CS 240 – Data Structures and Data Management

Module 9: String Matching

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Pattern Matching Definitions [1]

- Search for a string (pattern) in a large body of text
- T[0...n 1] text (or haystack) being searched
- $P[0 \dots m 1]$ pattern (or needle) being searched for
- Strings over alphabet Σ
- Return the first occurrence of P in T, that is return smallest i such that P[j] = T[i + j] for $0 \le j \le m 1$
- Example

- If P does not occur in T, return FAIL
- Applications
 - information retrieval (text editors, search engines)
 - bioinformatics, data mining

More Definitions [2]

antidisestablishmentarianism

- Substring T[i...j] $0 \le i \le j < n$ is a string consisting of characters T[i], T[i+1], ..., T[j]
 - length is j i + 1
- Prefix of T is a substring T[0...i] of T for some $0 \le i < n$
- Suffix of T is a substring T $[i \dots n 1]$ of T for some $0 \le i \le n 1$

General Idea of Algorithms

- Pattern matching algorithms consist of guesses and checks
 - a guess or shift is a position i such that P might start at T[i]
 - valid guesses (initially) are $0 \le i \le n m$
 - a check of a guess is a single position j with 0 ≤ j < m where we compare T [i + j] to P[j]
 - must perform *m* checks of a single correct guess
 - may make fewer checks of an incorrect guess

Diagrams for Matching

- Diagram single run of pattern matching algorithm by matrix of checks
 - each row represents a single guess

Brute-Force Example

Example: T = abbbabbabbab, P = abba

• Have to perform (n - m + 1)m checks, which is $\Theta(nm)$ running time

• very inefficient if m is large, i.e. m = n/2

Brute-force Algorithm

Idea: Check every possible guess

```
Bruteforce::PatternMatching(T [0..n - 1], P[0..m - 1])

T: String of length n (text), P: String of length m (pattern)

for i \leftarrow 0 to n - m do

if strcmp(T [i ... i + m - 1], P) = 0

return "found at guess i"

return FAIL
```

• Note: *strcmp* takes $\Theta(m)$ time

```
strcmp(T [i ... i + m - 1], P[0...m - 1])
for j \leftarrow 0 to m - 1 do
if T [i + j] is before P[j] in \Sigma then return -1
if T [i + j] is after P[j] in \Sigma then return 1
return 0
```


How to improve?

- More sophisticated algorithms
 - Extra preprocessing on pattern P
 - Karp-Rabin
 - Boyer-Moore
 - KMP
 - Eliminate guesses based on completed matches and mismatches
 - Do extra preprocessing on the text T
 - Suffix-trees
 - Suffix-arrays
 - Create a data structure to find matches easily

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Karp-Rabin Fingerprint Algorithm: Idea

- Idea: use hashing to eliminate guesses faster
 - compute hash function for each guess, compare with pattern hash
 - if values are unequal, then the guess cannot be an occurrence
 - if values are equal, verify that pattern actually matches text
 - equal hash value does not guarantee equal keys
 - although if hash function is good, most likely keys are equal
 - O(m) time to verify, but happens rarely, and most likely only for true match
 - example $P = 5 \ 9 \ 2 \ 6 \ 5$, $T = 3 \ 1 \ 4 \ 1 \ 5 \ 9 \ 2 \ 6 \ 5 \ 3 \ 5$
 - standard hash function: flattening + modular (radix R = 10):
 $h(P) = 59265 \mod 97 = 95$

3	1	4	1	5	9	2	6	5	3	5	
hash-value 84											h(31415) = 84
hash-value 94											h(14159) = 94
		ha	sh-v	alue	e 76						h(41592) = 76
			ha	ısh-۱	/alue	e 18					h(15926) = 18
				ha	ash-v	/alu	e 95	-			h(59265) = 95

Karp-Rabin Fingerprint Algorithm – First Attempt

- Algorithm correctness: match is not missed
 - $h(T[i..i + m 1]) \neq h(P) \Rightarrow$ guess *i* is not *P*
- What about running time?

