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Selection Problem

0 1 2 3 4 5 6 7 8 9
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 Special case: median  finding  (𝑘 =
𝑛

2
)

 Heap-based selection can be done in Θ(𝑛 + 𝑘 log 𝑛)

 this is Θ 𝑛 log𝑛 for median finding

 the same cost as our best sorting algorithms

 Question: can we do selection in linear time?

 yes, with quick-select (average case analysis)

 subroutines for quick-select also useful for sorting algorithms

select(2)

 Given array 𝐴 of 𝑛 numbers, and  0 ≤ 𝑘 < 𝑛, find the element that 
would be at position 𝑘 if 𝐴 was sorted

 ‘select 𝑘’   
 𝑘 elements are smaller or equal, 𝑛 − 1 − 𝑘 elements are larger or equal 



Crucial Subroutines

 quick-select and related algorithm quick-sort rely on two subroutines

 choose-pivot(𝐴)

 return an index 𝑝 in A 

0 1 2 3 4 5 6 7 8 9

30 60 10 0 50 80 90 20 40 70

𝑝 = 4

 use  pivot-value  𝑣 ← 𝐴 𝑝 to rearrange the array

𝒗 =50

0 1 2 3 4 5 6 7 8 9𝑖 = 5

30 10 0 20 40 𝒗 =50 60 80 90 70

 all items in 𝐴 [𝑖 + 1,… , 𝑛 − 1] are ≥ 𝑣

 partition (𝐴, 𝑝) rearranges 𝐴 so that

 all items in 𝐴 [0, … , 𝑖 − 1] are  ≤ 𝑣

 pivot-value 𝑣 is in 𝐴[𝑖]

 𝑖 is a correct location of 𝑣 in sorted  𝐴

 index 𝑖 is called  pivot-index 𝑖

 partition 𝐴, 𝑝 returns  pivot-index 𝑖

 if we were interested in select(𝑖), then 𝑣 would be the answer



Choosing Pivot

choose-pivot1(𝐴)
return A.size() – 1

 Will consider more sophisticated ideas later

 Simplest idea for choose-pivot

 always select rightmost element in array

0 1 2 3 4 5 6 7 8 9

30 60 10 0 50 80 90 20 40 70
𝑝 = 9
𝒗 =70



Partition Algorithm

 More challenging: partition in-place, i.e. O(1) auxiliary space

 Easy linear-time implementation using extra (auxiliary) Θ(𝑛) space 

partition(𝐴, 𝑝)

A: array of size 𝑛, 𝑝: integer s.t. 0 ≤ 𝑝 < 𝑛

create empty lists 𝑠𝑚𝑎𝑙𝑙, 𝑒𝑞𝑢𝑎𝑙 and 𝑙𝑎𝑟𝑔𝑒

𝑣 ← 𝐴[𝑝]

for each element 𝑥 in 𝐴

if 𝑥 < 𝑣 then 𝑠𝑚𝑎𝑙𝑙. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

else if 𝑥 > 𝑣 then 𝑙𝑎𝑟𝑔𝑒. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

else 𝑒𝑞𝑢𝑎𝑙. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

𝑖 ← 𝑠𝑚𝑎𝑙𝑙. 𝑠𝑖𝑧𝑒

𝑗 ← 𝑒𝑞𝑢𝑎𝑙. 𝑠𝑖𝑧𝑒

overwrite 𝐴[0 . . . 𝑖 − 1] by   elements in 𝑠𝑚𝑎𝑙𝑙

overwrite  𝐴[𝑖 … 𝑖 + 𝑗 − 1] by elements in  𝑒𝑞𝑢𝑎𝑙

overwrite 𝐴[𝑖 + 𝑗 . . . 𝑛 − 1] by elements in 𝑙𝑎𝑟𝑔𝑒

return i



i = -1 j = 9

Efficient In-Place partition (Hoare)
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i = 0 j = 9
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almost done, 
just swap with  
pivot 𝑣
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Efficient In-Place partition (Hoare)

 One possible implementation

do 𝑖 ← 𝑖 + 1 while  𝑖 < 𝑛 and 𝐴 𝑖 ≤ 𝑣

do 𝑗 ← 𝑗 − 1 while 𝑗 > 0 and  𝐴 𝑗 ≥ 𝑣

 More efficient (for quickselect and quicksort) when many repeating elements

do 𝑖 ← 𝑖 + 1 while 𝑖 < 𝑛 and  𝐴 𝑖 < 𝑣

do 𝑗 ← 𝑗 − 1 while 𝑗 > 0 and  𝐴 𝑗 > 𝑣

≤ v ? ≥ v v

i j

 Idea Summary: Keep swapping the outer-most wrongly-positioned pairs

 Can simplify the loop bounds 

do 𝑖 ← 𝑖 + 1 while  𝐴 𝑖 < 𝑣

do 𝑗 ← 𝑗 − 1 while 𝑗 ≥ 𝑖 and 𝐴 𝑗 > 𝑣



Efficient In-Place partition (Hoare)

partition (𝐴, 𝑝)

𝐴: array of size 𝑛

𝑝: integer s.t. 0 ≤ 𝑝 < 𝑛

swap 𝐴 𝑛 − 1 , 𝐴 𝑝
𝑖 ← −1, 𝑗 ← 𝑛 − 1, 𝑣 ← 𝐴 𝑛 − 1

loop

do 𝑖 ← 𝑖 + 1 while 𝐴 𝑖 < 𝑣

do 𝑗 ← 𝑗 − 1 while 𝑗 ≥ 𝑖 and  𝐴 𝑗 > 𝑣

if  𝑖 ≥ 𝑗 then break

else  swap(𝐴 𝑖 , 𝐴[𝑗])

end loop

swap(𝐴 𝑛 − 1 , 𝐴[𝑖])

return   𝑖

 Running time is Θ(𝑛)



Efficient In-Place partition (Hoare)

partition (𝐴, 𝑝)

𝐴: array of size 𝑛

𝑝: integer s.t. 0 ≤ 𝑝 < 𝑛

swap 𝐴 𝑛 − 1 , 𝐴 𝑝
𝑖 ← −1, 𝑗 ← 𝑛 − 1, 𝑣 ← 𝐴 𝑛 − 1

loop

do 𝑖 ← 𝑖 + 1 while 𝐴 𝑖 < 𝑣

do 𝑗 ← 𝑗 − 1 while 𝑗 ≥ 𝑖 and  𝐴 𝑗 > 𝑣

if  𝑖 ≥ 𝑗 then break

else  swap(𝐴 𝑖 , 𝐴[𝑗])

end loop

swap(𝐴 𝑛 − 1 , 𝐴[𝑖])

return   𝑖

 Running time is Θ(𝑛)



Quick Select Algorithm

30 60 10 0 50 80 90 20 40 70

 Find item that would be in 𝐴[𝑘] if 𝐴 was sorted

 Similar to quick-sort, but recurse only on one side (“quick-sort with pruning”)

 Example: select(𝑘 = 4)

𝑣=70

𝑖=7

30 60 10 0 50 40 20 70 80 90

≤ 70 ≥ 70
 𝑖 > 𝑘, search recursively in the left side to select 𝑘

7 smallest items 
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0

 [the correct answer is 40  in this case]



Quick Select Algorithm

 Example continued: select(𝑘 = 4)

𝑖=2

≤ 20 ≥ 20

 𝑖 < 𝑘, search recursively on the right, select 𝒌 − (𝒊 + 𝟏)
 𝑘 = 1 in our example

3 smallest items 
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Quick Select Algorithm

 Example continued: select(𝑘 = 1)

𝑖=3

≤ 60
 𝑖 > 𝑘, search on the left to select 𝑘
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30 50 40 60

3 smallest items 



Quick Select Algorithm

 Example continued: select(𝑘 = 1)

𝑖=1

p
a
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n

,𝑣
=4

0

30 50 40𝑣=40

30 40 50

 𝑖 = 𝑘, found our item, done!

