CS 240 – Data Structures and Data Management

Module 11: External Memory

M. Petrick V. Sakhnini O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2021

Outline

- Motivation
- Stream based algorithms
- External sorting
- External dictionaries
 - 2-4 Trees
 - (*a*, *b*)-Trees
 - B-Trees

Outline

- Motivation
- Stream based algorithms
- External sorting
- External dictionaries
 - 2-4 Trees
 - (*a*, *b*)-Trees
 - B-Trees

Different levels of memory

- Current architectures
 - registers: super fast, very small
 - cache L1, L2: very fast, less small
 - main memory: fast, large
 - disk or cloud: slow, very large
- How to adapt algorithms to take memory hierarchy into consideration?
 - desirable to minimize transfer between slow/fast memory
- To simplify, we focus on two levels of hierarchy
 - main (internal) memory and disk or cloud (external) memory
 - accessing a single location in external memory automatically loads a whole block (or "page")
 - one block access can take as much time as executing 100,000 CPU instructions
 - need to care about the number of block accesses
 - new objective
 - revisit ADTs/problems with the objective of minimizing block transfers ("probes", "disk transfers", "page loads")

Outline

- Motivation
- Stream based algorithms
- External sorting
- External dictionaries
 - 2-4 Trees
 - (*a*, *b*)-Trees
 - B-Trees
- Extendible Hashing

- We studied some algorithms that handle input/output with streams
 - can access only the top item in input stream, can append only to tail of the output stream

- Repeat
 - 1. take item off top of the input
 - 2. process item
 - 3. put the result of processing at the tail of output

- We studied some algorithms that handle input/output with streams
 - can access only the top item in input stream, can append only to tail of the output stream

- Repeat
 - 1. take item off top of the input
 - 2. process item
 - 3. put the result of processing at the tail of output

- We studied some algorithms that handle input/output with streams
 - can access only the top item in input stream, can append only to tail of the output stream

- Repeat
 - 1. take item off top of the input
 - 2. process item
 - 3. put the result of processing at the tail of output

- We studied some algorithms that handle input/output with streams
 - can access only the top item in input stream, can append only to tail of the output stream

- Repeat
 - 1. take item off top of the input
 - 2. process item
 - 3. put the result of processing at the tail of output

- We studied some algorithms that handle input/output with streams
 - can access only the top item in input stream, can append only to tail of the output stream

- Repeat
 - 1. take item off top of the input
 - 2. process item
 - 3. put the result of processing at the tail of output

- We studied some algorithms that handle input/output with streams
 - can access only the top item in input stream, can append only to tail of the output stream

- Repeat
 - 1. take item off top of the input
 - 2. process item
 - 3. put the result of processing at the tail of output

- Data in external memory has to be placed in internal memory before it can be processed
- Idea: perform the same algorithm as before, but in "block-wise" manner
 - have one block for input, one block for output in internal memory
 - transfer a block (size B) to internal memory, process it as before, store result in output block
 - when output stream is of size B (full block), transfer it to external memory
 - when current block is in internal memory is fully processed, transfer next unprocessed block from external memory

- Running time is (recall that we only count the block transfers now)
 - input stream: $\frac{n}{R}$ block transfers to read input of size n
 - output stream: $\frac{s}{B}$ block transfers to write output of size s
- Running time is *automatically* as efficient as possible for external memory
 - any algorithm needs at least $\frac{n}{B}$ block transfers to read input of size n and $\frac{s}{B}$ block transfers to write output of size s

- Methods below use stream input/output model, therefore need $\Theta\left(\frac{n}{B}\right)$ block transfers, assuming output size is O(n)
 - Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore
 - assuming pattern P fits into internal memory
 - Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch

Outline

External Memory

- Motivation
- Stream based algorithms

External sorting

- External dictionaries
 - 2-4 Trees
 - (*a*, *b*)-Trees
 - B-Trees
- Extendible Hashing