Karp-Rabin Fingerprint Algorithm: First Attempt

- for each shift, $\Theta(m)$ time to compute hash value
 - worse than brute-force,
 - brute force can use less than Θ(m) per shift, it stops at the first mismatched character
- n m + 1 shifts in text to check
- total time is $\Theta(mn)$ if pattern not in text

Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(T, P) $h_P \leftarrow h(P[0..m-1)])$ for $i \leftarrow 0$ to n - m $h_T \leftarrow h(T [i...i + m - 1]))$ if $h_T = h_P$ if strcmp(T [i ... i + m - 1], P) = 0return "found at guess i"return FAIL

- Algorithm correctness: match is not missed
 - $h(T[i..i + m 1]) \neq h(P) \Rightarrow$ guess *i* is not *P*
- h(T[i...i + m 1]) depends on m characters
 - naive computation takes $\Theta(m)$ time per guess
- Running time is $\Theta(mn)$ if P not in T
- How can we improve this?

Karp-Rabin Fingerprint Algorithm: Idea

- Idea: compute next hash from previous one in O(1) time
- n m + 1 shifts in text to check
- Θ(m) to compute the first hash value
- O(1) to compute all other hash values
- $\Theta(n+m)$ expected time
 - recall that we still need to check if the pattern actually matches text whenever hash value of text is equal to the hash value of pattern
 - assuming a good hash function
 - if hash values are equal, pattern most likely matches

Karp-Rabin Fingerprint Algorithm – Fast Rehash

- Hashes are called fingerprints
- Insight: can update a fingerprint from previous fingerprint in constant time
 - O(1) time per hash, except first one
- Example

T = 4 1 5 9 2 6 5 3 5, P = 5 9 2 6 5

- At the start of the algorithm, compute
 - $h(41592) = 41592 \mod 97 = 76$
 - the first hash (fingerprint), $\Theta(m)$ time
 - 10000 mod 97 = 9, precomputed one time, $\Theta(m)$ time
- How to compute 15926 mod 97 from 41592 mod 97?
 - to get from 41592 to 15926, need to get rid of the old first digit and add new last digit

41592
$$\xrightarrow{-4 \cdot 10000}$$
 1592 $\xrightarrow{\times 10}$ 15920 $\xrightarrow{+6}$ 15926

Algebraically,

 $(41592 - (4 \cdot 10000)) \cdot 10 + 6 = 15926$

Karp-Rabin Fingerprint Algorithm – Fast Rehash

- Hashes are called fingerprints
- Insight: can update a fingerprint from previous fingerprint in constant time
 - O(1) time per hash, except first one
- Example

T = 4 1 5 9 2 6 5 3 5, P = 5 9 2 6 5

- At the start of the algorithm, compute
 - $h(41592) = 41592 \mod 97 = 76$
 - the first hash (fingerprint), $\Theta(m)$ time
 - 10000 mod 97 = 9, precomputed one time, $\Theta(m)$ time
- How to compute 15926 mod 97 from 41592 mod 97?

 $(41592 - (4 \cdot 10000)) \cdot 10 + 6 = 15926$

 $((41592 - (4 \cdot 10000)) \cdot 10 + 6) \mod 97 = 15926 \mod 97$

 $\left((41592 \mod 97 - (4 \cdot 10000 \mod 97)) \cdot 10 + 6 \right) \mod 97 = 15926 \mod 97 \\ \left(\left(76 - (4 \cdot 9) \right) \cdot 10 + 6 \right) \mod 97 = 15926 \mod 97 \\ \right)$

constant number of operations, independent of m

Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin-RollingHash::PatternMatching(T, P) $M \leftarrow$ suitable prime number $h_P \leftarrow h(P[0...m-1)])$ $h_T \leftarrow h(T [0..m-1)])$ $s \leftarrow 10^{m-1} \mod M$ for $i \leftarrow 0$ to n - mif $h_T = h_P$ if strcmp(T [i ... i + m - 1], P) = 0return "found at guess *i*" if i < n - m // compute hash-value for next guess $h_T \leftarrow ((h_T - T[i] \cdot s) \cdot 10 + T[i + m]) \mod M$ return FAIL