 In our example, we got to subarray of size 3

 Often stop much sooner than that

 running time?



QuickSelect Algorithm

quick-select1(𝐴, 𝑘)
𝐴: array of size 𝑛,  𝑘: integer s.t. 0 ≤ 𝑘 < 𝑛

𝑝 ← choose-pivot1(𝐴)

𝑖 ← partition(𝐴, 𝑝)

if 𝑖 = 𝑘 then

return 𝐴[𝑖]

else if 𝑖 > 𝑘 then

return quick-select1(𝐴 0, 1, … , 𝑖 − 1 , 𝑘)

else if  𝑖 < 𝑘 then

return quick-select1(𝐴 𝑖 + 1,… , 𝑛 − 1 , 𝑘 − (𝑖 + 1))

𝑇 𝑛 = ቊ
𝑐𝑛 + 𝑇 𝑛 − 1 𝑛 > 1

𝑐 𝑛 = 1
 Worst case:   recurrence equation

 Best case

 first chosen pivot could have pivot-index  𝑘

 no recursive calls, total cost Θ(𝑛)



QuickSelect Algorithm
 Worst case:   recurrence equation 𝑇 𝑛 = ቊ

𝑐𝑛 + 𝑇 𝑛 − 1 𝑛 > 1
𝑐 𝑛 = 1

 Solution:  repeatedly expand until we see a pattern forming

𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑇 𝑛 − 2

𝑇 𝑛 − 2 = 𝑐(𝑛 − 2) + 𝑇 𝑛 − 3

𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑐(𝑛 − 2) + 𝑇 𝑛 − 3

 After 𝑖 expansions                                                                                   

 𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑐 𝑛 − 2 +⋯+ 𝑐 𝑛 − 𝑖 + 𝑇 𝑛 − (𝑖 + 1)

 Stop expanding when get to base case   𝑇 𝑛 − (𝑖 + 1) = 𝑇 1

 Happens when 𝑛 − (𝑖 + 1) = 1, or, rewriting,  𝑖 = 𝑛 − 2

 Thus    𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑐 𝑛 − 2 +⋯+ 𝑐 ∙ 2 + 𝑇 1
= 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑐 𝑛 − 2 +⋯+ 𝑐 ∙ 2 + 𝑐

= 𝑐(𝑛 + 𝑛 − 1 +⋯+ 2 + 1)∈ Θ(𝑛2)

𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑇 𝑛 − 2

𝑇 𝑛 = 𝑐𝑛 + 𝑇 𝑛 − 1𝑇 𝑛 = 𝑐𝑛 + 𝑇 𝑛 − 1

𝑇 𝑛 − 1 = 𝑐(𝑛 − 1)+𝑇 𝑛 − 2

after 2 expansions

after 1 expansion



Average-Case Analysis of quick-select1

𝑇𝑎𝑣𝑟 𝑛 =
1

# instances of size 𝑛


𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛

𝑇(𝐼)

infinitely many

 Need to make some assumptions

 First assumption

 all input numbers are distinct

 this assumption is just for simpler analysis, can prove the same thing 
without this assumption



 QuickSelect is comparison-based 

 only cares if 𝐴 𝑖 < 𝐴[𝑗] for 𝑖, 𝑗

 does not care what the actual values of 𝐴 𝑖 , 𝐴[𝑗] are

30 60 0 10𝐼1 20 50 10 15𝐼2

 QuickSelect makes exactly the same sequences of steps on 𝐼1 and  𝐼2
 therefore 𝑇 𝐼1 = 𝑇 𝐼2

 Any comparison based algorithm has exactly the same running time for arrays 
that have the same relative order of elements, regardless of actual array values

Average-Case Analysis of quick-select1

 Second assumption: we are sorting integers 0,… , 𝑛 − 1

 now there are 𝑛! possible input instances 𝐼

 more formal proof uses sorting permutations

 permutation 𝜋 for which 𝐴 𝜋(0) ≤ 𝐴 𝜋(1) ≤… ≤ 𝐴 𝜋(𝑛 − 1)

 for 𝐼1 (and 𝐼2) sorting permutation is 𝜋 = (2, 3, 0, 1)

 assume each sorting permutation is equally likely

 𝑛! possible permutations



Average-Case Analysis of quick-select1

𝑇𝑎𝑣𝑟 𝑛 =
1

# instances of size 𝑛


𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛

𝑇(𝐼)

 Example for  𝑛 = 3, using all the assumptions

𝑇𝑎𝑣𝑟 3 =
1

3!
(𝑇 0,1,2 + 𝑇 0,2,1 + 𝑇 1,0,2 + 𝑇 1,2,0 + 𝑇 2,0,1 + 𝑇 2,1,0 )



 Partition sum over different pivot indexes

Average-Case Analysis of quick-select1

𝑇𝑎𝑣𝑟 𝑛 =
1

𝑛!


𝐼:𝑆𝑖𝑧𝑒 𝐼 =𝑛

𝑇(𝐼)

0 1 2 3

2 3 0 1𝐴 𝑣=1

 Recall that pivot is last array element

 Pivot index is equal to pivot value due to assuming we sort 0,… , 𝑛 − 1

for 𝑣=1, pivot index 𝑖 = 1

 Example for  𝑛 = 3

𝑇𝑎𝑣𝑟 3 =
1

3!
(𝑇 1,2, 𝟎 + 𝑇 2,1, 𝟎 ) +

(𝑇 0,2, 𝟏 + 𝑇 2,0, 𝟏 ) +

(𝑇 0,1, 𝟐 + 𝑇 1,0, 𝟐 )

=
1

𝑛!


𝑖=0

𝑛−1



𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛,
𝑝𝑖𝑣𝑜𝑡 𝑖𝑠 𝑖

𝑇(𝐼)

𝑇𝑎𝑣𝑟 3 =
1

3!
(𝑇 0,1,2 + 𝑇 0,2,1 + 𝑇 1,0,2 + 𝑇 1,2,0 + 𝑇 2,0,1 + 𝑇 2,1,0 )



Average-Case Analysis of quick-select1

 There are 𝑛 − 1 ! input instances 𝐼 with pivot index 𝑖

choice of  𝑛 − 2 items: 
anything but 𝑖 and 𝐴[0]

…
no choice

𝐴
choice of 𝑛 − 1

items: anything but 𝑖

𝒊

‘choice’ of 
1 items

 Partition sum over different pivots     𝑇𝑎𝑣𝑟 𝑛 =
1

𝑛!
σ𝑖=0
𝑛−1σ 𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛,

𝑝𝑖𝑣𝑜𝑡 𝑖𝑠 𝑖

𝑇(𝐼)



𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛,
𝑝𝑖𝑣𝑜𝑡 𝑖𝑠 𝒊

𝑇(𝐼) ≤ 𝑛 − 1 ! 𝑐𝑛 + 𝑛 − 1 !𝑚𝑎𝑥 𝑇𝑎𝑣𝑟 𝑖 , 𝑇𝑎𝑣𝑟(𝑛 − 𝑖 − 1)

 One can show 
 )

 Therefore    𝑇𝑎𝑣𝑟 𝑛 ≤ 𝑐𝑛 +
1

𝑛
σ𝑖=0
𝑛−1𝑚𝑎𝑥 𝑇𝑎𝑣𝑟 𝑖 , 𝑇𝑎𝑣𝑟 𝑛 − 𝑖 − 1

(will only hint at the proof with example  for 𝑛 = 4, 𝑖 = 1)



