
CS 240 – Data Structures and Data Management

Module 9: String Matching

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

Outline

 String Matching

 Introduction

 Karp-Rabin Algorithm

 Knuth-Morris-Pratt algorithm

 Boyer-Moore Algorithm

 Suffix Trees

 Suffix Arrays

 Conclusion

Pattern Matching Definitions [1]
 Search for a string (pattern) in a large body of text

 𝑇[0. . . 𝑛 − 1] text (or haystack) being searched

 𝑃[0…𝑚 − 1] pattern (or needle) being searched for

 Strings over alphabet Σ

 Return the first occurrence of 𝑃 in 𝑇, that is return smallest 𝑖 such that

𝑃[𝑗] = 𝑇 [𝑖 + 𝑗] for 0 ≤ 𝑗 ≤ 𝑚 − 1

 Example

𝑇 = L i t t l e p i g l e t s c o o k e d f o r m o t h e r p i g

𝑃 = p i g

𝑛 = 36, 𝑚 = 3, 𝑖 = 7

 If 𝑃 does not occur in 𝑇, return FAIL

 Applications

 information retrieval (text editors, search engines)

 bioinformatics, data mining

7
+0

7
+1

7
+2

More Definitions [2]

 Substring 𝑇 𝑖. . . 𝑗 0 ≤ 𝑖 ≤ 𝑗 < 𝑛 is a string consisting of characters
𝑇 𝑖 , 𝑇 𝑖 + 1 , . . . , 𝑇[𝑗]

 length is 𝑗 − 𝑖 + 1

antidisestablishmentarianism

 Prefix of 𝑇 is a substring 𝑇 [0. . . 𝑖] of 𝑇 for some 0 ≤ 𝑖 < 𝑛

 Suffix of 𝑇 is a substring 𝑇 [𝑖. . . 𝑛 − 1] of 𝑇 for some 0 ≤ 𝑖 ≤ 𝑛 − 1

antidisestablishmentarianismantidisestablishmentarianismantidisestablishmentarianism

General Idea of Algorithms

 Pattern matching algorithms consist of guesses and checks

 a guess or shift is a position 𝑖 such that 𝑃 might start at 𝑇[𝑖]

 valid guesses (initially) are 0 ≤ 𝑖 ≤ 𝑛 −𝑚

guess at 𝑖 = 0

abbbababbab

abba

guess at 𝑖 = 1
abbbababbab

abba

guess at 𝑖 = 6

abbbababbab

abba

guess at 𝑖 = 7

abbbababbab

abba

check at 𝑗 = 0 check at 𝑗 = 1

 a check of a guess is a single position 𝑗 with 0 ≤ 𝑗 < 𝑚 where we
compare 𝑇 [𝑖 + 𝑗] to 𝑃[𝑗]

abbbababbab

abba

 must perform 𝑚 checks of a single correct guess

 may make fewer checks of an incorrect guess

abbbababbab

abba

…

Diagrams for Matching

 Diagram single run of pattern matching algorithm by matrix of checks

 each row represents a single guess

a b b b a b a b b a b
a b b a

Brute-Force Example

Example: 𝑇 = abbbababbab, 𝑃 = abba

a b b b a b a b b a b

 Worst possible input

 𝑃 = 𝑎…𝑎𝑏, 𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎…𝑎𝑎𝑎𝑎𝑎𝑎𝑎

a b b a
a

a

a

a b b

a

a b b a

 Have to perform (𝑛 − 𝑚 + 1)𝑚 checks, which is Θ(𝑛𝑚) running time

 very inefficient if 𝑚 is large, i.e. 𝑚 = 𝑛/2

𝑚− 1 times 𝑛 times

guess 𝑖 = 4,
check 𝑗 = 2

guess 𝑖 = 0,
check 𝑗 = 3

Brute-force Algorithm

Bruteforce::PatternMatching(𝑇 [0. . 𝑛 − 1], 𝑃[0. .𝑚 − 1])

𝑇 : String of length n (text), 𝑃: String of length m (pattern)

for 𝑖 ← 0 to 𝑛 − 𝑚 do

if strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃) = 0

return “found at guess 𝑖”

return FAIL

 Note: strcmp takes Θ(𝑚) time

strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃[0. . . 𝑚 − 1])

for 𝑗 ← 0 to 𝑚 − 1 do

if 𝑇 [𝑖 + 𝑗] is before 𝑃[𝑗] in Σ then return -1

if 𝑇 [𝑖 + 𝑗] is after 𝑃[𝑗] in Σ then return 1

return 0

 Idea: Check every possible guess

How to improve?

 More sophisticated algorithms

 Extra preprocessing on pattern 𝑃

 Karp-Rabin

 Boyer-Moore

 KMP

 Eliminate guesses based on completed matches and mismatches

 Do extra preprocessing on the text T

 Suffix-trees

 Suffix-arrays

 Create a data structure to find matches easily

Outline

 String Matching

 Introduction

 Karp-Rabin Algorithm

 Knuth-Morris-Pratt algorithm

 Boyer-Moore Algorithm

 Suffix Trees

 Suffix Arrays

 Conclusion

Karp-Rabin Fingerprint Algorithm: Idea
 Idea: use hashing to eliminate guesses faster

 compute hash function for each guess, compare with pattern hash

 example 𝑃 = 5 9 2 6 5, 𝑇 = 3 1 4 1 5 9 2 6 5 3 5

 standard hash function: flattening + modular (radix 𝑅 = 10):