- Choose "table size" *M* at random to be a large prime
- Expected running time is O(m + n)
- $\Theta(mn)$ worst-case, but this is (unbelievably) unlikely

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Knuth-Morris-Pratt (KMP) Derivation

- KMP starts similar to brute force pattern matching
 - maintain variables *i* and *j*
 - *j* is the position in the pattern
 - *i* is the position in the text
 - check if T[i] = P[j]
 - note brute force checks if T[i + j] = P[j], different usage of i
- Begin matching with i = 0, j = 0
- If $T[i] \neq P[j]$ and j = 0, shift pattern by 1, the same action as in brute-force
 - *i* = *i* + 1
 - *j* is unchanged

P = ababacaj=0 j=0 j=1 j=2 j=3 j=4 j=5i=0 i=1 i=2 i=3 i=4 i=5 i=6T b b b а b а С а а а a а b b а а С

- When T[i] = P[j], the action is to check the next letter, as in brute-force
 - *i* = *i* + 1
 - *j* = *j* + 1
- Failure at text position i = 6, pattern position j = 5
- When failure is at pattern position j > 0, do something smarter than brute force

- When failure is at pattern position j > 0, do something smarter than brute force
- Prior to j = 5, pattern and text are equal
 - find how to shift pattern looking only at pattern
 - can precompute the shift before matching even begins
- If failure at j = 5, shift pattern by 2 **and** start matching with j = 3
 - equivalently: i stays the same, new j = 3
 - skipped one shift, and also 3 character checks at the next shift

- If failure at j = 5: continue matching with the same i and new j = 3
 - precomputed from pattern before matching begins
- Brief rule for determining new j
 - find longest suffix of $P[1 \dots j 1]$ which is also prefix of P
 - call a suffix valid if it is a prefix of P
 - new j = the length of the longest valid suffix of P[1 ... j 1]

- If failure at j = 5: continue matching with the same i and new j = 3
 - precomputed from pattern before matching begins
- Brief rule for determining new j
 - find longest suffix of $P[1 \dots j 1]$ which is also prefix of P
 - call a suffix valid if it is a prefix of P
 - new j = the length of the longest valid suffix of P[1 ... j 1]

KMP Failure Array Computation: Slow

- **Rule**: if failure at pattern index j > 0, continue matching with the same i and new j = the length of the longest valid suffix of P[1 ... j 1]
- Computed previously for j = 5, but need to compute for all j
- Store this information in array F[0...m-1], called failure-function
 - F[j] is length of the longest valid suffix of P[1...j]
 - if failure at pattern index j > 0, new j = F[j 1]
- P = ababaca

- $P[1 \dots 0] = ""$, P = ababaca, longest valid suffix is ""
- note that F[0] = 0 for any pattern
- *j* = 1
- $P[1 \dots 1] = b$, P = ababaca, longest valid suffix is "" • j = 2

• $P[1 \dots 2] = ba$, P = ababaca, longest valid suffix is a

■ *j* = 3

• $P[1 \dots 3] = bab$, P = ababaca, longest valid suffix is ab

KMP Failure Array Computation: Slow

- Store this information in array F[0...m-1], called failure-function
 - F[j] is length of the longest valid suffix of P[1...j]
 - if failure at pattern index j > 0, new j = F[j 1]

F	0	1	2	3	4	5	6	
1	0	0	1	2	3	0	1	

- *j* = 4
 - $P[1 \dots 4] = baba$, P = ababaca, longest valid suffix is aba
- *j* = 5
 - P[1...5] = babac , P = ababaca, longest valid suffix is ""
- *j* = 6
 - $P[1 \dots 6] = babaca, P = ababaca, longest valid suffix is a$
- Failure array is precomputed before matching starts
- Straightforward computation of failure array F is $O(m^3)$ time

for j = 1 to mfor i = 0 to j // go over all suffixes of P[1 ... j]for k = 0 to i // compare next suffix to prefix of P