Sorting in external memory

- Sort array *A* of *n* numbers
 - *n* is huge so that *A* is stored in blocks in external memory
- Heapsort was optimal in time and space in RAM model
 - poor memory locality: accesses indices of A that are far apart

- typically one block transfer per array access
 - access 2 blocks, but need only 2 elements in these blocks
 - all other data read in these 2 blocks is not used
- heapsort does not adapt well to data stored in external memory
- Mergesort adapts well to array stored in external memory
 - based on merging already sorted parts of the array
 - access consecutive locations of A, ideal for reading in blocks

key idea: merge can be done with streams

Recall Mergesort

Recall Mergesort: non-recusive view

- Several rounds of merging adjacent pairs of sorted *runs* (run = subarray)
 - in round *i*, merge sorted runs of size 2ⁱ
- Graphical notation

B = 4

output block is full, transfer to external memory

B = 4

input block for S_2 is empty, transfer next block for S_2 from external memory

B = 4

B = 4

B = 4

output block is full, transfer to external memory

B = 4

B = 4

input block for S_1 is empty, transfer next block for S_1 from external memory

B = 4

MergeSort Run Time in External Memory

- Merge uses streams S₁, S₂, S
 - each block in the stream is transferred exactly once
- Merge takes $\frac{n}{B}$ block transfers for input streams and $\frac{n}{B}$ for output stream, total $\frac{2n}{B}$
- Recall that MergeSort uses log₂ n rounds of merging
- MergeSort run-time to sort is $\frac{2n}{B} \cdot \log_2 n$ block transfers
 - not bad but we can do better

Towards *d*-way Mergesort

Observe that we had space left in internal memory during Merge

- We use only three blocks in internal memory, but typically $M \gg 3B$
 - *M* is the size of the internal memory
- Idea: can merge d parts at once, and it still takes $\frac{2n}{R}$ of block transfers
- Here $d \approx \frac{M}{B} 1$ so that d + 1 blocks fit into internal memory

d-way Mergesort

- Merge d sorted runs at one time
 - *d* = 2 gives standard mergesort
- Example: d = 4

- $\log_d n = \frac{\log_2 n}{\log_2 d}$ rounds
 - the larger is d the less rounds
- How to merge d sorted runs efficiently?
 - *d*-way merge

d-way Merge

■ *d* = 3

■ *d* = 5

■ *d* = 16

NIN

Need efficient data structure to find the minimum among d current tops_

although it does not effect efficiency in terms of block transfers

- Use min heap to find the smallest element among of *d* current tops
 - (key,value) = (element, sorted run)

- Heap must have current fronts from all sorted runs
 - unless some sorted run ends

d-way Merge with Min Heap Pseudo Code

d-Way-Merge (S_1, \ldots, S_d, S) S_1, \ldots, S_d are sorted input streams, S is output stream $P \leftarrow empty min-priority queue$ // P always holds current top elements of S_1, \ldots, Sd $\Theta(d \log_2 d) = \begin{bmatrix} \text{for } i \leftarrow 1 \text{ to } d \text{ do} \\ P.\text{insert}(S_i.top(),,i) \end{bmatrix}$ while *P* is not empty **do** $(x,i) \leftarrow P.deleteMin() // removes current top of S_i from P$ S.append(x) $\Theta(n \log_2 d)$ if S_i is not empty **do** // current top of S_i is not represented in P, add it $P.insert(S_i.top(), i)$