3 1 4 1 5 9 2 6 5 3 5

ℎ(𝑃) = 59265 𝑚𝑜𝑑 97 = 95

ℎ(31415) = 84

ℎ(14159) = 94

ℎ(41592) = 76

ℎ(15926) = 18

ℎ(59265) = 95

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

 if values are unequal, then the guess cannot be an occurrence

 if values are equal, verify that pattern actually matches text

 equal hash value does not guarantee equal keys

 although if hash function is good, most likely keys are equal

 𝑂(𝑚) time to verify, but happens rarely, and most likely only for true match

Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(𝑇, 𝑃)

ℎ𝑃 ← ℎ(𝑃[0. .𝑚 − 1)])

for 𝑖 ← 0 to 𝑛 − 𝑚

ℎ𝑇 ← ℎ(𝑇 [𝑖. . . 𝑖 + 𝑚 − 1])

if ℎ𝑇 = ℎ𝑃

if strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃) = 0

return “found at guess 𝑖”

return FAIL

 Algorithm correctness: match is not missed

 ℎ(𝑇 [𝑖. . 𝑖 + 𝑚 − 1]) ≠ ℎ(𝑃) ⇒ guess 𝑖 is not 𝑃

 What about running time?

Karp-Rabin Fingerprint Algorithm: First Attempt

3 1 4 1 5 9 2 6 5 3 5

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

 for each shift, Θ(𝑚) time to compute hash value

 worse than brute-force,

 brute force can use less than Θ(𝑚) per shift, it stops at the first
mismatched character

 𝑛 −𝑚 + 1 shifts in text to check

 total time is Θ(𝑚𝑛) if pattern not in text

Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(𝑇, 𝑃)

ℎ𝑃 ← ℎ(𝑃[0. .𝑚 − 1)])

for 𝑖 ← 0 to 𝑛 − 𝑚

ℎ𝑇 ← ℎ(𝑇 [𝑖. . . 𝑖 + 𝑚 − 1])

if ℎ𝑇 = ℎ𝑃

if strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃) = 0

return “found at guess 𝑖”

return FAIL

 Algorithm correctness: match is not missed

 ℎ(𝑇 [𝑖. . 𝑖 + 𝑚 − 1]) ≠ ℎ(𝑃) ⇒ guess 𝑖 is not 𝑃

 ℎ(𝑇[𝑖. . . 𝑖 + 𝑚 − 1]) depends on 𝑚 characters

 naive computation takes Θ(𝑚) time per guess

 Running time is Θ(𝑚𝑛) if 𝑃 not in 𝑇

 How can we improve this?

Karp-Rabin Fingerprint Algorithm: Idea
3 1 4 1 5 9 2 6 5 3 5

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

Θ(𝑚)

𝑂(1)

𝑂(1)

𝑂(1)

𝑂(1)

 Idea: compute next hash from previous one in 𝑂(1) time

 𝑛 −𝑚 + 1 shifts in text to check

 Θ(𝑚) to compute the first hash value

 𝑂(1) to compute all other hash values

 Θ 𝑛 +𝑚 expected time
 recall that we still need to check if the pattern actually matches text whenever hash

value of text is equal to the hash value of pattern

 assuming a good hash function

 if hash values are equal, pattern most likely matches

Karp-Rabin Fingerprint Algorithm – Fast Rehash
 Hashes are called fingerprints

 Insight: can update a fingerprint from previous fingerprint in constant time

 𝑂(1) time per hash, except first one

 Example

T = 4 1 5 9 2 6 5 3 5, 𝑃 = 5 9 2 6 5

 Algebraically,

4 1 5 9 2 1 5 9 2 6

41592 − 4 · 10000 · 10 + 6 = 15926

41592
−4 · 10000

1592
× 10

15920
+6

15926

 At the start of the algorithm, compute

 ℎ 41592 = 41592 𝑚𝑜𝑑 97 = 76

 the first hash (fingerprint), Θ(𝑚) time

 10000 𝑚𝑜𝑑 97 = 9, precomputed one time, Θ(𝑚) time

 How to compute 15926 𝑚𝑜𝑑 97 from 41592 𝑚𝑜𝑑 97 ?

 to get from 41592 to 15926, need to get rid of the old first digit and add
new last digit

(41592 𝑚𝑜𝑑 97 − 4 · 10000 𝑚𝑜𝑑 97 · 10 + 6) 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

Karp-Rabin Fingerprint Algorithm – Fast Rehash
 Hashes are called fingerprints

 Insight: can update a fingerprint from previous fingerprint in constant time

 𝑂(1) time per hash, except first one

 Example

T = 4 1 5 9 2 6 5 3 5, 𝑃 = 5 9 2 6 54 1 5 9 2 1 5 9 2 6

41592 − 4 · 10000 · 10 + 6 = 15926

 At the start of the algorithm, compute

 ℎ 41592 = 41592 𝑚𝑜𝑑 97 = 76

 the first hash (fingerprint), Θ(𝑚) time

 10000 𝑚𝑜𝑑 97 = 9, precomputed one time, Θ(𝑚) time

 How to compute 15926 𝑚𝑜𝑑 97 from 41592 𝑚𝑜𝑑 97 ?

