CS 240 - Data Structures and Data Management

Module 3: Sorting and Randomized Algorithms

M. Petrick V. Sakhnini O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2021

Outline

- Sorting and Randomized Algorithms
- QuickSelect
- Randomized Algorithms
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Outline

- Sorting and Randomized Algorithms
- QuickSelect
- Randomized Algorithms
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Selection Problem

- Given array A of n numbers, and $0 \leq k<n$, find the element that would be at position k if A was sorted
- 'select k '
- k elements are smaller or equal, $n-1-k$ elements are larger or equal

- Special case: median finding ($\left.k=\left\lfloor\frac{n}{2}\right\rfloor\right)$
- Heap-based selection can be done in $\Theta(n+k \log n)$
- this is $\Theta(n \log n)$ for median finding
- the same cost as our best sorting algorithms
- Question: can we do selection in linear time?
- yes, with quick-select (average case analysis)
- subroutines for quick-select also useful for sorting algorithms

Crucial Subroutines

0	1	2	3	$p=4$	5	6	7	8	9
30	60	10	0	$v=50$	80	90	20	40	70

- quick-select and related algorithm quick-sort rely on two subroutines
- choose-pivot(A)
- return an index p in A

30	10	0	20	40	$v=50$	60	80	90	70

- partition (A, p) rearranges A so that
- all items in $A[0, \ldots, i-1]$ are $\leq v$
- pivot-value v is in $A[i]$
- all items in $A[i+1, \ldots, n-1]$ are $\geq v$
- index i is called pivot-index i
- partition (A, p) returns pivot-index i
- $\quad i$ is a correct location of v in sorted A
- if we were interested in select (i), then v would be the answer

Choosing Pivot

- Simplest idea for choose-pivot
- always select rightmost element in array

- Will consider more sophisticated ideas later

Partition Algorithm

```
partition( }A,p
A: array of size n, p: integer s.t. 0 \leq p < n
    create empty lists small, equal and large
    v}\leftarrowA[p
    for each element }x\mathrm{ in }
        if }x<v\mathrm{ then small.append(x)
        else if }x>v\mathrm{ then large.append(x)
        else equal.append(x)
    i}\leftarrow\mathrm{ small.size
    j}\leftarrowequal.size
    overwrite A[0\ldotsi-1] by elements in small
    overwrite }A[i\ldotsi+j-1] by elements in equa
    overwrite }A[i+j\ldotsn-1] by elements in larg
    return i
```

- Easy linear-time implementation using extra (auxiliary) $\Theta(n)$ space
- More challenging: partition in-place, i.e. O(1) auxiliary space

Efficient In-Place partition (Hoare)

Efficient In-Place partition (Hoare)

- Idea Summary: Keep swapping the outer-most wrongly-positioned pairs

$\leq v$	$?$	$\geq v$	v

- One possible implementation

$$
\begin{aligned}
& \text { do } i \leftarrow i+1 \text { while } i<n \text { and } A[i] \leq v \\
& \text { do } j \leftarrow j-1 \text { while } j>0 \text { and } A[j] \geq v
\end{aligned}
$$

- More efficient (for quickselect and quicksort) when many repeating elements

$$
\begin{aligned}
& \text { do } i \leftarrow i+1 \text { while } i<n \text { and } A[i]<v \\
& \text { do } j \leftarrow j-1 \text { while } j>0 \text { and } A[j]>v
\end{aligned}
$$

- Can simplify the loop bounds

$$
\begin{aligned}
& \text { do } i \leftarrow i+1 \text { while } A[i]<v \\
& \text { do } j \leftarrow j-1 \text { while } j \geq i \text { and } A[j]>v
\end{aligned}
$$

Efficient In-Place partition (Hoare)

```
partition (A,p)
    A: array of size n
    p: integer s.t. 0 \leq p<n
        swap(A[n-1],A[p])
        i\leftarrow-1,\quadj\leftarrown-1,\quadv\leftarrowA[n-1]
        loop
            do }i\leftarrowi+1\mathrm{ while }A[i]<
            do j}\leftarrowj-1 while j\geqi and A[j]>v
            if i\geqj then break
            else swap(A[i], A[j])
        end loop
        swap(A[n-1], A[i])
        return i
```

- Running time is $\Theta(n)$

Efficient In-Place partition (Hoare)

```
partition (A,p)
    A: array of size n
    p: integer s.t. 0 \leq p<n
        swap(A[n-1],A[p])
        i\leftarrow-1,\quadj\leftarrown-1,\quadv\leftarrowA[n-1]
        loop
            do }i\leftarrowi+1\mathrm{ while }A[i]<
            do j}\leftarrowj-1 while j\geqi and A[j]>v
            if i\geqj then break
            else swap(A[i], A[j])
        end loop
        swap(A[n-1], A[i])
        return i
```

- Running time is $\Theta(n)$

Quick Select Algorithm

- Find item that would be in $A[k]$ if A was sorted
- Similar to quick-sort, but recurse only on one side ("quick-sort with pruning")
- Example: $\operatorname{select}(k=4)$
- [the correct answer is 40 in this case]

30	60	10	0	50	80	90	20	40	$v=70$

- $\quad i>k$, search recursively in the left side to select k

Quick Select Algorithm

- Example continued: $\operatorname{select}(k=4)$

- $i<k$, search recursively on the right, select $k-(i+1)$
- $k=1$ in our example

Quick Select Algorithm

- Example continued: $\operatorname{select}(k=1)$

30	50	40	$v=60$

$$
\leq 60
$$

- $\quad i>k$, search on the left to select k

Quick Select Algorithm

- Example continued: $\operatorname{select}(k=1)$

30	50	$v=40$

- $\quad i=k$, found our item, done!
- In our example, we got to subarray of size 3
- Often stop much sooner than that
- running time?