- Running time of operations in internal memory
 - priority queue P has size d at all times
 - while loop runs for n d iterations, where $n = |S_1| + \dots + |S_d|$ at each iteration
 - one *deleteMin()* on heap of size d, time is $\Theta(\log_2 d)$
 - one *insert*() on heap of size d, time is $\Theta(\log_2 d)$
 - Total time is $\Theta(n \log_2 d)$

d-way Merge with Min Heap Pseudo Code

d-Way-Merge (S_1, \ldots, S_d, S) S_1, \ldots, S_d are sorted input streams, S is output stream $P \leftarrow empty min-priority queue$ // P always holds current top elements of S_1, \ldots, Sd $\Theta(d \log_2 d) = \begin{bmatrix} \text{for } i \leftarrow 1 \text{ to } d \text{ do} \\ P.\text{insert}(S_i.top(),,i) \end{bmatrix}$ while *P* is not empty **do** $(x, i) \leftarrow P.deleteMin() // removes current top of S_i from P$ S.append(x) $\Theta(n \log_2 d)$ if S_i is not empty **do** // current top of S_i is not represented in P, add it $P.insert(S_i.top(), i)$

- Running time of operations in internal memory
 - priority queue P has size d at all times
 - while loop runs for n d iterations, where $n = |S_1| + \dots + |S_d|$ at each iteration
 - one *deleteMin()* on heap of size d, time is $\Theta(\log_2 d)$
 - one *insert*() on heap of size d, time is $\Theta(\log_2 d)$
 - Total time is $\Theta(n \log_2 d)$
- Number of block transfers is $\frac{2n}{B}$, assuming d + 1 blocks and P fit into main memory

One Round of *d*-way Mergesort Running time

- In internal memory, d-way merge is $\Theta(n \log_2 d)$
 - $\bullet \quad n = |S_1| + \dots + |S_d|$
- We need to *d*-way merge multiple number of times for one round of *d*-way Mergesort

- let m_1 be the number of elements in the first set of d sequences we merge
 - time to merge is $\Theta(m_1 \log_2 d)$
- let m_2 be the number of elements in the second set of d sequences we merge
 - time to merge is $\Theta(m_2 \log_2 d)$
- •
- let m_k be the number of elements in the last set of d sequences we merge
 - time to merge is $\Theta(m_k \log_2 d)$
- Total time to merge is $\Theta(m_1 \log_2 d + m_2 \log_2 d + ... + m_k \log_2 d) = \Theta(n \log_2 d)$
 - since $m_1 + m_2 + \dots + m_k = n$
 - where n is the size of the whole sequence
- Similarly, for external memory analysis, the total number of block transfers is $\frac{2n}{R}$

d-way Mergesort Complexity In Internal Memory

- $\log_d n$ rounds
- Running time for one round is $\Theta(n \log_2 d)$
- Total time $\Theta(\log_d n \cdot n \log_2 d) = \Theta\left(\frac{\log_2 n}{\log_2 d} \cdot n \log_2 d\right) = \Theta(n \log_2 n)$
- In internal memory, d-way merge sort has the same running time theoretically
 - in practice , d-way merge is slower due to the overhead of maintaining a heap

d-way Mergesort Complexity In External Memory

- How do we gain advantage in external memory?
 - only block transfers count, each round is $\Theta\left(\frac{n}{B}\right)$ block transfers, no matter what d is
 - assuming d is such that d + 1 blocks plus priority queue fit into internal memory
- $\log_d n$ rounds, time for each round is $\Theta\left(\frac{n}{B}\right)$ block transfers
- Total time $\Theta\left(\frac{n}{B} \cdot \log_d n\right)$
 - better than $\Theta\left(\frac{n}{B} \cdot \log_2 n\right)$ for large d

d-way Mergesort Complexity In External Memory

- Further improvements
 - proceed bottom-up with while loops, rather than top-down with recursion
 - reduce number of rounds by starting immediately with runs of length M

- Suppose M = 22
 - start by sorting subarrays of size 22 in the main memory
 - avoids several rounds of merging

• External (B = 2)

					_															_			
5	10	22	28	29	33	37	39	8	21	30	31	40	45	52	54	11	12	13	35	36	42	49	53

Internal memory M = 8

- 1. Create $\frac{n}{M}$ sorted runs of length M
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm

• External (B = 2)