(41592 − 4 · 10000 · 10 + 6) 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

10000 𝑚𝑜𝑑 9741592 𝑚𝑜𝑑 97

76 − 4 · 9 · 10 + 6 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

constant number of operations, independent of 𝑚

Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin-RollingHash::PatternMatching(𝑇 , 𝑃)

𝑀 ← suitable prime number

ℎ𝑃 ← ℎ(𝑃[0. . . 𝑚 − 1)])

ℎ𝑇 ← ℎ(𝑇 [0. .𝑚 − 1)])

𝑠 ← 10𝑚−1𝑚𝑜𝑑 𝑀

for 𝑖 ← 0 to 𝑛 −𝑚

if ℎ𝑇 = ℎ𝑃

if strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃) = 0

return “found at guess 𝑖”

if 𝑖 < 𝑛 − 𝑚 // compute hash-value for next guess

ℎ𝑇 ← ℎ𝑇 − 𝑇 𝑖 · 𝑠 · 10 + 𝑇 𝑖 + 𝑚 𝑚𝑜𝑑 𝑀

return FAIL

 Choose “table size” 𝑀 at random to be a large prime

 Expected running time is 𝑂(𝑚 + 𝑛)

 Θ(𝑚𝑛) worst-case, but this is (unbelievably) unlikely

Outline

 String Matching
 Introduction
 Karp-Rabin Algorithm
 Knuth-Morris-Pratt algorithm
 Boyer-Moore Algorithm
 Suffix Trees
 Suffix Arrays
 Conclusion

Knuth-Morris-Pratt (KMP) Derivation

 KMP starts similar to brute force pattern matching

 maintain variables 𝑖 and 𝑗

 𝑗 is the position in the pattern

 𝑖 is the position in the text

 check if 𝑇 𝑖 = 𝑃 𝑗

 note brute force checks if 𝑇 𝑖 + 𝑗 = 𝑃 𝑗 , different usage of 𝑖

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 Begin matching with 𝑖 = 0, 𝑗 = 0

c a b a b a a b a b

𝒋=𝟎
𝒊=𝟎

a

 If 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0, shift pattern by 1, the same action as in brute-force
 𝑖 = 𝑖 + 1

 𝑗 is unchanged

Knuth-Morris-Pratt Motivation

 When 𝑇[𝑖] = 𝑃[𝑗], the action is to check the next letter, as in brute-force

 𝑖 = 𝑖 + 1

 𝑗 = 𝑗 + 1

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b

a

a b a b a c

 Failure at text position 𝑖 = 6, pattern position 𝑗 = 5

 When failure is at pattern position 𝑗 > 0, do something smarter than brute force

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

Knuth-Morris-Pratt Motivation

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b

a

a cb a b a

 When failure is at pattern position 𝑗 > 0, do something smarter than brute force

 Prior to 𝑗 = 5, pattern and text are equal

 find how to shift pattern looking only at pattern

 can precompute the shift before matching even begins

shift by 1 does not worka

a b a shift by 2 could work

 If failure at 𝑗 = 5, shift pattern by 2 and start matching with 𝑗 = 3

 equivalently: 𝑖 stays the same, new 𝑗 = 3

 skipped one shift, and also 3 character checks at the next shift

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

Knuth-Morris-Pratt Motivation

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b

a

a cb a b a

 If failure at 𝑗 = 5: continue matching with the same 𝑖 and new 𝑗 = 3

 precomputed from pattern before matching begins

shift by 1 does not worka

a b a shift by 2 could work

prefix of 𝑃

𝑷[𝟏… 𝒋 − 𝟏]

 Brief rule for determining new 𝑗

 find longest suffix of 𝑃 1… 𝑗 − 1 which is also prefix of 𝑃

 call a suffix valid if it is a prefix of 𝑃

 new 𝑗 = the length of the longest valid suffix of 𝑃 1… 𝑗 − 1

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

Knuth-Morris-Pratt Motivation

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b

a

a cb a b a

 If failure at 𝑗 = 5: continue matching with the same 𝑖 and new 𝑗 = 3

 precomputed from pattern before matching begins

shift by 1 does not worka

a b a shift by 2 could work

prefix of 𝑃

𝑷[𝟏… 𝒋 − 𝟏]

 Brief rule for determining new 𝑗

 find longest suffix of 𝑃 1… 𝑗 − 1 which is also prefix of 𝑃

 call a suffix valid if it is a prefix of 𝑃

 new 𝑗 = the length of the longest valid suffix of 𝑃 1… 𝑗 − 1

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

KMP Failure Array Computation: Slow
 Rule: if failure at pattern index 𝑗 > 0, continue matching with the same 𝑖 and

new 𝑗 = the length of the longest valid suffix of 𝑃 1… 𝑗 − 1

 Computed previously for 𝑗 = 5, but need to compute for all 𝑗

 Store this information in array 𝐹 0. . . 𝑚 − 1 , called failure-function

 𝐹[𝑗] is length of the longest valid suffix of 𝑃[1. . . 𝑗]

 if failure at pattern index 𝑗 > 0, new 𝑗 = 𝐹[𝑗 − 1]

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎
0 1 2 3 4 5 6

2100
𝐹

 note that 𝐹[0] = 0 for any pattern

 𝑗 = 1

 𝑃[1…1] = 𝑏 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”
 𝑗 = 2

 𝑃[1…2] = 𝑏𝑎 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎

 𝑗 = 3

 𝑃[1…3] = 𝑏𝑎𝑏 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎𝑏

 𝑗 = 0

 𝑃[1…0] = “”, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”

KMP Failure Array Computation: Slow

0 1 2 3 4 5 6

32100
𝐹

0 1

 Failure array is precomputed before matching starts

 Straightforward computation of failure array 𝐹 is 𝑂(𝑚3) time

for 𝑗 = 1 to 𝑚

for 𝑖 = 0 to 𝑗 // go over all suffixes of 𝑃[1… 𝑗]

for 𝑘 = 0 to 𝑖 // compare next suffix to prefix of 𝑃

 𝑗 = 5

 𝑃[1…5] = 𝑏𝑎𝑏𝑎𝑐 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”

