2-4 Trees
	2-4 Tree example
	2-4 Tree Operations
	2-4 Tree operations
	Insertion in a 2-4 tree
	2-4 Tree operations
	Towards 2-4 Tree Deletion
	2-4 Tree Deletion
	Deletion from a 2-4 Tree
	2-4 Tree summary

	a-b-Trees
	a-b-Trees
	a-b-tree example
	a-b-tree insertion
	Height of an a-b-tree
	a-b-trees as implementations of dictionaries

	B-Trees
	B-trees
	B-tree in external memory
	B-tree analysis
	B-tree summary

	Extendible Hashing
	Dictionaries for Integers in External Memory
	Trie of blocks – Overview
	Trie of blocks – operations
	Trie of blocks: Insert
	insert(10110)
	Extendible hashing: saving space
	Extendible hashing discussion