Average-Case Analysis of quick-select1

 Let 𝑛 = 4, 𝑖 = 1 

𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝟒,
𝑝𝑖𝑣𝑜𝑡 𝑖𝑠 𝟏

𝑇(𝐼) =
𝑇 0,2,3, 𝟏 + 𝑇 0,3,2, 𝟏

+ 𝑇 2,0,3, 𝟏 + 𝑇 2,3,0, 𝟏
+ 𝑇 3,0,2, 𝟏 + 𝑇 3,2,0, 𝟏

 Total work is proportional to comparisons, will count comparisons

0,2,3, 𝟏 0,3,2, 𝟏 2,0,3, 𝟏 2,3,0, 𝟏 3,0,2, 𝟏 3,2,0, 𝟏

comparisons to
partition: 3 3 3 3 3 3

instances

Total: 
3 3 !

partitions
(assume stable 
order)

0 {2,3} 0 {3,2} 0 {2,3} 0 {2,3} 0 {3,2} 0 {3,2}



Average-Case Analysis of quick-select1

 Let 𝑛 = 4, 𝑖 = 1 

𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝟒,
𝑝𝑖𝑣𝑜𝑡 𝑖𝑠 𝟏

𝑇(𝐼) =
𝑇 0,2,3, 𝟏 + 𝑇 0,3,2, 𝟏

+ 𝑇 2,0,3, 𝟏 + 𝑇 2,3,0, 𝟏
+ 𝑇 3,0,2, 𝟏 + 𝑇 3,2,0, 𝟏

 Total work is proportional to comparisons, will count comparisons

0,2,3, 𝟏 0,3,2, 𝟏 2,0,3, 𝟏 2,3,0, 𝟏 3,0,2, 𝟏 3,2,0, 𝟏

comparisons to
partition: 3 3 3 3 3 3

instances

Total: 
3 3 !

partitions 0 {2,3} 0 {3,2} 0 {2,3} 0 {2,3} 0 {3,2} 0 {3,2}

Case 1: 𝑘 > 𝑖 𝑇 2,3 + 𝑇 3,2 + 𝑇 2,3 + 𝑇 2,3 + 𝑇 3,2 + 𝑇 3,2

= 𝑇 0,1 + 𝑇 1,0 + 𝑇 0,1 + 𝑇 0,1 + 𝑇 1,0 + 𝑇 1,0

since only 
relative order 
matters

swap



Average-Case Analysis of quick-select1

 Let 𝑛 = 4, 𝑖 = 1 

𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝟒,
𝑝𝑖𝑣𝑜𝑡 𝑖𝑠 𝟏

𝑇(𝐼) =
𝑇 0,2,3, 𝟏 + 𝑇 0,3,2, 𝟏

+ 𝑇 2,0,3, 𝟏 + 𝑇 2,3,0, 𝟏
+ 𝑇 3,0,2, 𝟏 + 𝑇 3,2,0, 𝟏

 Total work is proportional to comparisons, will count comparisons

0,2,3, 𝟏 0,3,2, 𝟏 2,0,3, 𝟏 2,3,0, 𝟏 3,0,2, 𝟏 3,2,0, 𝟏

comparisons to
partition: 3 3 3 3 3 3

instances

Total: 
3 3 !

partitions 0 {2,3} 0 {3,2} 0 {2,3} 0 {2,3} 0 {3,2} 0 {3,2}

Case 1: 𝑘 > 𝑖 𝑇 2,3 + 𝑇 3,2 + 𝑇 2,3 + 𝑇 2,3 + 𝑇 3,2 + 𝑇 3,2

= 𝑇 0,1 + 𝑇 1,0 + 𝑇 0,1 + 𝑇 1,0 + 𝑇 0,1 + 𝑇 1,0

𝑇𝑎𝑣𝑟 2 2! 𝑇𝑎𝑣𝑟 2 2! 𝑇𝑎𝑣𝑟 2

since only 
relative order 
matters

3!

2!
= 3! 𝑇𝑎𝑣𝑟(2)Total recursive comparisons

2!

2! 𝑇𝑎𝑣𝑟 2



Average-Case Analysis of quick-select1

 Let 𝑛 = 4, 𝑖 = 1 

𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝟒,
𝑝𝑖𝑣𝑜𝑡 𝑖𝑠 𝟏

𝑇(𝐼) =
𝑇 0,2,3, 𝟏 + 𝑇 0,3,2, 𝟏

+ 𝑇 2,0,3, 𝟏 + 𝑇 2,3,0, 𝟏
+ 𝑇 3,0,2, 𝟏 + 𝑇 3,2,0, 𝟏

 Total work is proportional to comparisons, will count comparisons

0,2,3, 𝟏 0,3,2, 𝟏 2,0,3, 𝟏 2,3,0, 𝟏 3,0,2, 𝟏 3,2,0, 𝟏

comparisons to
partition: 3 3 3 3 3 3

instances

Total: 
3 3 !

partitions 0 {2,3} 0 {3,2} 0 {2,3} 0 {2,3} 0 {3,2} 0 {3,2}

Case 2: 𝑘 < 𝑖 𝑇 0 + 𝑇 0 + 𝑇 0 + 𝑇 0 + 𝑇 0 + 𝑇 0

3!

1!
1! 𝑇𝑎𝑣𝑟 1 = 3! 𝑇𝑎𝑣𝑟(1)Total recursive comparisons

1! 𝑇𝑎𝑣𝑟 1 1! 𝑇𝑎𝑣𝑟 1 1! 𝑇𝑎𝑣𝑟 1 1! 𝑇𝑎𝑣𝑟 1 1! 𝑇𝑎𝑣𝑟 1 1! 𝑇𝑎𝑣𝑟 1

[Case 1, total recursive comparisons:                                                  ]= 3! 𝑇𝑎𝑣𝑟(2)

Combining both cases, total recursive comparisons : ≤ 3!max{𝑇𝑎𝑣𝑟 1 , 𝑇𝑎𝑣𝑟(2)}

Adding comparisons to partition: ≤ 3 3 ! + 3!max{𝑇𝑎𝑣𝑟 1 , 𝑇𝑎𝑣𝑟(2)}



Average-Case Analysis of quick-select1

 Let 𝑛 = 4, 𝑖 = 1 

𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝟒,
𝑝𝑖𝑣𝑜𝑡 𝑖𝑠 𝟏

𝑇(𝐼) =
𝑇 0,2,3, 𝟏 + 𝑇 0,3,2, 𝟏

+ 𝑇 2,0,3, 𝟏 + 𝑇 2,3,0, 𝟏
+ 𝑇 3,0,2, 𝟏 + 𝑇 3,2,0, 𝟏

 Total work is proportional to comparisons, will count comparisons

0,2,3, 𝟏 0,3,2, 𝟏 2,0,3, 𝟏 2,3,0, 𝟏 3,0,2, 𝟏 3,2,0, 𝟏

comparisons to
partition: 3 3 3 3 3 3

instances

Total: 
3 4 − 1 !

partitions 0 {2,3} 0 {3,2} 0 {2,3} 0 {2,3} 0 {3,2} 0 {3,2}

Case 2: 𝑘 < 𝑖 𝑇 0 + 𝑇 0 + 𝑇 0 + 𝑇 0 + 𝑇 0 + 𝑇 0

3!