String matching with KMP: Example

• T = cabababcababaca, P = ababaca

F	0	0 1		3	4	5	6	
Γ	0	0	1	2	3	0	1	

rule 3

	<i>j</i> =0			-											
T:	с	а	b	а	b	а	b	С	а	b	а	b	а	С	а
P:															

rule 2

rule 1

i=0

if T[i] = P[j]

i = *i* + 1 *j* = *j* + 1

if $T[i] \neq P[j]$ and j > 0 if $T[i] \neq P[j]$ and j = 0• *i* unchanged • j = F[j-1]• *j* is unchanged

String matching with KMP: Example

• T = cabababcababaca, P = ababaca

0	1	2	3	4	5	6
0	0	1	2	3	0	1

F

<i>j</i> =0 <i>j</i> =0 <i>j</i> =1	<i>j</i> =2 <i>j</i> =3	j=4 $j=5$ $j=4$ $j=0$ $j=1$ $j=2$ $j=3$ $j=4$ $j=5$ $j=3$	=6
i=0 $i=1$ $i=2$	i=3 $i=4$	i=5 $i=6$ $i=7$ $i=8$ $i=9$ $i=10$ $i=11$ $i=12$ $i=13$ $i=13$	= 14

i=0

 $j = 3 - \frac{j}{j} = 2$

- *i* = *i* + 1
 - *j* = *j* + 1

- *i* unchanged
- j = F[j-1]

- i = i + 1
 - j is unchanged

Knuth-Morris-Pratt Algorithm

```
KMP(T, P)
      F \leftarrow failureArray(P)
      i \leftarrow 0 // current character of T
      j \leftarrow 0 // current character of P
      while i < n \operatorname{do}
            if P[j] = T[i]
                    if j = m - 1
                         return "found at guess i - m + 1"
                       // location i in T is the end of matched P in text
                     else // rule 1
                         i \leftarrow i + 1
                        j \leftarrow j + 1
            else // P[j] \neq T[i]
                    if j > 0
                            j \leftarrow F[j-1] // \text{rule 2}
                     else // rule 3
                            i \leftarrow i + 1
       return FAIL
```

KMP: Time Complexity, informally

- For now, ignore the cost of computing failure array
- Total time = 'horizontal iterations' + 'vertical iterations'
- *i* can increase at most *n* times
- number of decreases of $j \leq$ number of increases of $j \leq n$
- O(n) total iterations, more formal analysis later

KMP: Running Time, informally

- For now, ignore the cost of computing failure array
- Total time = 'horizontal iterations' + 'vertical iterations'
- *i* can increase at most *n* times
- number of decreases of $j \leq$ number of increases of $j \leq n$
- O(n) total iterations, more formal analysis later

Fast Computation of F

- After processing T, the final value of j is longest suffix of T equal to prefix of P
 - or, using our terminology, the final value of j is the longest valid suffix of T
- Useful for failure array computation
 - but first, let us rename variable j as l (only for failure array computation)
 - otherwise things get confusing
 - already have j when talking about failure array

Fast Computation of F

- After processing T, the final value of l is longest suffix of T equal to prefix of P
 - or, using our terminology, the final value of l is the longest valid suffix of T
- F[j] = length of the longest valid suffix of P[1...j]
 - need to compute F[j] for 0 < j < m
 - F[0] = 0, no need to compute

Fast Computation of F: Big Idea Saved

• j = 1 $T = P[1 \dots 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[1] = l$

- start with l = 0
- text has one letter, can reach at most l = 1
- need at most F[0], and already have it

•
$$j = 2$$

 $T = P[1 \dots 2] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[2] =$

- start with l = 0
- text has two letters, can reach at most l = 2
- need at most F[0], F[1], and already have it

■ *j* = *m* − 1

 $T = P[1 \dots m - 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[m - 1] = l$

- start with l = 0
- text has m-1 letters, can reach at most l = m-1
- need at most F[0], F[1], ..., F[m-2], and already have it

Fast Computation of *F* : Big Idea Made Bigger

■ Cost of passing P[1...1], P[1...2], ..., P[1...m - 1] through KMP is equal to the cost of passing just P[1...m - 1] through KMP