39	5	28	22	10	33	29	37	8	30	54	40	31	52	21	45	35	11	42	53	13	12	49	36	4	14	27	9	44	3	32	15
33	1 2	20	~~~		1 33	25	31	۱°	1 30	J4	40	51	52	21	40	33		42	55	1 13	12	40	1 30	1 7	14	1 ² '	3		J	52	13

39	5	28	22	10	33	29	37
----	---	----	----	----	----	----	----

- 1. Create $\frac{n}{M}$ sorted runs of length M
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm

• External (B = 2)

39	5	28	22	10	22	29	37	8	30	54	40	31	52	21	45	35	11	42	53	13	12	49	36	4	14	27	٩	44	3	32	15
39	1 2	20	22		33	29	31	l °	30	54	40	31	52	21	45	35		42	55	13	12	49	30	4	14	21	9	44	3	32	15

5	10	22	28	29	33	37	39
---	----	----	----	----	----	----	----

- 1. Create $\frac{n}{M}$ sorted runs of length M
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm

• External (B = 2)

	_	_		_			_																								
																														1 7	í I
5	10	22	28	20	22	27	20	<u>8</u>	30	54	40	31	52	1 21	15	35	11	1 12	53	13	12	49	36	1 1	14	1 27	۱۵	44	2	1 22 1	1 15
	1 10	44	20	23	- 55	57	33		1 30	J4	40	51	J J Z	1 21	45	55		1 44	1 33	1.0	14	43	1 30		1 1 1 1	1 41	1 3		1 3	3 2	1 10
																															4

sorted run

5	10	22	28	29	33	37	39	
---	----	----	----	----	----	----	----	--

- 1. Create $\frac{n}{M}$ sorted runs of length M
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm

• External (B = 2)

5	10	22	28	29	33	37	39	8	30	54	40	31	52	21	45	35	11	42	53	13	12	49	36	4	14	27	9	44	3	32	15
																															1

sorted run

8	30	54	40	31	52	21	45	
---	----	----	----	----	----	----	----	--

- 1. Create $\frac{n}{M}$ sorted runs of length M
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm

• External (B = 2)

5	10	22	28	29	33	37	39	8	30	54	40	31	52	21	45	35	11	42	53	13	12	49	36	4	14	27	9	44	3	32	15
																															(

sorted run

8 21	30 31	40 45	5 52	54	
------	-------	-------	------	----	--

- 1. Create $\frac{n}{M}$ sorted runs of length M
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm

• External (B = 2)

- 1. Create $\frac{n}{M}$ sorted runs of length M
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm

• External (B = 2)

- 1. Create $\frac{n}{M}$ sorted runs of length *M*. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge
- 3. Keep merging the next runs to complete one round. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - after one round of merging, number of sorted runs reduced by a factor of a

- 1. Create $\frac{n}{M}$ sorted runs of length M. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - bring consecutive chunks of size M into internal memory
 - sort each chunk with an efficient sorting algorithm
- 2. Merge first $d \approx \frac{M}{B} 1$ sorted runs using *d*-way-Merge
- 3. Keep merging the next runs to complete one round. Takes is $\Theta\left(\frac{n}{B}\right)$ block transfers
 - after one round of merging, number of sorted runs reduced by a factor of d
- 4. Keep doing rounds until we get just one sorted run

d-Way Mergesort in External Memory: Running time

- Have $\log_d \frac{n}{M}$ rounds of merging
 - $\frac{n}{M}$ runs after initialization
 - each round decreases the number of sorted runs by a factor of d
 - $\frac{n}{M}/d$ runs after one round
 - $\frac{n}{M}/d^k$ runs after k rounds

• stop when
$$\frac{\frac{n}{M}}{d^k} = 1 \Longrightarrow k = \log_d \frac{n}{M}$$