1!
1! 𝑇𝑎𝑣𝑟 1 = 3! 𝑇𝑎𝑣𝑟(1)Total recursive comparisons

1! 𝑇𝑎𝑣𝑟 1 1! 𝑇𝑎𝑣𝑟 1 1! 𝑇𝑎𝑣𝑟 1 1! 𝑇𝑎𝑣𝑟 1 1! 𝑇𝑎𝑣𝑟 1 1! 𝑇𝑎𝑣𝑟 1

[Case 1, total recursive comparisons:                                                  ]= 3! 𝑇𝑎𝑣𝑟(2)

Combining both cases, total recursive comparisons : ≤ 3!max{𝑇𝑎𝑣𝑟 1 , 𝑇𝑎𝑣𝑟(2)}

Adding comparisons to partition: ≤ 3 3 ! + 3!max{𝑇𝑎𝑣𝑟 1 , 𝑇𝑎𝑣𝑟(2)}



𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛,
𝑝𝑖𝑣𝑜𝑡 𝑖𝑠 𝒊

𝑇(𝐼) ≤ 𝑛 − 1 ! 𝑐𝑛 + 𝑛 − 1 !𝑚𝑎𝑥 𝑇𝑎𝑣𝑟 𝑖 , 𝑇𝑎𝑣𝑟(𝑛 − 𝑖 − 1)



Theorem: 𝑇 𝑛 ϵ Ο(𝑛)

Proof: 

 will prove 𝑇 𝑛 ≤ 4𝑐𝑛 by induction on 𝑛

 base case, 𝑛 = 1:  𝑇 1 = 𝑐

𝑇(𝑛) ≤ 𝑐 ∙ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑇 𝑖 , 𝑇(𝑛 − 𝑖 − 1)

≤ 𝑐 ∙ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 4𝑐𝑖, 4𝑐(𝑛 − 𝑖 − 1)

𝑇(𝑛) ≤ 𝑐 ∙ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑇 𝑖 , 𝑇(𝑛 − 𝑖 − 1)

induction hypothesis applies 
to each one of these

≤ 𝑐 ∙ 𝑛 +
4𝑐

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1

Average-Case Analysis of quick-select1

≤ 4𝑐 ⋅ 1

 induction hypothesis: assume  𝑇 𝑚 ≤ 4𝑐𝑚 for all 𝑚 < 𝑛

 need to show  𝑇 𝑛 ≤ 4𝑐𝑛



Proof: (cont.) 𝑇(𝑛) ≤ 𝑐 ∙ 𝑛 +
4𝑐

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1



𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1 = +

𝑖=
𝑛
2

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1

𝑖=0

𝑛
2−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1

+𝑚𝑎𝑥 1, 𝑛 − 2=𝑚𝑎𝑥 0, 𝑛 − 1 +𝑚𝑎𝑥 2, 𝑛 − 3 +⋯+𝑚𝑎𝑥
𝑛

2
− 1,

𝑛

2

+𝑚𝑎𝑥
𝑛

2
+ 1,

𝑛

2
− 2+𝑚𝑎𝑥

𝑛

2
,
𝑛

2
− 1 +⋯+𝑚𝑎𝑥 𝑛 − 1,0

= 𝑛 − 1 + (𝑛 − 2) + ⋯+
𝑛

2
+
𝑛

2
+

𝑛

2
+ 1 +⋯ 𝑛 − 1

3𝑛

2
− 1

𝑛

4

3𝑛

2
− 1

𝑛

4

=

≤
3

4
𝑛2

3𝑛

2
− 1

𝑛

2

≤ 𝑐 ∙ 𝑛 +
4𝑐

𝑛
∙
3

4
𝑛2 = 4𝑐𝑛

exactly what we 
need for the proof

Average-Case Analysis of quick-select1



 Proved average case time 𝑇 𝑛 is Ο(𝑛)

 Average case is also Ω 𝑛 since have to perform partition(𝐴, 𝑝)

 Therefore average case is 𝑇 𝑛 is Θ(𝑛)

Average-Case Analysis of quick-select1
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Randomized Algorithms
 A randomized algorithm is one which relies on some 

random numbers  in addition to the input

 The cost will depend on both the input and the random 
numbers used

 Goal
 shift the dependency of run-time from what we cannot control (the 

input),  to what we can control (random numbers)

 no more bad instances, just unlucky numbers

 if running time is long on some instance, it’s because we generated 
unlucky random numbers, not because of the instance itself

 Side note
 computers cannot generate truly random numbers

 we assume there is a pseudo-random number generator (PRNG), a 
deterministic program that uses an initial value or seed to generate a 
sequence of seemingly random numbers

 quality of randomized algorithm depends on the quality of the PRNG



Expected Running Time
 How do we measure the running time of a randomized algorithm?

 it depends on the input 𝐼 and on 𝑅, the sequence of random numbers an 
algorithm choses during execution

 Define 𝑇(𝐼, 𝑅) to be running time of randomized algorithm for instance 𝐼 and 𝑅

 The expected running time 𝑇𝑒𝑥𝑝(𝐼) for instance 𝐼 is expected value for 𝑇 𝐼, 𝑅

𝑇𝑒𝑥𝑝 𝐼 = 𝑬 𝑇(𝐼, 𝑅) = 

all possible
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr[𝑅]

 Worst-case expected running time   

 Average-case expected running time  

𝑇𝑒𝑥𝑝 𝑛 = max
{𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛}

𝑇𝑒𝑥𝑝 𝐼

𝑇𝑒𝑥𝑝 𝑛 =
1

𝐼: 𝑠𝑖𝑧𝑒 𝐼 = 𝑛


𝐼:𝑆𝑖𝑧𝑒 𝐼 =𝑛

𝑇𝑒𝑥𝑝 𝐼

 Usually design 𝐴 so that all instances of size 𝑛 have the same expected run time

 Thus the average and worst case expected run times are the same, and we just 
compute the worst case expected time



Expected Running Time
 How do we measure the running time of a randomized algorithm?

 it depends on the input 𝐼 and on 𝑅, the sequence of random numbers an algorithm 
choses during execution

 Define 𝑇(𝐼, 𝑅) to be running time of randomized algorithm for instance 𝐼 and 𝑅

 The expected running time 𝑇𝑒𝑥𝑝(𝐼) for instance 𝐼 is expected value for 𝑇 𝐼, 𝑅

𝑇𝑒𝑥𝑝 𝐼 = 𝑬 𝑇(𝐼, 𝑅) = 

all possible
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr[𝑅]

 Worst-case expected running time        𝑇𝑒𝑥𝑝 𝑛 = max
{𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛}

𝑇𝑒𝑥𝑝 𝐼

 Average-case expected running time    𝑇𝑒𝑥𝑝 𝑛 =
1

𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛
σ𝐼:𝑆𝑖𝑧𝑒 𝐼 =𝑛𝑇

𝑒𝑥𝑝 𝐼

 Usually design 𝐴 so that all instances of size 𝑛 have the same expected run time

 Thus average and worst case expected run times are usually the same

 just compute the worst case expected time

 Sometimes we also want to know the running time if we got really unlucky with the 
random numbers 𝑅 we generate during the execution, or, formally

max
𝑅

max
{𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛}

𝑇(𝐼, 𝑅)



Randomized QuickSelect: Shuffle
 Goal: create a randomized version of QuickSelect for which all input has the same 

expected run-time

 First idea: first randomly permute input using shuffle and then run selection 
algorithm

shuffle(𝐴)

𝐴 : array of size 𝑛

for 𝑖 ⟵ 0  to  𝑛 − 1 do

swap(𝐴 𝑖 , 𝐴[𝑟𝑎𝑛𝑑𝑜𝑚 𝑖 + 1 ])

 𝑟𝑎𝑛𝑑𝑜𝑚(𝑛) returns an integer uniformly sampled from 0, 1, 2, … , 𝑛 − 1

 can show that expected running time is Θ 𝑛 , the same as average running time



Randomized QuickSelect: Shuffle
 Goal: create a randomized version of QuickSelect for which all input has the same 

expected run-time

 First idea: first randomly permute input using shuffle and then run selection 
algorithm

shuffle(𝐴)

𝐴 : array of size 𝑛

for 𝑖 ⟵ 0  to  𝑛 − 1 do

swap(𝐴 𝑖 , 𝐴[𝑟𝑎𝑛𝑑𝑜𝑚 𝑖 + 1 ])