Fast Computation of F

- Process $T = P[1 \dots j]$, F[j] = final l
- P = ababaca
- Initialize F[0] = 0

F	0	1	2	3	4	5	6
	0						

- Process $T = P[1 \dots j]$, F[j] = final l
- P = ababaca
- j = 1, T = P[1 ... j] = b

- Process $T = P[1 \dots j]$, F[j] = final l
- P = ababaca
- j = 2, T = P[1 ... j] = ba

F	0	1	2	3	4	5	6
1	0	0	1				

- Process $T = P[1 \dots j]$, F[j] = final l
- P = ababaca
- j = 3, T = P[1 ... j] = bab

	l=0 i=0	l = 0 i = 1	$l = 1 \\ i = 2$	l=2 i=3							
T:	b	а	b								
<i>P</i> :	a										
		a	b								
if T	[i] = P	[l]		if 7	$[i] \neq P$	[<i>l</i>] and	l > 0	1	if <i>T</i> [<i>i</i>]	$\neq P[l]$	and $l = ($
		i = i + i	1		•	<i>i</i> unch	anged			• <i>i</i> =	= <i>i</i> + 1
		l = l + l	1		•	l = F[l - 1]			■ <i>l</i> is	unchang

F	0	1	2	3	4	5	6
1.	0	0	1	2			

- Process $T = P[1 \dots j]$, F[j] = final l
- P = ababaca
- j = 4, T = P[1 ... j] = baba

F	0	1	2	3	4	5	6
1	0	0	1	2	3		

- Process $T = P[1 \dots j], F[j] = final l$
- P = ababaca

- *i* = *i* + 1
- l = l + 1

• l = F[l - 1]

F	0	1	2	3	4	5	6
1	0	0	1	2	3	0	

110

■ *i* = *i* + 1

l is unchanged

- Process $T = P[1 \dots j]$, F[j] = final l
- P = ababaca

•
$$j = 6, T = P[1 ... j] = babaca$$

 $l=0$
 $l=1$
 $l=0$
 $l=1$
 $i=0$
 $i=1$
 $i=2$
 $i=3$
 $i=4$
 $i=5$
 $i=6$

KMP: Computing Failure Array

- Pseudocode is almost identical to KMP(T, P)
 - main difference: F[j] gets both used and updated
- More formal analysis
 - consider how 2j l changes in each iteration of while loop
 - one of the three case below applies
 - 1) j and l both increase by 1
 - 2j l increases by 1
 - 2) l decreases (F[l-1] < l)
 - 2j l increases by 1 or more
 - 1) *j* increases by 1
 - 2j l increases by 2
 - initially $2j l = 2 \ge 0$
 - at the end $2j l \leq 2m$
 - $j = m, l \ge 0$
 - no more than 2m iterations of while loop
 - time is $\Theta(m)$

```
failureArray(P)
P: String of length m (pattern)
       F[0] \leftarrow 0
       j \leftarrow 1 // \text{ parsing } P[1 \dots j]
        l \leftarrow 0
       while j < m \operatorname{do}
            if P[i] = P[l]
                  l \leftarrow l + 1
                  F[j] \leftarrow l
                  j \leftarrow j + 1
             else if l > 0
                l \leftarrow F[l-1]
            else
                 F[j] \leftarrow 0
                j \leftarrow j + 1
```

KMP: main function runtime

```
KMP(T, P)
     F \leftarrow failureArray(P)
     i \leftarrow 0
     i \leftarrow 0
     while i < n \operatorname{do}
             if P[j] = T[i]
                 if j = m - 1
                      return "found at guess i - m + 1"
                 else
                     i \leftarrow i + 1
                     j \leftarrow j + 1
             else // P[j] \neq T[i]
                 if j > 0
                     j \leftarrow F[j-1]
                 else
                     i \leftarrow i + 1
      return FAIL
```

KMP main function

- failureArray can be computed $in \Theta(m)$ time
- Same analysis gives at most 2n iterations of while loop since $2i j \le 2n$
- Running time KMP altogether: $\Theta(n + m)$

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Boyer-Moore Algorithm Motivation