 𝑗 = 6

 𝑃[1…6] = 𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎

 Store this information in array 𝐹 0. . . 𝑚 − 1 , called failure-function

 𝐹[𝑗] is length of the longest valid suffix of 𝑃[1. . . 𝑗]

 if failure at pattern index 𝑗 > 0, new 𝑗 = 𝐹[𝑗 − 1]

 𝑗 = 4

 𝑃[1…4] = 𝑏𝑎𝑏𝑎 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎𝑏𝑎

String matching with KMP: Example

 𝑇 = 𝑐𝑎𝑏𝑎𝑏𝑎𝑏𝑐𝑎𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a b c a b a b a c a𝑇:

𝑃:

0 1 2 3 4 5 6

32100
𝐹

0 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0
 𝑖 = 𝑖 + 1

 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

 𝑖 = 𝑖 + 1

 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 > 0
 𝑖 unchanged

 𝑗 = 𝐹[𝑗 − 1]

𝒊=𝟎
𝒋=𝟎

rule 1 rule 2 rule 3

String matching with KMP: Example
 𝑇 = 𝑐𝑎𝑏𝑎𝑏𝑎𝑏𝑐𝑎𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a b c a b a b a c a𝑇:

𝑃:

0 1 2 3 4 5 6

32100
𝐹

0 1

𝒂

𝒋=𝟎
𝒊=𝟎

a b a b a c

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

new 𝑗 = 3

(a) (b) (a)

𝒋=𝟑

b

𝒋=𝟒
𝒊=𝟕

a new 𝑗 = 2

𝒋=𝟐

(a) (b) a

𝒋=𝟎

new 𝑗 = 0

a

𝒋=𝟎
𝒊=𝟖

a

𝒋=𝟏
𝒊=𝟗

b

𝒋=𝟐
𝒊=𝟏𝟎

a

𝒋=𝟑
𝒊=𝟏𝟏

b

𝒋=𝟒
𝒊=𝟏𝟐

a

𝒋=𝟓
𝒊=𝟏𝟑

c

𝒋=𝟔
𝒊=𝟏𝟒

a match!

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0
 𝑖 = 𝑖 + 1

 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

 𝑖 = 𝑖 + 1

 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 > 0
 𝑖 unchanged

 𝑗 = 𝐹[𝑗 − 1]

Knuth-Morris-Pratt Algorithm

KMP 𝑇, 𝑃
𝐹 ← 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝐴𝑟𝑟𝑎𝑦 𝑃
𝑖 ← 0 // current character of 𝑇
𝑗 ← 0 // current character of 𝑃
while 𝑖 < 𝑛 do

if 𝑃[𝑗] = 𝑇[𝑖]
if 𝑗 = 𝑚 − 1

return “found at guess 𝑖 − 𝑚 + 1”
// location 𝑖 in 𝑇 is the end of matched 𝑃 in text

else // rule 1
𝑖 ← 𝑖 + 1
𝑗 ← 𝑗 + 1

else // 𝑃[𝑗] ≠ 𝑇 [𝑖]
if 𝑗 > 0

𝑗 ← 𝐹[𝑗 − 1] // rule 2
else // rule 3

𝑖 ← 𝑖 + 1
return 𝐹𝐴𝐼𝐿

KMP: Time Complexity, informally

 For now, ignore the cost of computing failure array

 Total time = ‘horizontal iterations’ + ‘vertical iterations’

c a b a b a b c a b a b a c a𝑇:

𝑃:

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0
 𝑖 = 𝑖 + 1

 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

 𝑖 = 𝑖 + 1

 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 > 0
 𝑖 unchanged

 𝑗 = 𝐹[𝑗 − 1]

𝒋=𝟎
𝒊=𝟎

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟑

𝒋=𝟒
𝒊=𝟕

𝒋=𝟐

𝒋=𝟎

𝒋=𝟎
𝒊=𝟖

𝒋=𝟏
𝒊=𝟗

𝒋=𝟐
𝒊=𝟏𝟎

𝒋=𝟑
𝒊=𝟏𝟏

𝒋=𝟒
𝒊=𝟏𝟐

𝒋=𝟓
𝒊=𝟏𝟑

𝒋=𝟔
𝒊=𝟏𝟒

 number of decreases of 𝑗 ≤ number of increases of 𝑗

0 1 2 3 4 5 6

32100
𝐹

0 1

≤ 𝑛

 𝑂(𝑛) total iterations, more formal analysis later

𝑖 increases

𝑗 decreases

 𝑖 can increase at most 𝑛 times

KMP: Running Time, informally

 For now, ignore the cost of computing failure array

 Total time = ‘horizontal iterations’ + ‘vertical iterations’

c a b a b a b c a b a b a c a𝑇:

𝑃:

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0
 𝑖 = 𝑖 + 1

 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

 𝑖 = 𝑖 + 1

 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 > 0
 𝑖 unchanged

 𝑗 = 𝐹[𝑗 − 1]