• Each round takes
$$\Theta\left(\frac{n}{B}\right)$$
 block transfers

Total number of bock transfers is proportional to $\frac{n}{B} \cdot \log_d \frac{n}{M} \in O\left(\frac{n}{R} \cdot \log_{M/B} \frac{n}{M}\right)$

since $d \approx \frac{M}{R} - 1$

One can prove lower bound in external memory model for comparison sorting

$$\Omega\left(\frac{n}{B} \cdot \log_{M/B} \frac{n}{M}\right)$$

Thus d-way mergesort is optimal (up to constant factors)

Outline

External Memory

- Motivation
- Stream Based Algorithms
- External sorting
- External Dictionaries
 - 2-4 Trees
 - (*a*, *b*)-Trees
 - B-Trees

Dictionaries in External Memory: Motivation

- AVL tree based dictionary implementations have poor *memory locality*
 - tree nodes are in non-contiguous memory locations
 - for any tree path, each node is usually in a different block

- In an AVL tree $\Theta(\log n)$ blocks are loaded in the worst case
- Idea: define multi-way tree
 - one node stores many KVPs
 - for multi-way trees, b 1 KVPs $\Leftrightarrow b$ subtrees
- To allow insert/delete, we permit a varying number of KVPs in nodes
- This gives much smaller height than AVL-trees
 - smaller height implies fewer block transfers
- First consider a special case: 2-4 trees
 - 2-4 trees also used for dictionaries in internal memory
 - may be even faster than AVL-trees

Outline

External Memory

- Motivation
- Stream based algorithms
- External sorting
- External dictionaries
 - 2-4 Trees
 - (*a*, *b*)-Trees
 - B-Trees

2-4 Trees Motivation

 Binary Search Tree supports efficient search with special key ordering

- Need nodes that store more than one key
 - how to support efficient search?

 Need additional properties to ensure tree is balanced and therefore *insert*, *delete* are efficient

2-4 Trees

- Structural properties
 - Every node is either
 - 1-node: one KVP and two subtrees (possibly empty), or
 - 2-node: two KVPs and three subtrees (possibly empty), or
 - 3-node: three KVPs and four subtrees (possibly empty)
 - allowing 3 types of nodes simplifies insertion/deletion
 - All empty subtrees are at the same level
 - necessary for ensuring height is logarithmic in the number of KVP stored
- Order property: keys at any node are between the keys in the subtrees

2-4 Tree Example

 Empty subtrees are not part of height computation

tree of height 1

- Will prove height is O(log n) later, when we talk about (a,b)-trees
 - 2-4 tree is a special type of (a,b)-tree

2-4 Tree: Search Example

Search

- similar to search in BST
- search(k) compares key k to k1, k2, k3, and either finds k among k1, k2, k3 or figures out which subtree to recurse into
- if key is not in tree, search returns parent of empty tree where search stops
 - key can be inserted at that node
- search(15)

2-4 Tree operations

```
24Tree::search(k, v \leftarrowroot, p \leftarrowempty subtree)
k: key to search, v: node where we search; p: parent of v
        if v represents empty subtree
                 return "not found, would be in p"
       let < T_0, k_1, \ldots, k_d, T_d > be key-subtrees list at v
       if k \geq k_1
                 i \leftarrow \text{maximal index such that } k_i \leq k
                 if k_i = k
                      return "at ith key in v"
                else 24Tree::search(k, T_i, v)
       else 24Tree::search(k, T_0, v)
```


- Example: 24TreeInsert(9)
 - first step is 24Tree::search(9)
 - insert at the leaf node returned by search

- Example: 24TreeInsert(9)
 - first step is 24Tree::search(9)
 - insert at the leaf node returned by search
 - node stays valid, it now has 3 KVPs, which is allowed

- Example: 24TreeInsert(17)
 - first step is 24Tree::search(17)
 - insert at the leaf node returned by search

- Example: 24TreeInsert(17)
 - now leaf has 4 KVPs, not allowed, have to fix this

- Example: 24TreeInsert(17)
 - now leaf has 4 KVPs, not allowed, have to fix this