- Fastest pattern matching on English Text
- Important components
 - Reverse-order searching
 - compare P with a guess moving backwards
 - When a mismatch occurs choose the better option among the two below
 - 1. Bad character heuristic
 - eliminate shifts based on mismatched character of T
 - 2. Good suffix heuristic
 - eliminate shifts based on the matched part (i.e.) suffix of P

Reverse Searching vs. Forward Searching

T= where is waldo, P = aldo

- r does not occur in P = aldo
- shift pattern past r
- w does not occur in P = aldo
- shift pattern past w
- this bad character heuristic works well with reverse searching

w	h	е	r	е	i	S	w	а	I	d	ο
а											

- w does not occur in P = aldo
- move pattern past w
- the first shift moves pattern past w
- no shifts are ruled out

bad character heuristic does not work well with forward searching

Bad Character Heuristic: Full Version

Extends to the case when mismatched text character occurs in P

T= acranapple, P = aaron

- Mismatched character in the text is a
- Find last occurrence of a in P
- Shift the pattern to the left until last a in P aligns with a in text

Bad Character Heuristic: Full Version

• Extends to the case when mismatched text character does occur in P

T = acranapple, P = aaron

- Mismatched character in the text is a
- Find last occurrence of a in P
- Shift the pattern to the left until last a in P aligns with a in text
- This is the next possible shift of pattern to explore, skipped shifts are impossible because they do not match a
 - start matching at the end

Bad Character Heuristic: The Shifting Formula

T= acranapple, P = aaron

- Let L(c) be the last occurrence of character c in P
 - $L(\mathbf{a}) = 1$ in our example
 - define L(c) = -1 if character *c* does not occur in *P*
- When mismatch occurs at text position *i*, pattern position *j*, update
 - j = m 1
 - start matching at the end of the pattern

•
$$i = i + m - 1 - L(c)$$

• bad character heuristic can be used only if L(c) < j

Bad Character Heuristic: Last Occurrence Array

- Compute the last occurrence array L(c) of any character in the alphabet
 - L(c) = -1 if character *c* does not occur in *P*, otherwise
 - L(c) =largest index *i* such that P[i] = c
- Example: *P* = aaron
 - initialization

char	а	n	0	r	all others
L(c)	-1	-1	-1	-1	-1

computation

char	а	n	0	r	all others
L(c)	1	4	3	2	-1

• $O(m + |\Sigma|)$ time

Bad Character Heuristic: Shifting Formula Explained

$$i^{new} - (m - 1) + L(c) = i^{old}$$

 $i^{new} = i^{old} + m - 1 - L(c)$
 $i = i + m - 1 - L(c)$

- recall L(c) = -1 for any character c that does not occur in P
- formula also works when mismatched character c does not occur in P

Bad Character Heuristic, Last detail

- Can use bad character heuristic **only** if L(c) < j
- Example when L(c) > j

•
$$i = i + m - 1 - L(c)$$

•
$$L(a) = 4 > j = 3$$

•
$$i = 3 + 4 - 4 = 3$$

- shifts the pattern in the wrong direction!
- If L(c) > j, do brute-force step
 - i = i j + m

• Unified formula that works in all cases : $i = i + m - 1 - \min\{L(c), j - 1\}$

Boyer-Moore Algorithm

```
BoyerMoore(T, P)
     L \leftarrow last occurrence array computed from P
     j \leftarrow m-1
     i \leftarrow m-1
     while i < n and j \ge 0 do
           if T[i] = P[j] then
                   i \leftarrow i - 1
                   j \leftarrow j - 1
           else
                   i \leftarrow i + m - 1 - \min\{L(c), j - 1\}
                   j \leftarrow m-1
    if j = -1 return i + 1
    else return FAIL
```

Good Suffix Heuristic

- Idea is similar to KMP, but applied to the suffix, since matching backwards
 - P = onobobo

- Text has letters obo
- Do the smallest shift so that obo fits
- Can precompute this from the pattern itself, before matching starts
 - 'if failure at j = 3, shift pattern by 2'
- Continue matching from the end of the new shift
- Will not study the precise way to do it