𝒋=𝟎
𝒊=𝟎

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟑

𝒋=𝟒
𝒊=𝟕

𝒋=𝟐

𝒋=𝟎

𝒋=𝟎
𝒊=𝟖

𝒋=𝟏
𝒊=𝟗

𝒋=𝟐
𝒊=𝟏𝟎

𝒋=𝟑
𝒊=𝟏𝟏

𝒋=𝟒
𝒊=𝟏𝟐

𝒋=𝟓
𝒊=𝟏𝟑

𝒋=𝟔
𝒊=𝟏𝟒

 number of decreases of 𝑗 ≤ number of increases of 𝑗

0 1 2 3 4 5 6

32100
𝐹

0 1

≤ 𝑛

 𝑂(𝑛) total iterations, more formal analysis later

𝑖 increases

𝑗 decreases

 𝑖 can increase at most 𝑛 times

Fast Computation of 𝐹
 P = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 After processing 𝑇, the final value of 𝑗 is longest suffix of 𝑇 equal to prefix of 𝑃

 or, using our terminology, the final value of 𝑗 is the longest valid suffix of 𝑇

c a b a b a

𝒂

a b a b a

𝑇:

𝑃:

𝒋=𝟎
𝒊=𝟎

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

a b a b a

 Useful for failure array computation

 but first, let us rename variable 𝑗 as 𝑙 (only for failure array computation)

 otherwise things get confusing

 already have 𝑗 when talking about failure array

Fast Computation of 𝐹
 P = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 After processing 𝑇, the final value of 𝑙 is longest suffix of 𝑇 equal to prefix of 𝑃

 or, using our terminology, the final value of 𝑙 is the longest valid suffix of 𝑇

c a b a b a

𝒂

a b a b a

𝑇:

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒍=𝟎
𝒊=𝟏

𝒍=𝟏
𝒊=𝟐

𝒍=𝟐
𝒊=𝟑

𝒍=𝟑
𝒊=𝟒

𝒍=𝟒
𝒊=𝟓

𝒍=𝟓
𝒊=𝟔

a b a b a

 𝐹[𝑗] = length of the longest valid suffix of 𝑃[1. . . 𝑗]

 need to compute 𝐹 𝑗 for 0 < 𝑗 < 𝑚

 𝐹[0] = 0, no need to compute

 Big idea
KMP𝑇 = 𝑃[1…1]

final 𝑙
𝐹 1 = 𝑙

KMP𝑇 = 𝑃[1…2]
final 𝑙

𝐹 2 = 𝑙

KMP𝑇 = 𝑃[1…𝑚 − 1]
final 𝑙

𝐹 𝑚 − 1 = 𝑙

…

‘chicken and egg’
problem with big idea:
need 𝐹 to put text
through KMP

Fast Computation of 𝐹: Big Idea Saved
 𝑗 = 1

KMP𝑇 = 𝑃[1…1]
final 𝑙

𝐹 1 = 𝑙

 𝑗 = 2
KMP𝑇 = 𝑃[1…2]

final 𝑙
𝐹 2 = 𝑙

 start with 𝑙 = 0

 text has one letter, can reach at most 𝑙 = 1

 need at most 𝐹[0], and already have it

 start with 𝑙 = 0

 text has two letters, can reach at most 𝑙 = 2

 need at most 𝐹 0 , 𝐹 1 , and already have it

 𝑗 = 𝑚 − 1

KMP𝑇 = 𝑃[1…𝑚 − 1]
final 𝑙

𝐹 𝑚 − 1 = 𝑙

 start with 𝑙 = 0

 text has 𝑚 − 1 letters, can reach at most 𝑙 = 𝑚 − 1

 need at most 𝐹 0 , 𝐹 1 , … , 𝐹[𝑚 − 2], and already have it

…

Fast Computation of 𝐹: Big Idea Made Bigger

KMP𝑇 = 𝑃[1…1]
final 𝑙

𝐹 1 = 𝑙

KMP𝑇 = 𝑃[1…2]
final 𝑙

𝐹 2 = 𝑙

 Cost of passing 𝑃[1…1], 𝑃 1…2 ,… , 𝑃[1…𝑚 − 1] through KMP is equal to
the cost of passing just 𝑃[1…𝑚 − 1] through KMP

KMP𝑇 = 𝑃[1…𝑚 − 1]
final 𝑙

𝐹 𝑚 − 1 = 𝑙

…

do not start from
scratch, start from where
𝑃[1…1] finished

do not start from
scratch, start from
where 𝑃[1…𝑚 − 2]
finished

KMP𝑇 = 𝑃[1…3]
final 𝑙

𝐹 3 = 𝑙
do not start from
scratch, start from where
𝑃[1…2] finished

Fast Computation of 𝐹
 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 Initialize 𝐹[0] = 0

0 1 2 3 4 5 6

0
𝐹

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 1, 𝑇 = 𝑃 1… 𝑗 = 𝑏

0 1 2 3 4 5 6

0
𝐹

𝑃:

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 2, 𝑇 = 𝑃 1… 𝑗 = 𝑏𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 3, 𝑇 = 𝑃 1… 𝑗 = 𝑏𝑎𝑏

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 4, 𝑇 = 𝑃 1… 𝑗 = 𝑏𝑎𝑏𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 5, 𝑇 = 𝑃 1… 𝑗 = 𝑏𝑎𝑏𝑎𝑐

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎
𝒊=𝟓

0

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 6, 𝑇 = 𝑃 1… 𝑗 = 𝑏𝑎𝑏𝑎𝑐𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝑎

𝒍=𝟎
𝒊=𝟓

0

a

𝒍=𝟏
𝒊=𝟔

1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

𝑎

KMP: Computing Failure Array

 More formal analysis
 consider how 2𝑗 − 𝑙 changes in each iteration of

while loop

 one of the three case below applies

1) 𝑗 and 𝑙 both increase by 1

 2𝑗 − 𝑙 increases by 1

failureArray(𝑃)
𝑃: String of length 𝑚 (pattern)