- Example: 24TreeInsert(17)
 - overflow propagates to the parent of split node

- Example: 24TreeInsert(17)
 - when splitting the root node, need to create new root

Example: 24TreeInsert(17)

2-4 Tree Insert Pseudocode

```
24Tree::insert(k)
       v \leftarrow 24Tree::search(k) //leaf where k should be
       add k and an empty subtree in key-subtree-list of v
       while v has 4 keys (overflow \rightarrow node split)
                      let < T_0, k_1, \ldots, k_4, T_4 > be key-subtrees list at v
                      if v has no parent
                                create an empty parent of v
                      p \leftarrow \text{parent of } v
                      v' \leftarrow new node with keys k_1, k_2 and subtrees T_0, T_1, T_2
                      v'' \leftarrow new node with key k_4 and subtrees T_3, T_4
                      replace \langle v \rangle by \langle v', k_3, v'' \rangle in key-subtree-list of p
                      v \leftarrow p //continue checking for overflow upwards
```


2-4 Tree: Immediate Sibling

• A node can have an *immediate* left sibling, immediate right sibling, or both

Any node except the root must have an immediate sibling

2-4 Tree: Inorder Successor

 Inorder successor of key k is the smallest key in the subtree immediately to the right of k

- Example: *delete*(51)
- Search for key to delete
 - can delete keys only from a leaf node
 - replace key with inorder successor

- Example: *delete*(51)
- Search for key to delete
 - can delete keys only from a leaf node
 - replace key with in-order successor

- Example: *delete*(51)
- Search for key to delete
- Done!

- Example: delete(43)
- Search for key to delete
 - can delete keys only from a leaf node
 - replace key with in-order successor

- Example: *delete*(43)
- Search for key to delete
 - can delete keys only from a leaf node
 - replace key with in-order successor

- Example: delete(43)
 - *rich* immediate sibling, transfer key from sibling, with help from the parent
 - sibling is *rich* if it is a 2-node or 3-node
 - adjacent subtree from sibling is also transferred

- Example: delete(43)
 - rich immediate sibling, transfer key from sibling, with help from the parent
 - sibling is *rich* if it is a 2-node or 3-node
 - adjacent subtree from sibling is also transferred

- Example: *delete*(19)
 - first search(19)

- Example: *delete*(19)
 - first search(19)
 - then delete key 19 (and an empty subtree) from the node
 - immediate siblings exist, but not rich, cannot transfer

- Example: delete(19)
 - immediate siblings exist, but not rich, cannot transfer
 - merge with right immediate sibling with help from parent

- Example: *delete*(19)
 - immediate siblings exist, but not rich, cannot transfer
 - merge with right immediate sibling with help from parent
 - all subtrees merged together as well

- Example: *delete*(42)
 - first search(42)
 - delete key 42 with one empty subtree

- Example: *delete*(42)
 - first search(42)
 - the only immediate sibling is not rich, perform merge

- Example: *delete*(42)
 - first search(42)
 - the only immediate sibling is not rich, perform merge
 - all subtrees merged together as well

- Example: *delete*(42)
 - merge operation can cause underflow at the parent node
 - while needed, continue fixing the tree upwards
 - possibly all the way to the root

- Example: delete(42)
 - the only sibling is not rich, perform a merge

- Example: *delete*(42)
 - the only sibling is not rich, perform a merge
 - subtrees are merged as well
 - continue fixing the tree upwards

- Example: delete(42)
 - the only sibling is not rich, perform a merge

- Example: delete(42)
 - the only sibling is not rich, perform merge
 - underflow at parent node
 - it is the root, delete root

- Example: delete(42)
 - the only sibling is not rich, perform merge
 - underflow at parent node
 - it is the root, delete root

- Example: delete(28)
 - first search(28)
 - delete key 28 with one empty subtree

- Example: delete(28)
 - first search(28)
 - delete key 28 with one empty subtree

- Example: delete(28)
 - first search(28)
 - delete key 28 with one empty subtree
 - merge with the only immediate sibling, who is not rich