Boyer-Moore Summary

- Boyer-Moore performs very well, even when using only bad character heuristic
- Worst case run time is O(nm) with bad character heuristic, but in practice much faster
- On typical English text, Boyer-Moore looks only at \approx 25% of text
- With good suffix heuristic, can ensure $O(n + m + |\Sigma|)$ run time
 - no details

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Suffix Tree: trie of Suffixes

- What if we search for many patterns *P* within the same fixed text *T*?
- Idea: peprocess the text T rather than pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T

- Store all suffixes of T in a trie
 - generalize search to prefixes of stored strings
- To save space
 - use compressed trie
 - store suffixes implicitly via indices into T
- This is called a suffix tree

T = bananaban

S = {bananaban\$, ananaban\$, nanaban\$, anaban\$, naban\$,..., ban\$, n\$, \$}

- *T* = bananaban
- If *P* occurs in the text, it is a prefix of one (or more) strings stored in the trie
- Will have to modify search in a trie to allow search for a prefix

Store suffixes via indices

Store suffixes via indices

Tries of suffixes

 each leaf *l* stores the start of its suffix in variable *l*.start

Suffix tree

• Suffix tree: compressed trie of suffixes

Building Suffix Tree

- Building
 - text T has n characters and n + 1 suffixes
 - can build suffix tree by inserting each suffix of T into compressed trie
 - takes $\Theta(|\Sigma|n^2)$ time
 - there is a way to build a suffix tree of T in $\Theta(|\Sigma|n)$ time
 - beyond the course scope
- Pattern Matching
 - essentially search for P in compressed trie
 - some changes needed, since P may only be prefix of stored word
 - run-time is $O(|\Sigma|m)$
- Summary
 - theoretically good, but construction is slow or complicated and lots of space-overhead
 - rarely used in practice

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Suffix Arrays

- Relatively recent development (popularized in the 1990s)
- Sacrifice some performance for simplicity
 - slightly slower (by a log-factor) than suffix trees
 - much easier to build
 - much simpler pattern matching
 - very little space, only one array
- Idea
 - store suffixes implicitly, by storing start indices
 - store sorting permutation of the suffixes in T

Suff	ix Arr	ay	Ex	am	npl	e		(0	1	2	3	4	5	6	7	8	9
							Т	= k	c	a	n	а	n	а	b	а	n	\$
	1											I		I				
i	suffix T	[i 1	n]									j	A ^s []	<i>i</i>]				
0	banana	ban\$										0	9		\$			
1	ananab	an\$										1	5		aba	n\$		
2	nanaba	n\$,								2	7		an\$			
3	anaban	\$			S	ort le	exico	grap	hica	llv		3	3		ana	ban\$		
4	naban\$				_			0.00				4	1		ana	naba	n\$	
5	aban\$											5	6		ban	\$		
6	ban\$										(6	0		ban	anab	an\$	
7	an\$											7	8		n\$			
8	n\$											8	4		nab	an\$		
9	\$											9	2		nan	abar	\$	
	•	0	1	2	3	4	5	6	7	8	9	•						
Suffix A	Array =	9	5	7	3	1	6	0	8	4	2	2						

Suff	ix Arr	ay	Ex	am	npl	e		(0	1	2	3	4	5	6	7	8	9
							Т	= k	c	a	n	а	n	а	b	а	n	\$
	1											I		I				
i	suffix T	[i 1	n]									j	A ^s []	<i>i</i>]				
0	banana	ban\$										0	9		\$			
1	ananab	an\$										1	5		aba	n\$		
2	nanaba	n\$,								2	7		an\$			
3	anaban	\$			S	ort le	exico	grap	hica	llv		3	3		ana	ban\$		
4	naban\$				_			0.00				4	1		ana	naba	n\$	
5	aban\$											5	6		ban	\$		
6	ban\$										(6	0		ban	anab	an\$	
7	an\$											7	8		n\$			
8	n\$											8	4		nab	an\$		
9	\$											9	2		nan	abar	\$	
	•	0	1	2	3	4	5	6	7	8	9	•						
Suffix A	Array =	9	5	7	3	1	6	0	8	4	2	2						

Suffix Array Construction <u>0</u>

Easy to construct using MSD-Radix-Sort (pad with any character to get the same length)