𝐹[0] ← 0
𝑗 ← 1 // parsing 𝑃[1… 𝑗]
𝑙 ← 0
while 𝑗 < m do

if 𝑃[𝑗] = 𝑃[𝑙]
𝑙 ← 𝑙 + 1
𝐹 𝑗 ← 𝑙
𝑗 ← 𝑗 + 1

else if 𝑙 > 0
𝑙 ← 𝐹[𝑙 − 1]

else
𝐹 [𝑗] ← 0
𝑗 ← 𝑗 + 1

2) 𝑙 decreases 𝐹 𝑙 − 1 < 𝑙

 2𝑗 − 𝑙 increases by 1 or more

1) 𝑗 increases by 1

 2𝑗 − 𝑙 increases by 2

 initially 2𝑗 − 𝑙 = 2 ≥ 0

 at the end 2𝑗 − 𝑙 ≤ 2𝑚

 𝑗 = 𝑚, 𝑙 ≥ 0

 no more than 2𝑚 iterations of while loop

 time is Θ(𝑚)

 Pseudocode is almost identical to KMP 𝑇, 𝑃
 main difference: 𝐹[𝑗] gets both used and updated

KMP: main
function runtime

 KMP main function

 failureArray can be computed 𝑖𝑛 Θ(𝑚) time

 Same analysis gives at most 2𝑛 iterations of while loop since 2𝑖 − 𝑗 ≤ 2𝑛

 Running time KMP altogether: Θ(𝑛 +𝑚)

KMP 𝑇, 𝑃
𝐹 ← 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝐴𝑟𝑟𝑎𝑦 𝑃
𝑖 ← 0
𝑗 ← 0
while 𝑖 < 𝑛 do

if 𝑃[𝑗] = 𝑇[𝑖]
if 𝑗 = 𝑚 − 1

return “found at guess 𝑖 − 𝑚 + 1”
else

𝑖 ← 𝑖 + 1
𝑗 ← 𝑗 + 1

else // 𝑃[𝑗] ≠ 𝑇 [𝑖]
if 𝑗 > 0

𝑗 ← 𝐹[𝑗 − 1]
else

𝑖 ← 𝑖 + 1
return 𝐹𝐴𝐼𝐿

Outline

 String Matching

 Introduction

 Karp-Rabin Algorithm

 Knuth-Morris-Pratt algorithm

 Boyer-Moore Algorithm

 Suffix Trees

 Suffix Arrays

 Conclusion

Boyer-Moore Algorithm Motivation

 Fastest pattern matching on English Text

 Important components

 Reverse-order searching

 compare 𝑃 with a guess moving backwards

 When a mismatch occurs choose the better option among the two below

1. Bad character heuristic

 eliminate shifts based on mismatched character of 𝑇

2. Good suffix heuristic

 eliminate shifts based on the matched part (i.e.) suffix of 𝑃

Reverse Searching vs. Forward Searching

w h e r e i s w a l d o

𝑇= whereiswaldo, 𝑃 = aldo

a

w h e r e i s w a l d o

 shift pattern past r

r

a l d o

a l d o

a l d o

 r does not occur in 𝑃 = aldo

o

 w does not occur in 𝑃 = aldo

w

 shift pattern past w

odla

 this bad character heuristic works
well with reverse searching

w

 w does not occur in 𝑃 = aldo

 move pattern past w

o

a l d o

 the first shift moves pattern past w

 no shifts are ruled out

 bad character heuristic does not
work well with forward searching

Bad Character Heuristic: Full Version
 Extends to the case when mismatched text character occurs in 𝑃

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no

 Mismatched character in the text is a

 Find last occurrence of a in 𝑃

a

a a r o n

 Shift the pattern to the left until last a in P aligns with a in text

a a r o na a r o n

Bad Character Heuristic: Full Version
 Extends to the case when mismatched text character does occur in 𝑃

 start matching at the end

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no
a

a a r o na a r o na a r o n[a]

 Mismatched character in the text is a

 Find last occurrence of a in 𝑃

 Shift the pattern to the left until last a in P aligns with a in text

 This is the next possible shift of pattern to explore, skipped shifts are impossible
because they do not match a

Bad Character Heuristic: The Shifting Formula

a c r a n a p p l e
no

a

a a r o na a r o na a r o nn

𝒋=𝟑
𝒊=𝟑

 bad character heuristic can be used only if 𝐿(𝑐) < 𝑗

𝑇= acranapple, 𝑃 = aaron

𝒋=𝟒
𝒊=𝟔

 Let 𝐿(𝑐) be the last occurrence of character 𝑐 in 𝑃

 𝐿 𝐚 = 1 in our example

 define 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃

 When mismatch occurs at text position 𝑖, pattern position 𝑗, update

 𝑗 = 𝑚 − 1

 start matching at the end of the pattern

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) -1 -1 -1 -1 -1

 𝑂(𝑚 + Σ) time

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑖 such that 𝑃 𝑖 = 𝑐

 Example: 𝑃 = aaron

 initialization

 computation

a

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) -1 -1 -1 -1 -10

a

1

r

2

on

34

Bad Character Heuristic: Shifting Formula Explained

 recall 𝐿 𝑐 = −1 for any character 𝑐 that does not occur in 𝑃

 formula also works when mismatched character 𝑐 does not occur in 𝑃

𝑐

𝑖𝑜𝑙𝑑𝐿(𝑐) 𝑖𝑛𝑒𝑤

+𝑳(𝒄)