 𝑟𝑎𝑛𝑑𝑜𝑚(𝑛) returns an integer uniformly sampled from 0, 1, 2, … , 𝑛 − 1

 can show that expected running time is Θ 𝑛 , the same as average running time

 if we get very unlucky with random numbers, we could get a sorted or almost 
sorted array after shuffle, resulting in 𝑂(𝑛2) performance for selection algorithm

 probability of this happening is almost zero

 whereas the user is quite likely to give instance which is sorted or almost sorted 
to the selection algorithm

 probability is far from zero, humans often produce almost sorted data



Randomized QuickSelect: Random Pivot

 Second idea: select a random pivot from 0,1, 2,… , 𝑛 − 1

 Simpler and more efficient than shuffling the array

 Usually fastest in practice

 Expected running time is again Θ(𝑛)

choose-pivot2(𝐴)

return 𝑟𝑎𝑛𝑑𝑜𝑚 𝐴. 𝑠𝑖𝑧𝑒()



Efficiency of Randomized QuickSelect

 Assume all elements of 𝐴 are distinct

 Select pivot with equal probability at each recursive call, and independently 
from other recursive calls

 𝑃 pivot has index 𝑖 =
1

𝑛
for any instance of size 𝑛

 𝑇𝑒𝑥𝑝 𝐼 depends only on the size of 𝐼, not the contents of 𝐼

 Let 𝑇𝑒𝑥𝑝 𝑛 be expected time on an instance of size 𝑛

 Running time to partition array is 𝑐𝑛, and with probability 1/𝑛 pivot-index is 𝑖

choose-pivot2(𝐴)

return 𝑟𝑎𝑛𝑑𝑜𝑚 𝐴. 𝑠𝑖𝑧𝑒()

quick-select2(𝐴, 𝑘)

𝑝⟵ choose-pivot2(𝐴)
“the rest”

𝑣

𝒊

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

size 𝑖

𝑇𝑒𝑥𝑝 𝑖

size 𝑛 − 𝑖 − 1

running time if pivot index is 𝑖 ≤ 𝑐 ∙ 𝑛 + 𝑚𝑎𝑥 𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1



Efficiency of Randomized QuickSelect

 Taking expectation over pivot index 𝑖

𝑇𝑒𝑥𝑝 𝑛 = 
𝑖=0

𝑛−1

(𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑓 𝑝𝑖𝑣𝑜𝑡 𝑖𝑛𝑑𝑒𝑥 𝑖𝑠 𝑖)𝑃 index of pivot is 𝑖

≤ 
𝑖=0

𝑛−1

𝑐𝑛 + 𝑚𝑎𝑥 𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝(𝑛 − 𝑖 − 1
1

𝑛

running time if pivot-index is 𝑖 ≤ 𝑐 ∙ 𝑛 + 𝑚𝑎𝑥 𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

≤ 𝑐𝑛 +
𝑖=0

𝑛−1 1

𝑛
𝑚𝑎𝑥 𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝(𝑛 − 𝑖 − 1)

 Same recurrence as for non-randomized average case 

 Resolves to Θ 𝑛 expected time on instance of size 𝑛

 Side note

 there is selection algorithm “Median of Medians” (cs341) that has 
worst-case running time 𝑂 𝑛

 uses double recursion

 slower in practice



QuickSelect: Badly Designed Randomization

 Worst instance is sorted array  𝐼𝑛 = {0, 1, … , 𝑛 − 1}

 𝑇𝑒𝑥𝑝 𝐼𝑛 = ൝
𝑐𝑛 +

1

3
𝑇𝑒𝑥𝑝 𝐼𝑛−1 +

1

3
𝑇𝑒𝑥𝑝 𝐼𝑛−2 +

1

3
𝑇𝑒𝑥𝑝 𝐼𝑛−3 if 𝑛 ≥ 3

𝑐 if 𝑛 < 3

 𝑇𝑒𝑥𝑝 𝐼𝑛 ≥ 𝑐𝑛 + 𝑇 𝐼𝑛−3 if 𝑛 ≥ 3

 Resolves to Θ 𝑛2

 Worst case expected time is Θ 𝑛2

choose-random-pivot-badly(𝐴)

if 𝐴. 𝑠𝑖𝑧𝑒 ≥ 3 return 𝑟𝑎𝑛𝑑𝑜𝑚 3

else return 0

𝑇𝑒𝑥𝑝 𝑛 = max
{𝐼:𝑠𝑖𝑧𝑒 𝐼 =𝑛}

𝑇𝑒𝑥𝑝 𝐼
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QuickSort
 Hoare developed partition and quick-select in 1960

 He also used them to sort based on partitioning

quick-sort1(𝐴)
Input: array A of size n

if 𝑛 ≤ 1 then return

𝑝 ← choose-pivot1(𝐴)

𝑖 ← partition (𝐴 ,𝑝)

quick-sort1(𝐴 0, 1, … , 𝑖 − 1 )

quick-sort1(𝐴 𝑖 + 1,… , 𝑛 − 1 )

 Let 𝑇 𝑛 to be the runtime on size 𝑛 array

 If we know pivot-index 𝑖, then 𝑇 𝑛 = 𝑐𝑛 + 𝑇 𝑖 + 𝑇(𝑛 − 𝑖 − 1)

 Worst case   𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐𝑛

 recurrence solved in the same way as quick−select1, Θ 𝑛2

 Best case 𝑇 𝑛 = 𝑇 𝑛/2 + 𝑇 𝑛/2 + 𝑐𝑛

 solved in the same way as merge-sort, Θ 𝑛 log𝑛



Average-case analysis of quick-sort1

 Using the same approach as for quick-select1, average running time is

1 0 𝑣 = 2 3 5 8 9 6 4 7

i=2

recurse recurse

𝑇 𝑛 =
1

𝑛


𝑖=0

𝑛−1

𝑐𝑛 + 𝑇 𝑖 + 𝑇 𝑛 − 𝑖 − 1 , 𝑛 ≥ 2

 Make the same assumptions as for quick-select1

 Deriving recurrence equation is similar to quick-select1, but recurse on both sides 

 Running time is proportional to the number of comparisons

 Recurrence for counting comparisons

𝑇 𝑛 =
1

𝑛


𝑖=0

𝑛−1

𝑛 + 𝑇 𝑖 + 𝑇 𝑛 − 𝑖 − 1 , 𝑛 ≥ 2



Average-case analysis of quick-sort1

𝑇 𝑛 =
1

𝑛


𝑖=0

𝑛−1

𝑛 + 𝑇 𝑖 + 𝑇 𝑛 − 𝑖 − 1

𝑇 0 + 𝑇 1 + ⋯+ 𝑇 𝑛 − 1

= 𝑛 +
2

𝑛


𝑖=0

𝑛−1

𝑇 𝑖

 First let us get a simpler recursive expression for 𝑇(𝑛)

 Thus 𝑇 𝑛 = 𝑛 +
2

𝑛


𝑖=0

𝑛−1

𝑇 𝑖

= 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑇 𝑖 +
1

𝑛


𝑖=0

𝑛−1

𝑇 𝑛 − 𝑖 − 1

𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 +⋯+ 𝑇 0



Average-case analysis 
of quick-sort1

Proof 

𝑛𝑇 𝑛

(𝑛 − 1)𝑇 𝑛 − 1 = (𝑛 − 1)2 + 2
𝑖=0

𝑛−2

𝑇 𝑖

Subtract:

Plug in  𝑛 − 1:

Multiply by  𝑛:

𝑛𝑇 𝑛 − 𝑛 − 1 𝑇 𝑛 − 1 = 2𝑛 − 1

Rearrange ∶

𝑇(𝑛)

𝑛 + 1

Let  𝐴 𝑛 =
𝑇(𝑛)

𝑛+1
∶ 𝐴(𝑛) = 𝐴(𝑛−1)+

2𝑛−1

𝑛(𝑛+1)

= ⋯ = 

𝑖=1

𝑛
2𝑖 − 1

𝑖(𝑖 + 1)
= 

𝑖=1

𝑛
2

𝑖 + 1
−

𝑖=1

𝑛
1

𝑖(𝑖 + 1)

Θ(log𝑛) Θ(1)