- Example: delete(28)
 - first search(28)
 - delete key 28 with one empty subtree
 - merge with the only immediate sibling, who is not rich

- Example: delete(28)
 - transfer from a rich immediate sibling

- Example: delete(28)
 - transfer from a rich immediate sibling
 - together with a subtree

2-4 Tree Delete Summary

- If key not at a leaf node, swap with inorder successor (guaranteed at leaf node)
- Delete key and one empty subtree from the leaf node involved in swap
- If underflow
 - If there is an immediate sibling with more than one key, transfer
 - no further underflows caused
 - do not forget to transfer a subtree as well
 - convention: if two siblings have more than one key, transfer with the right sibling
 - If all immediate siblings have only one key, merge
 - there must be at least one sibling, unless root
 - if root, delete
 - convention: if two immediate siblings with one key, merge with the right one
 - merge may cause underflow at the parent node, continue to the parent and fix it, if necessary

Deletion from a 2-4 Tree

24Tree::delete(k) $v \leftarrow 24$ Tree::search(k) //node containing k if v is not a leaf swap k with its inorder successor k'swap v with leaf that contained k'delete k and one empty subtree in key-subtree-list of vwhile v has 0 keys // underflow if v is the root, delete v and break if v has immediate sibling u with 2 or more KVPs // transfer, then done! transfer the key of u that is nearest to v to ptransfer the key of p between u and v to vtransfer the subtree of u that is nearest to v to vbreak else // merge and repeat $u \leftarrow \text{immediate sibling of } v$ transfer the key of p between u and v to utransfer the subtree of v to udelete node v $v \leftarrow p$

2-4 Tree Summary

- 2-4 tree has height O(log n)
 - in internal memory, all operations have run-time O(log n)
 - this is no better than AVL-trees in theory
 - but 2-4 trees are faster than AVL-trees in practice, especially when converted to binary search trees called red-black trees
 - no details
- 2-4 tree has height $\Omega(\log n)$
 - tree of height h has at most $n = 4^{h+1} 1$ KVPs
 - thus h is $\Omega(\log n)$
- So 2-4 tree is not significantly better than AVL-tree wrt block transfers
- But can generalize the concept to decrease the height

Outline

External Memory

- Motivation
- Stream based algorithms
- External sorting
- External dictionaries
 - 2-4 Trees
 - (*a*, *b*)-Trees
 - B-Trees

(*a*, *b*)-Trees

- 2-4 Tree is a specific type of (a, b)-tree
- (a, b)-tree satisfies
 - each node has at least *a* subtrees, unless it is the root
 - root must have at least 2 subtrees
 - each node has at most *b* subtrees
 - if node has k subtrees, then it stores k 1 key-value pairs (KVPs)
 - all empty subtrees are at the same level
 - keys in the node are between keys in the corresponding subtrees

• requirement:
$$a \le \left\lfloor \frac{b}{2} \right\rfloor = \lfloor (b+1)/2 \rfloor$$

(*a*, *b*)-Trees: Root

- Why special condition for the root?
- Needed for (a,b)-tree storing very few KVP
- (3,5) tree storing only 1 KVP

- Could not build it if forced the root to have at least 3 children
 - remember # keys at any node is one less than number of subtrees

(*a*, *b*)-Trees

- Because $a \leq \lfloor (b+1)/2 \rfloor$ search, insert, delete work just like for 2-4 trees
 - straightforward redefinition of underflow and overflow
- For example, for (3,5)-tree
 - at least 3 children, at most 5
 - each node is at least a 2-node, at most a 4-node
 - during insert, overflow if get a 5-node

split results in two 2-nodes, and 2-nodes are smallest allowed nodes

- If $a > \lfloor b/2 \rfloor$, for example if allow (4,5)-tree, cannot split like before
 - equal (best possible) split results in two 2 nodes, which is not allowed
- In general, overflow means node has *b* + 1 subtrees
 - node split in the middle means new nodes have at least $\lfloor (b+1)/2 \rfloor$ subtrees
 - since $a \leq \lfloor (b+1)/2 \rfloor$, each new node has at least *a* subtrees, as required