𝑖𝑜𝑙𝑑 𝑖𝑛𝑒𝑤

+𝒎− 𝟏

−𝑳(𝒄)

−(𝒎− 𝟏)

𝑖𝑛𝑒𝑤− 𝑚 − 1 + 𝐿 𝑐 = 𝑖𝑜𝑙𝑑

𝑖𝑛𝑒𝑤 = 𝑖𝑜𝑙𝑑 +𝑚 − 1 − 𝐿 𝑐

𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

Bad Character Heuristic, Last detail
 Can use bad character heuristic only if 𝐿(𝑐) < 𝑗

a c r a a a p p l e

𝑇= acraaapple, 𝑃 = aaroa

ao
a

𝒋=𝟑
𝒊=𝟑

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

 𝐿 a = 4 > 𝑗 = 3

 𝑖 = 3 + 4 − 4 = 3

 shifts the pattern in the wrong direction!

 Example when 𝐿 𝑐 > 𝑗

 If 𝐿 𝑐 > 𝑗 , do brute-force step

 𝑖 = 𝑖 − 𝑗 + 𝑚

 𝑗 = 𝑚 − 1

 Unified formula that works in all cases : 𝑖 = 𝑖 + 𝑚 − 1 −min{𝐿 𝑐 , 𝑗 − 1}

Boyer-Moore Algorithm

BoyerMoore(𝑇, 𝑃)

𝐿 ← last occurrence array computed from 𝑃

𝑗 ← 𝑚 − 1

𝑖 ← 𝑚 − 1

while 𝑖 < 𝑛 and 𝑗 ≥ 0 do

if 𝑇 𝑖 = 𝑃[𝑗] then

𝑖 ← 𝑖 − 1

𝑗 ← 𝑗 − 1

else

𝑖 ← 𝑖 + 𝑚 − 1 −min{𝐿 𝑐 , 𝑗 − 1}

𝑗 ← 𝑚 − 1

if 𝑗 = −1 return 𝑖 + 1

else return FAIL

Good Suffix Heuristic
 Idea is similar to KMP, but applied to the suffix, since matching backwards

o n o o o b o o o i b b o u n d a r y

𝑃 = onobobo

obob

𝒋=𝟑
𝒊=𝟑

𝑇

 Text has letters obo

 Do the smallest shift so that obo fits

o n o b o b o

 Can precompute this from the pattern itself, before matching starts

 ‘if failure at 𝑗 = 3, shift pattern by 2’

𝒋=𝟔
𝒊=𝟖

 Continue matching from the end of the new shift

 Will not study the precise way to do it

o n o b o b o

Boyer-Moore Summary

 Boyer-Moore performs very well, even when using only bad character
heuristic

 Worst case run time is 𝑂(𝑛𝑚) with bad character heuristic, but in practice
much faster

 On typical English text, Boyer-Moore looks only at ≈25% of text

 With good suffix heuristic, can ensure 𝑂(𝑛 +𝑚 + |Σ|) run time

 no details

Outline

 String Matching
 Introduction
 Karp-Rabin Algorithm
 Knuth-Morris-Pratt algorithm
 Boyer-Moore Algorithm
 Suffix Trees
 Suffix Arrays
 Conclusion

Suffix Tree: trie of Suffixes

 What if we search for many patterns 𝑃 within the same fixed text 𝑇?

 Idea: peprocess the text 𝑇 rather than pattern 𝑃

 Observation: 𝑃 is a substring of 𝑇 if and only if 𝑃 is a prefix of some
suffix of 𝑇

establishment

 Store all suffixes of 𝑇 in a trie

 generalize search to prefixes of stored strings

 To save space

 use compressed trie
 store suffixes implicitly via indices into 𝑇

 This is called a suffix tree

suffix

Trie of suffixes: Example
 T = bananaban

Suffixes = {bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

S = {bananaban$, ananaban$, nanaban$, anaban$,naban$,..., ban$, n$, $}

Trie of suffixes: Example

 If 𝑃 occurs in the text, it is a prefix of one (or more) strings stored in the trie

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

 Will have to modify search in a trie to allow search for a prefix

 T = bananabannan

nan

Trie of suffixes: Example

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = $

$T[9..9]

 Store suffixes via indices

Trie of suffixes: Example

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = a b a n $

T[5..9]

$T[9..9]

 Store suffixes via indices

Tries of suffixes

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

T[9..9]

T[5..9]
n $a

T[7..9]

T[3..9]
$na

$
T[1..9]

nab

$
T[0..9]

naba

a

T[6..9]

n

na

T[8..9]

T[4..9]
n $a

$
T[2..9]

naba

 each leaf 𝑙 stores the start of its
suffix in variable 𝑙. 𝑠𝑡𝑎𝑟𝑡

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 9

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 5

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 3

Suffix tree

0

T[9..9]

1

T[5..9]

2

T[7..9]

3

T[3..9]

T[1..9]T[6..9]

1

3

T[0..9]

T[8..9]

2

T[4..9]

T[2..9]

 Suffix tree: compressed trie of suffixes
0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

Building Suffix Tree

 Building

 text 𝑇 has 𝑛 characters and 𝑛 + 1 suffixes

 can build suffix tree by inserting each suffix of 𝑇 into compressed trie

 takes Θ |Σ|𝑛2 time

 there is a way to build a suffix tree of 𝑇 in Θ(|Σ|𝑛) time

 beyond the course scope

 Pattern Matching

 essentially search for 𝑃 in compressed trie

 some changes needed, since 𝑃 may only be prefix of stored word

 run-time is 𝑂 Σ 𝑚

 Summary

 theoretically good, but construction is slow or complicated and lots of
space-overhead

 rarely used in practice

Outline

 String Matching
 Introduction
 Karp-Rabin Algorithm
 Knuth-Morris-Pratt algorithm
 Boyer-Moore Algorithm
 Suffix Trees
 Suffix Arrays
 Conclusion