Finally: 𝑇 𝑛 = 𝑛 + 1 𝐴 𝑛 = 𝑐(𝑛 + 1) log𝑛

Therefore: 𝐴 𝑛 = 𝑐 log 𝑛

𝑇 𝑛 = 𝑛 +
2

𝑛


𝑖=0

𝑛−1

𝑇 𝑖 is Θ(𝑛 log𝑛)

Divide by  𝑛 + 1 𝑛:

𝑛𝑇 𝑛 = 𝑛 + 1 𝑇 𝑛 − 1

= 𝐴 𝑛−2 +
2(𝑛−1)−1

𝑛−1 𝑛
+

2𝑛−1

𝑛(𝑛+1)

+ 2𝑇(𝑛 − 1)𝑛𝑇 𝑛 − 𝑛 − 1 𝑇 𝑛 − 1 = 2𝑛 − 1 + 2𝑇(𝑛 − 1)

= 𝑛2+ 2
𝑖=0

𝑛−1

𝑇 𝑖𝑛2+ 2
𝑖=0

𝑛−1

𝑇 𝑖

(𝑛 − 1)𝑇 𝑛 − 1 = (𝑛 − 1)2 + 2
𝑖=0

𝑛−2

𝑇 𝑖

+2𝑛 − 1𝑛𝑇 𝑛 = 𝑛 + 1 𝑇 𝑛 − 1

=
𝑇(𝑛 − 1)

𝑛
+

2𝑛 − 1

𝑛(𝑛 + 1)

ϵΘ(𝑛 log𝑛)



Improvement ideas for QuickSort
 Randomize by using choose-pivot2, giving  Θ 𝑛 log𝑛 expected time  

for  quick-sort2

 The auxiliary space is Ω(recursion depth)

 Θ 𝑛 in the worst-case

 can be reduce to Θ log𝑛 worst-case by

 recurse in smaller  sub-array first 

 replacing the other recursion by a while-loop (tail call elimination)

 Stop recursion when, say  𝑛 ≤ 10

 array is not completely sorted, but almost sorted 

 at the end, run insertionSort, it sorts in just 𝑂 𝑛 time since all items 
are within 10 units of the required position

 Arrays with many duplicates sorted faster by 
changing  partition to produce three subsets

 Programming tricks

 instead of passing full arrays, pass only the range of indices

 avoid recursion altogether by keeping an explicit stack

< 𝒗 = 𝒗 > 𝒗



QuickSort with Tricks

quick-sort3(𝐴, 𝑛)
initialize a stack 𝑆 of index-pairs with { 0, 𝑛 − 1 }

while 𝑆 is not empty

𝑙, 𝑟 ← 𝑆. 𝑝𝑜𝑝()

while 𝑟 − 𝑙 + 1 > 10

𝑝 ← choose-pivot2(𝐴, 𝑙, 𝑟)

𝑖 ← partition (𝐴, 𝑙, 𝑟, 𝑝)
if 𝑖 − 𝑙 > 𝑟 − 𝑖 do

𝑆. 𝑝𝑢𝑠ℎ 𝑙, 𝑖 − 1

𝑙 ← 𝑖 + 1
else

𝑆. 𝑝𝑢𝑠ℎ 𝑖 + 1, 𝑟

𝑟 ← 𝑖 − 1
InsertionSort(𝐴)

 This is often the most efficient sorting algorithm in practice

// store larger  problem in 𝑆 for later

// store larger problem in 𝑆 for later

// next work on the right side

// next work on the left side

// is left side larger than right?

// work on it if it’s larger than 10

// get the next subproblem
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Lower bounds for sorting

 Question: Can one do better than Θ 𝑛 log𝑛 running time?

 Answer: It depends on what we allow

 No: comparison-based sorting lower bound is Ω 𝑛 log𝑛
 no restriction on input, just must be able to compare 

 Yes: non-comparison-based sorting can achieve O(𝑛)
 restrictions on input

 We have seen many sorting algorithms

Sort Running Time Analysis

Selection Sort Θ(𝑛2) worst-case

Insertion Sort Θ(𝑛2) worst-case

Merge Sort Θ(𝑛 log 𝑛) worst-case

Heap Sort Θ(𝑛 log 𝑛) worst-case

quick-sort1
quick-sort2

Θ 𝑛 log 𝑛
Θ(𝑛 log 𝑛)

average-case
expected



The Comparison Model

 All sorting algorithms seen so far are in the comparison model

 In the comparison model data can only be accessed in two ways

 comparing two elements
 𝐴[𝑖] ≤ 𝐴[𝑗]

 moving elements around (e.g. copying, swapping)

 This makes very few assumptions on the things we are sorting

 just count the number of above operations

 Under comparison model, will show that any sorting algorithm 
requires Ω(𝑛log 𝑛) comparisons

 This lower bound is not for an algorithm, it is for the sorting 
problem

 How can we talk about problem without algorithm?
 count number of comparisons any sorting algorithm has to perform



Decision Tree

 Decision tree succinctly describes all the decisions that are taken 
during the execution of an algorithm and the resulting outcome

 For each sorting algorithm we can construct a corresponding 
decision tree

 Given decision tree, we can deduce the algorithm

 Decision tree can be constructed for any algorithm, not just sorting



Decision Tree Example
 Decision tree for a concrete comparison based sorting algorithm, with  3 non-

repeating elements [𝑥0,𝑥1,𝑥2]

0, 1, 2
0, 2, 1
1, 0, 2
1, 2, 0
2, 0, 1
2, 1, 0

𝑥0 < 𝑥1 < 𝑥 2

𝑥0 < 𝑥2 < 𝑥 1

output [𝑥0,𝑥1,𝑥2]

output [𝑥0,𝑥2,𝑥1]

𝑥2 < 𝑥0 < 𝑥 1 output [𝑥2,𝑥0,𝑥1]

𝑥1 < 𝑥0 < 𝑥 2 output [𝑥1,𝑥0,𝑥2]

𝑥1 < 𝑥2 < 𝑥 0 output [𝑥1,𝑥2,𝑥0]

𝑥2 < 𝑥1 < 𝑥 0 output [𝑥2,𝑥1,𝑥0]

 Have to determine which of the 6 inputs we are given before can give output

 unique output for each distinct input

Set of all possible inputs



Decision Tree
 Decision tree for a concrete comparison based sorting algorithm, with 3 non-repeating elements 

0, 1, 2 2, 1, 0

0, 2, 1 1, 2, 0 1, 0, 2 2, 0, 1

<
0, 1, 2
0, 2, 1
1, 0, 2
1, 2, 0
2, 0, 1
2, 1, 0

0, 1, 2
0, 2, 1
1, 2, 0

1, 0, 2
2, 0, 1
2, 1, 0

0, 2, 1
1, 2, 0

1, 0, 2
2, 0, 1

𝑥0 < 𝑥1 < 𝑥 2

𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

>

>
>

>>

 Root corresponds to the set of all possible inputs

 Interior nodes are comparisons: each comparison splits the set of possible inputs into two 

 Know correct sorting order only when the set of possible inputs shrinks to size one
 nodes where possible input shrunk to size one are leaves, when reach them, can output sorting result

𝑥0 < 𝑥2 < 𝑥1 𝑥2 < 𝑥0 < 𝑥1 𝑥1 < 𝑥0 < 𝑥2 𝑥1 < 𝑥2 < 𝑥0

𝑥2 < 𝑥1 < 𝑥0

 Sorting algorithm will traverse a path starting at root and ending at a leaf
 length of the path is the number of comparisons to be made

 Tree height is the number of comparisons required for sorting in the worst case



Decision Tree
 Decision tree for a concrete comparison based sorting algorithm, with 3 non-repeating elements 

 Algorithm could do more comparisons than necessary

 Thus can have more leafs than possible inputs

 But the number of leaves must be at least the number of possible inputs

0, 1, 2

0, 2, 1 1, 2, 0 1, 0, 2 2, 0, 1

<
0, 1, 2
0, 2, 1
1, 0, 2
1, 2, 0
2, 0, 1
2, 1, 0

0, 1, 2
0, 2, 1
1, 2, 0

1, 0, 2
2, 0, 1
2, 1, 0

0, 2, 1
1, 2, 0

1, 0, 2
2, 0, 1

𝑥0 < 𝑥1 < 𝑥 2

𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

>

>
>

>>

𝑥0 < 𝑥2 < 𝑥1 𝑥1 < 𝑥2 < 𝑥0 𝑥1 < 𝑥0 < 𝑥2 𝑥2 < 𝑥0 < 𝑥1

< >

2, 1, 0

𝑥2 < 𝑥1 < 𝑥0

𝑥1: 𝑥2

2, 1, 0



Decision Tree
 General case:  𝑛 non-repeating elements

 Many sorting algorithms, for each one we have its own decision tree

 decision trees will have various heights

....