(*a*, *b*)-Trees delete

- For example, for (3,5)-tree
 - at least 3 children, at most 5
 - each node is at least a 2-node, at most a 4-node
 - during insert, underflow if get a 1-node
 - if we have an immediate sibling which is rich (3 or 4-node), do transfer
 - otherwise, do merge
 - guaranteed to have at least one sibling which is a 2-node

Height of (*a*, *b*)-tree

Height = number of levels **not** counting empty subtrees

Height of (a, b)-tree

- Consider (a,b)-tree with the smallest number of KVP and of height h
 - red node (the root) has 1 KVP, blue nodes have (a 1) KVP

$$n \ge 2a^h - 1$$
, therefore, $\log_a \frac{n+1}{2} \ge h$

• Height of tree with n KVPs is $O(\log_a n) = O(\log n / \log a)$

Useful Fact about (*a*, *b*)-trees

- number of of KVP = number of empty subtrees − 1 in any (*a*, *b*)-tree
 - **Proof:** Put one stone on each empty subtree and pass the stones up the tree. Each node keeps 1 stone per KVP, and passes the rest to its parent. Since for each node, #KVP = # children 1, each node will pass only 1 stone to its parent. This process stops at the root, and the root will pass 1 stone outside the tree. At the end, each KVP has 1 stone, and 1 stone is outside the tree.

Useful Fact about (*a*, *b*)-trees

(*a*, *b*)-Tree Analysis in Internal Memory

- Search, insert, delete each require visiting $\Theta(height)$ nodes
- Height is O(log n/log a)
- Recall that $a \leq \left[\frac{b}{2}\right]$ is required for insert and delete to work correctly
- Therefore, chose $a = \left[\frac{b}{2}\right]$ to minimize the height
- Work at a node can be done in O(log b) time
- Total cost

$$O\left(\frac{\log n}{\log a} \cdot \log b\right) = O\left(\frac{\log b}{(\log b) - 1} \cdot \log n\right) = O(\log n)$$

- This is not better than AVL-trees in internal memory
- But the main motivation for (a,b)-tree is external memory

Outline

External Memory

- Motivation
- Stream based algorithms
- External sorting
- External dictionaries
 - 2-4 Trees
 - (*a*, *b*)-Trees
 - B-Trees

B-trees

- B-tree is a type of (a, b)-tree tailored to the external memory model
- In B-tree, a = [b/2]
- Thus we usually specify B-tree by giving b
 - *b* is called the order of B-tree
 - B-tree or order b is a ([b/2], b)-tree
 - typically $b \in \Theta(B)$
- Every node is one block (size *B*) of memory
- Choose b so that a node with b 1 KVPs (and hence b 1 value references and b subtree references) fits into one block

B-trees in External Memory

Close-up on one node in one block

external memory

- In this example, 17 references fit into one block, so B-tree can have order 6
- Note that each block is at least half full
 - since each node is at least [b/2]-node

B-tree Analysis in External Memory

- Search, insert, and delete each requires visiting $\Theta(height)$ nodes
 - Θ(*height*) block transfers
- Work within a node is done in internal memory, no block transfers
- The height is $\Theta(\log_b n) = \Theta(\log_B n)$
 - since $b \in \Theta(B)$
- So all operations require $\Theta(\log_B n)$ block transfers
 - this is asymptotically optimal
- There are variants that are even better in practice
- B-trees are hugely important for storing databases (cs448)

Example of B-tree usage

- *B*-tree of order 200
 - *B*-tree of order 200 and height 2 can store up to $200^3 1$ KVPs
 - from the 'useful fact' proven before
 - if we store root in internal memory, then only 2 block reads are needed to retrieve any item