Suffix Arrays

 Relatively recent development (popularized in the 1990s)

 Sacrifice some performance for simplicity

 slightly slower (by a log-factor) than suffix trees

 much easier to build

 much simpler pattern matching

 very little space, only one array

 Idea

 store suffixes implicitly, by storing start indices

 store sorting permutation of the suffixes in 𝑇

Suffix Array Example 0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

i suffix 𝑇[𝑖 …𝑛]

0 bananaban$

1 ananaban$

2 nanaban$

3 anaban$

4 naban$

5 aban$

6 ban$

7 an$

8 n$

9 $

sort lexicographically

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

9 5 7 3 1 6 0 8 4 2Suffix Array =
0 1 2 3 4 5 6 7 8 9

Suffix Array Example 0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

i suffix 𝑇[𝑖 …𝑛]

0 bananaban$

1 ananaban$

2 nanaban$

3 anaban$

4 naban$

5 aban$

6 ban$

7 an$

8 n$

9 $

sort lexicographically

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

9 5 7 3 1 6 0 8 4 2Suffix Array =
0 1 2 3 4 5 6 7 8 9

Suffix Array Construction

 Easy to construct using MSD-Radix-Sort (pad with any character to get the same length)

bananaban$

ananaban$*

nanaban$**

anaban$***

naban$****

aban$*****

ban$******

an$*******

n$********

$*********

$********

ananaban$

anaban$***

aban$*****

an$*******

bananaban$

ban$******

nanaban$**

naban$****

n$********

round 𝟏

$********

aban$****

ananaban$

anaban$**

an$******

bananaban$

ban$******

nanaban$**

naban$****

n$********

round 𝟐 round 𝒏

 Fast in practice, suffixes are unlikely to share many leading characters

 But worst case run-time is Θ 𝑛2

 𝑛 rounds of recursion, each round takes Θ 𝑛 time (bucket sort)

$********

aban$****

an$*******

anaban$***

ananaban$*

ban$******

bananaban$

n$********

naban$****

nanaban$**

…

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

Suffix Array Construction
 Idea: we do not need 𝑛 rounds

 Θ log𝑛 rounds enough → Θ 𝑛 log𝑛 run time

 Construction-algorithm

 MSD-radix sort plus some bookkeeping

 needs only one extra array

 easy to implement

 details are covered in an algorithms course

Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

 Suffix array stores suffixes (implicitly) in sorted order

 Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 → ana

Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

 Suffix array stores suffixes (implicitly) in sorted order

 Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 → n$

Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

 Suffix array stores suffixes (implicitly) in sorted order

 Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 = ban$ found!

 Θ log𝑛 comparisons

 Each comparison is strcmp(𝑃, 𝑇[𝐴𝑠 𝑣 …𝐴𝑠 𝑣 + 𝑚 − 1])

 Θ 𝑚 per comparison ⟹ run-time is Θ 𝑚 log 𝑛

Pattern Matching in Suffix Arrays

SuffixArray-Search(𝐴𝑠 𝑗 , 𝑃 0…𝑚 − 1 , 𝑇)

𝐴𝑠: suffix array of 𝑇, 𝑃: pattern

𝑙 ← 0, 𝑟 ← 𝑛 − 1

while 𝑙 < 𝑟

𝑣 ←
𝑙+𝑟

2

𝑖 ← 𝐴𝑠 𝑣

// assume strcmp handles out of bounds suitably

𝑠 ← strcmp(𝑇 𝑖 … 𝑖 + 𝑚 − 1 , 𝑃)

if 𝑠 < 0 do 𝑙 ← 𝑣 + 1

else 𝑠 > 0 do 𝑟 ← 𝑣 − 1

else return ‘found at guess 𝑇 𝑖 … 𝑖 + 𝑚 − 1 ’

if strcmp 𝑃, 𝑇[𝐴𝑠 𝑙 , 𝐴𝑠 𝑙] + 𝑚 − 1]

return ‘found at guess 𝑇 𝑙 … 𝑙 + 𝑚 − 1 ’

return FAIL

Outline

 String Matching
 Introduction
 Karp-Rabin Algorithm
 Knuth-Morris-Pratt algorithm
 Boyer-Moore Algorithm
 Suffix Trees
 Suffix Arrays
 Conclusion

String Matching Conclusion

 Algorithms stop once they found one occurrence

 Most of them can be adapted to find all occurrences within the same
worst-case run-time

Brute
Force

KR BM KMP Suffix Trees Suffix Array

preproc. — 𝑂(𝑚) 𝑂(𝑚 + |∑|) 𝑂(𝑚)
𝑂(|∑|𝑛2)
→ 𝑂(|∑|𝑛)

𝑂(𝑛𝑙𝑜𝑔𝑛)
→ 𝑂(𝑛)

search
time

(preproc
excluded)

𝑂(𝑛𝑚)
𝑂(𝑛 + 𝑚)

expected

𝑂(𝑛)

often
better

𝑂(𝑛) 𝑂(𝑚) 𝑂(𝑚𝑙𝑜𝑔𝑛)

extra space — 𝑂(1) 𝑂(𝑚 + |∑|) 𝑂(𝑚) 𝑂(𝑛) 𝑂(𝑛)