 Smallest height gives us the lower bound on the sorting problem

 Can we reason about the best (smallest) possible height any decision tree must have?



Decision Tree
 Can reason about decision tree for any comparison-based sorting algorithm with  𝑛

non-repeating elements

one possible 
input

<

𝑛! possible 
inputs

? : ? ? : ?

<

? : ?
>

>

𝑆

subset of 𝑛!
possible inputs

subset of 𝑛!
possible inputs𝐴 𝐵

𝑆 = 𝐴 ∪ 𝐵

subset of 𝐴 subset of 𝐴

< >
subset of 𝐵 subset of 𝐵

one possible 
input

one possible 
input

one possible 
input

 Tree must have at least 𝑛! leaves

 Binary tree with height ℎ has at most 2ℎ leaves

 Height ℎ must be at least such that 2ℎ ≥ 𝑛!

 Tree height is the number of comparisons required in the worst case

one possible 
input



Lower bound for sorting in the comparison model
Theorem: Any correct comparison-based sorting algorithm requires at  least 
Ω(𝑛log 𝑛) comparisons

Proof:

 There exists a set of 𝑛! possible inputs s.t. each leads to a different output

 Decision tree must have at least 𝑛! leaves

 Binary tree with height ℎ has at most 2ℎ leaves

 Height ℎ must be at least such that 2ℎ ≥ 𝑛!

 Taking logs of both sides

log(𝑛!) = log(𝑛 𝑛 − 1 … ⋅ 1)= log𝑛 +⋯+ log(
𝑛

2
+ 1) + log

𝑛

2
+⋯+ log 1

≥ log
𝑛

2
+⋯+ log

𝑛

2
=
𝑛

2
log

𝑛

2
=
𝑛

2
log𝑛 −

𝑛

2
∈ Ω(𝑛log 𝑛)

ℎ ≥

≥ log
𝑛

2

𝑛

2
of them
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Non-Comparison-Based Sorting

 Sort without comparing items to each other

 Non-comparison based sorting is less general than comparison 
based

 In particular, we need to make assumptions about items we sort

 unlike in comparison based sorting, which sorts any data, 
as long as it can be compared

 Will assume we are sorting non-negative integers

 can adapt to negative integers 

 also to some other data types, such as strings

 but cannot sort arbitrary data



Non-Comparison-Based Sorting

 Simplest example

 suppose all keys in 𝐴 are integers in range [0,… , 𝐿 − 1]

 For non-comparison sorting, running time depends on both 

 array size 𝑛

 𝐿



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort

 Suppose all keys in 𝐴 are integers in range [0,… , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort
 i.e. array of initially empty linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A

12

14

7

6

7

0

10

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort

 Suppose all keys in 𝐴 are integers in range [0,… , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort
 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12

𝑘 = 0 B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort

 Suppose all keys in 𝐴 are integers in range [0,… , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort
 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14𝑘 = 1

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort

 Suppose all keys in 𝐴 are integers in range [0,… , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort
 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 2

7

B
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Bucket Sort

 Suppose all keys in 𝐴 are integers in range [0,… , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort
 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 3

76

B
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Bucket Sort

 Suppose all keys in 𝐴 are integers in range [0,… , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort
 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 4

76

7

B
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Bucket Sort

 Suppose all keys in 𝐴 are integers in range [0,… , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort
 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 5

760

7

B
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Bucket Sort

 Suppose all keys in 𝐴 are integers in range [0,… , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort
 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 6

760 10

7

B
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Bucket Sort

 Time complexity is Θ(𝐿 + 𝑛)

 𝑛 is size of 𝐴

A
12

14

7

6

7

0

10

12 14760 10

7

0

6

7

7

10

12

14

 Suppose all keys in 𝐴 are integers in range [0,… , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort
 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

 Now iterate through 𝐵 and copy non-empty buckets to 𝐴

B



Digit Based Non-Comparison-Based Sorting

123 230 21 320 210 232 101

 Running time of bucket sort is Θ(𝐿 + 𝑛)
 𝑛 is size of 𝐴

 𝐿 is range [0, 𝐿) of integers in 𝐴

 What if 𝐿 is much larger than 𝑛?
 i.e. 𝐴 has size 100, range of integers in 𝐴 is [0, … , 99999]

 Can sort ‘digit by digit’, can go

 forward, from digit 1 → 𝑚 (more obvious)

 backward, from from digit 𝑚 → 1 (less obvious)

 bucketsort is perfect for sorting ‘by digit’

 Example: 𝐴 has size 100, range of integers in 𝐴 is [0,…,99999]

 integers have at most 5 digits, need only 5 iterations of bucketsort

021

 pad with leading 0s

 Assume at most 𝑚 digits in any key



Bucket Sort on Last Digit
 Equivalent to normal bucket  sort if we redefine comparison 

 𝑎 ≤ 𝑏 if the last digit of 𝑎 is smaller than (or equal) to the last digit of 𝑏

A

123

230

121

320

210

232

101

B[0]

B[1]

B[2]

B[3]

B

123

230

121

320 210

232

101

A

230

320

210

121

101

232

123

0

0

0

1

2

3

1

 Bucket sort is stable: equal items stay in original order

 crucial for developing LSD radix sort later

230

320

210

230

320

210



Base 𝑅 number representation
 Number of distinct digits gives the number of buckets 𝑅

 Useful to control number of buckets

 larger 𝑅 means less digits (less iterations), but more work per 
iteration (larger bucket array)

 may want exactly 2, or 4,  or even 128 buckets

 Can do so with base 𝑅 representation

 digits go from 0 to 𝑅 − 1

 𝑅 buckets

 numbers are in the range {0, 1, … , 𝑅𝑚 − 1}

 From now on, assume keys are numbers in base 𝑅 (𝑅: radix)

 𝑅 = 2, 10, 128, 256 are common

123 230 21 320 210 232 101

 Example (𝑅 = 4)



Single Digit Bucket Sort
Bucket-sort(𝐴, 𝑑)
𝐴 : array of size  𝑛, contains numbers with digits in {0, … , 𝑅 − 1}

𝑑:   index of digit by which we wish to sort

initialize array 𝐵 0,… , 𝑅 − 1 of empty lists (buckets)

for 𝑖 ⟵ 0 to 𝑛 − 1 do

𝑛𝑒𝑥𝑡 ⟵ 𝐴[𝑖]

append 𝑛𝑒𝑥𝑡 at end of 𝐵[𝑑th digit of 𝑛𝑒𝑥𝑡]

𝑖 ⟵ 0

for 𝑗 ⟵ 0 to 𝑅 − 1 do

while 𝐵[𝑗] is non-empty do

move first element of 𝐵[𝑗] to 𝐴[𝑖++]

 Sorting is stable: equal items stay in original order

 Run-time Θ(𝑛 + 𝑅)