T =

b

а

2

n

3

а

5

а

4

n

6

b

8

n

7

а

9

\$

	round 1	round 2	 round <i>n</i>
bananaban\$	\$*****	\$****	\$*****
ananaban\$*	ananaban\$	aban\$****	aban\$****
nanaban\$**	anaban\$***	ananaban\$	an\$******
anaban\$***	aban\$****	anaban\$**	anaban\$***
naban\$****	an\$******	an\$****	ananaban\$*
aban\$****	bananaban\$	bananaban\$	ban\$*****
ban\$*****	ban\$*****	ban\$****	bananabanS
an\$******	nanaban\$**	nanaban\$**	n\$*******
n\$*******	naban\$****	naban\$****	naban\$****
\$****	n\$******	n\$*****	nanahan\$**

- Fast in practice, suffixes are unlikely to share many leading characters
- But worst case run-time is $\Theta(n^2)$
 - *n* rounds of recursion, each round takes $\Theta(n)$ time (bucket sort)

Suffix Array Construction

- Idea: we do not need n rounds
 - $\Theta(\log n)$ rounds enough $\rightarrow \Theta(n \log n)$ run time
- Construction-algorithm
 - MSD-radix sort plus some bookkeeping
 - needs only one extra array
 - easy to implement
 - details are covered in an algorithms course

Pattern Matching in Suffix Arrays

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search

	j	A ^s [j]	
$l \rightarrow$	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
$v \rightarrow$	4	1	ananaban\$
	5	6	ban\$
	6	0	bananaban\$
	7	8	n\$
	8	4	naban\$
$\gamma \rightarrow$	9	2	nanaban\$

P = ban
Pattern Matching in Suffix Arrays

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search

P = ban

	j	A ^s [j]	
	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
	4	1	ananaban\$
$l \rightarrow$	5	6	ban\$
	6	0	bananaban\$
$v \rightarrow$	7	8	n\$
	8	4	naban\$
$r \rightarrow$	9	2	nanaban\$

Pattern Matching in Suffix Arrays

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search

P = ban

	j	A^s[j]	
	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
	4	1	ananaban\$
$v = l \rightarrow$	5	6	ban\$ found!
$r \rightarrow$	6	0	bananaban\$
	7	8	n\$
	8	4	naban\$
	9	2	nanaban\$

- $\Theta(\log n)$ comparisons
- Each comparison is *strcmp*(P, $T[A^s[v] ... A^s[v+m-1]]$)
- $\Theta(m)$ per comparison \Rightarrow run-time is $\Theta(m \log n)$

Pattern Matching in Suffix Arrays

```
SuffixArray-Search(A^{s}[j], P[0 ... m - 1], T)
A^s: suffix array of T, P: pattern
      l \leftarrow 0, r \leftarrow n-1
     while l < r
             v \leftarrow \left| \frac{l+r}{2} \right|
              i \leftarrow A^s[v]
            // assume strcmp handles out of bounds suitably
            s \leftarrow strcmp(T[i ... i + m - 1], P)
            if (s < 0) do l \leftarrow v + 1
            else (s > 0) do r \leftarrow v - 1
            else return 'found at guess T[i \dots i + m - 1]'
      if strcmp(P, T[A^{s}[l], A^{s}[l] + m - 1])
             return 'found at guess T[l \dots l + m - 1]'
      return FAIL
```

10

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

String Matching Conclusion

	Brute Force	KR	BM	КМР	Suffix Trees	Suffix Array
preproc.	_	0(m)	$O(m + \Sigma)$	0(m)	$\begin{array}{l} O(\Sigma n^2) \\ \rightarrow O(\Sigma n) \end{array}$	$0(nlogn) \rightarrow 0(n)$
search time (preproc excluded)	0(nm)	O(n+m) expected	<i>O</i> (<i>n</i>) often better	0(n)	0(m)	0(mlogn)
extra space	_	0(1)	$O(m + \Sigma)$	0(m)	0(n)	0(n)

- Algorithms stop once they found one occurrence
- Most of them can be adapted to find *all* occurrences within the same worst-case run-time