 Auxiliary space Θ(𝑛 + 𝑅)
 Θ(𝑅) for array 𝐵, and linked lists are  Θ 𝑛



Single Digit Bucket Sort
Bucket-sort(𝐴, 𝑑)
𝐴 : array of size  𝑛, contains numbers with digits in {0, … , 𝑅 − 1}

𝑑:   index of digit by which we wish to sort

initialize array 𝐵 0,… , 𝑅 − 1 of empty lists (buckets)

for 𝑖 ⟵ 0 to 𝑛 − 1 do

𝑛𝑒𝑥𝑡 ⟵ 𝐴[𝑖]

append 𝑛𝑒𝑥𝑡 at end of 𝐵[𝑑th digit of 𝑛𝑒𝑥𝑡]

𝑖 ⟵ 0

for 𝑗 ⟵ 0 to 𝑅 − 1 do

while 𝐵[𝑗] is non-empty do

move first element of 𝐵[𝑗] to 𝐴[𝑖++]

 Sorting is stable: equal items stay in original order

 Run-time Θ(𝑛 + 𝑅)

 Auxiliary space Θ(𝑛 + 𝑅)
 Θ(𝑅) for array 𝐵, and linked lists are  Θ 𝑛

A

123

230

121

320

210

232

101

B[0]

B[1]

B[2]

B[3]

B

123

230

121

320 210

232

101230

320

210

 Can replace lists by two auxiliary arrays of size 𝑅 and 𝑛, resulting in  count-sort

 no details



MSD-Radix-Sort
 Sorts multi-digit numbers from the most significant to the least significant

 Start by sorting the whole array by the first digit

123

232

021

320

210

230

101



MSD-Radix-Sort

123

232

021

320

210

230

101

 Sorts multi-digit numbers from the most significant to the least significant

 Start by sorting the whole array by the first digit



MSD-Radix-Sort

021

123

101

232

210

230

320

 Cannot sort the whole array by the second digit, will mess up the order

 Have to break down in groups by the first digit

 each group can be safely sorted by the second digit

 call sort recursively on each group, with appropriate array bounds

sort the whole array 
by the second digit

group 1

group 2

group 3

group 4

 Sorts multi-digit numbers from the most significant to the least significant

 Start by sorting the whole array by the first digit

101

210

021

123

320

232

230



MSD-Radix-Sort

021

123

101

232

210

230

320

021
0

0

recursion 
depth 1

recursion 
depth 0

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group

group 1

group 2

group 3

group 4



MSD-Radix-Sort

021

123

101

232

210

230

320

021
0

0

recursion 
depth 1

recursion 
depth 0

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

123

101

0

0

1

2

recursion 
depth 1

recursion 
depth 0

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101
1
1

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101
1
1

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

232

210

230

3

5

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

232

230

4

5

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2
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MSD-Radix-Sort Pseudocode
 Sorts array of 𝑚-digit radix-𝑅 numbers recursively

 Sort by leading digit, then each group by next  digit, etc.

MSD-Radix-sort 𝐴, 𝑙 ← 0, 𝑟 ← 𝑛 − 1, 𝑑 ← 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑑𝑖𝑔𝑖𝑡 𝑖𝑛𝑑𝑒𝑥

𝑙, 𝑟 :  indexes between which to sort, 0 ≤ 𝑙, 𝑟 ≤ 𝑛 − 1

if 𝑙 < 𝑟

bucket-sort(𝐴 𝑙 … 𝑟 , 𝑑)

if  there are digits left

𝑙′ ← 𝑙

while 𝑙′ ≤ 𝑟 do

let 𝑟′ ≥ 𝑙′be the maximal s.t 𝐴 𝑙′… 𝑟′ have the same 𝑑th digit

MSD-Radix-sort 𝐴, 𝑙′, 𝑟′, 𝑑 + 1

𝑙′ ← 𝑟′ + 1

 Run-time 𝑂(𝑚𝑛𝑅)

 Auxiliary space is  Θ 𝑚 + 𝑛 + 𝑅 for bucket sort and recursion stack

 Drawback of MSD-Radix-sort is many recursions
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 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group
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MSD-Radix-Sort Space Analysis
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 Bucket-sort 

 auxiliary space  Θ 𝑛 + 𝑅

 Recursion depth is 𝑚 − 1

 auxiliary space  Θ 𝑚

 Total auxiliary space Θ 𝑛 + 𝑅 +𝑚



MSD-Radix-Sort Time Analysis
 Time spent for each recursion depth

 Depth 0

 one bucket sort on 𝑛 items

 Θ 𝑛 + 𝑅

 All other depths

 lets 𝑘 be the number of bucket sorts 
at each depth

 𝑘 ≤ 𝑛

 cannot have more bucket sorts than 
the array size

 each bucket sort is on 𝑛𝑖 items

 σ𝑖=0
𝑘 𝑛𝑖 = 𝑛

 each bucket sort is 𝑛𝑖 + 𝑅

 σ𝑖=0
𝑘 (𝑛𝑖+𝑅) = 𝑛 + σ𝑖=0

𝑘 𝑅 ≤ 𝑛 + 𝑛𝑅

 total time at any depth is 𝑂 𝑛𝑅

 Number of depths is at most 𝑚 − 1

 Total time 𝑂 𝑚𝑛𝑅
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MSD-Radix-Sort Time Analysis
 Total time 𝑂 𝑚𝑛𝑅

 This is 𝑂 𝑛 if sort items in limited range 
 suppose  𝑅 = 2, and we sort are 𝑛 integers in the range [0, 210)

 then 𝑚 = 10, 𝑅 = 2, and sorting is 𝑂 𝑛

 note that 𝑛, the number of items to sort, can be arbitrarily large



MSD-Radix-Sort Time Analysis
 Total time 𝑂 𝑚𝑛𝑅

 This is 𝑂 𝑛 if sort items in limited range 
 suppose  𝑅 = 2, and we sort are 𝑛 integers in the range [0, 210)

 then 𝑚 = 10, 𝑅 = 2, and sorting is 𝑂 𝑛

 note that 𝑛, the number of items to sort, can be arbitrarily large

 This does not contradict Ω(𝑛log 𝑛) bound on the sorting problem, 
since the bound applies to comparison-based sorting



LSD-Radix-Sort

 Idea: apply single digit bucket sort from least significant digit 
to the most significant digit

 Observe that digit bucket sort is stable

 equal elements stay in the original order

 therefore, we can apply single digit bucket sort to the 
whole array, and the output will be sorted after 
iterations over all digits



LSD-Radix-Sort
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prepare 
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 𝑚 bucket sorts, on 𝑛 items each, one bucket sort is Θ(𝑛 + 𝑅)

 Total time cost Θ(𝑚 𝑛 + 𝑅 )



LSD-Radix-Sort

LSD-radix-sort(𝐴)

𝐴: array of size n, contains m-digit radix-R numbers

for 𝑑 ← least significant down to most significant digit  do

bucket-sort(𝐴, 𝑑)

 Loop invariant: after iteration 𝑖,  𝐴 is sorted w.r.t. the last  𝑖 digits of each entry

 Time cost Θ(𝑚 𝑛 + 𝑅 )

 Auxiliary space Θ(𝑛 + 𝑅)



Summary

 Sorting is an important and very well-studied problem

 Can be done in Θ 𝑛log 𝑛 time

 faster is not possible for general input  

 HeapSort is the only Θ 𝑛log 𝑛 time algorithm we have seen with 
Ο 1 auxiliary space

 MergeSort is also Θ 𝑛log 𝑛 time

 Selection and insertion sorts are Θ 𝑛2

 QuickSort is worst-case Θ 𝑛2 , but often the fastest in practice  

 BucketSort and RadixSort can achieve o 𝑛log 𝑛 if the input is 
special

 Best-case, worst-case, average-case can all differ

 Randomized algorithms can eliminate “bad cases”, resulting in the 
same expected time for all cases