QuickSelect Algorithm

```
quick-select1 \((A, k)\)
    \(A\) : array of size \(n, k\) : integer s.t. \(0 \leq k<n\)
        \(p \leftarrow \operatorname{choose-pivot1}(A)\)
        \(i \leftarrow \operatorname{partition}(A, p)\)
        if \(i=k\) then
        return \(A[i]\)
        else if \(i>k\) then
        return quick-select1 \((A[0,1, \ldots, i-1], k)\)
        else if \(i<k\) then
        return quick-select1 \((A[i+1, \ldots, n-1], k-(i+1))\)
```

- Best case
- first chosen pivot could have pivot-index k
- no recursive calls, total cost $\Theta(n)$
- Worst case: recurrence equation $T(n)=\left\{\begin{array}{cc}c n+T(n-1) & n>1 \\ c & n=1\end{array}\right.$

QuickSelect Algorithm

- Worst case: recurrence equation $T(n)=\left\{\begin{array}{cc}c n+T(n-1) & n>1 \\ c & n=1\end{array}\right.$
- Solution: repeatedly expand until we see a pattern forming

$$
\begin{array}{ll}
T(n)=c n+T(n-1) & \\
T(n-1)=\sqrt{c(n-1)+T(n-2)} & \\
T(n)=c n+c(n-1)+T(n-2) & \\
T(n-2)=c(n-2)+T(n-3) & \\
T(n)=c n+c(n-1)+c(n-2)+T(n-3) & \text { after } 1 \text { expansion } 2 \text { expansions }
\end{array}
$$

- After i expansions

$$
T(n)=c n+c(n-1)+c(n-2)+\cdots+c(n-i)+T(n-(i+1))
$$

- Stop expanding when get to base case $T(n-(i+1))=T(1)$
- Happens when $n-(i+1)=1$, or, rewriting, $i=n-2$
- Thus $T(n)=c n+c(n-1)+c(n-2)+\cdots+c \cdot 2+T(1)$

$$
\begin{aligned}
& =c n+c(n-1)+c(n-2)+\cdots+c \cdot 2+c \\
& =c(n+(n-1)+\cdots+2+1) \in \Theta\left(n^{2}\right)
\end{aligned}
$$

Average-Case Analysis of quick-select1

$$
T^{a v r}(n)=\frac{1}{\# \text { instances of size } n} \sum_{I: \operatorname{size}(I)=n} T(I)
$$

infinitely many

- Need to make some assumptions
- First assumption
- all input numbers are distinct
- this assumption is just for simpler analysis, can prove the same thing without this assumption

Average-Case Analysis of quick-select1

- QuickSelect is comparison-based
- only cares if $A[i]<A[j]$ for i, j
- does not care what the actual values of $A[i], A[j]$ are

I_{1}| 30 | 60 | 0 | 10 |
| :--- | :--- | :--- | :--- |$\quad I_{2}$| 20 | 50 | 10 | 15 |
| :--- | :--- | :--- | :--- |

- QuickSelect makes exactly the same sequences of steps on I_{1} and I_{2}
- therefore $T\left(I_{1}\right)=T\left(I_{2}\right)$
- Any comparison based algorithm has exactly the same running time for arrays that have the same relative order of elements, regardless of actual array values
- Second assumption: we are sorting integers $0, \ldots, n-1$
- now there are n ! possible input instances I
- more formal proof uses sorting permutations
- permutation π for which $A[\pi(0)] \leq A[\pi(1)] \leq \ldots \leq A[\pi(n-1)]$
- for I_{1} (and I_{2}) sorting permutation is $\pi=(2,3,0,1)$
- assume each sorting permutation is equally likely
- n ! possible permutations

Average-Case Analysis of quick-select1

$$
T^{a v r}(n)=\frac{1}{\# \text { instances of size } n} \sum_{I: \operatorname{size}(I)=n} T(I)
$$

- Example for $n=3$, using all the assumptions

$$
T^{a v r}(3)=\frac{1}{3!}(T(\{0,1,2\})+T(\{0,2,1\})+T(\{1,0,2\})+T(\{1,2,0\})+T(\{2,0,1\})+T(\{2,1,0\}))
$$

Average-Case Analysis of quick-select1

- Recall that pivot is last array element
- Pivot index is equal to pivot value due to assuming we sort $0, \ldots, n-1$

	0	1	2	3	
A	2	3	0	$v=1$	for $v=1$, pivot index $i=1$

- Partition sum over different pivot indexes

$$
T^{\text {avr }}(n)=\frac{1}{n!} \sum_{I: \operatorname{Size}(I)=n} T(I)=\frac{1}{n!} \sum_{i=0}^{n-1} \sum_{\substack{I: s i z e(I)=n, \\ \text { pivot is } i}} T(I)
$$

- Example for $n=3$

$$
\begin{aligned}
& T^{\text {avr }}(3)=\frac{1}{3!}(T(\{0,1,2\})+T(\{0,2,1\})+T(\{1,0,2\})+T(\{1,2,0\})+T(\{2,0,1\})+T(\{2,1,0\})) \\
& T^{\text {avr }}(3)=\frac{1}{3!}(T(\{1,2,0\})+T(\{2,1,0\}))+ \\
&(T(\{0,2,1\})+T(\{2,0,1\}))+ \\
&(T(\{0,1,2\})+T(\{1,0,2\}))
\end{aligned}
$$

Average-Case Analysis of quick-select1

- Partition sum over different pivots $T^{a v r}(n)=\frac{1}{n!} \sum_{i=0}^{n-1} \sum_{I: s i z e(I)=n,} T(I)$ pivot is i
- There are ($n-1$)! input instances I with pivot index i

- One can show (will only hint at the proof with example for $n=4, i=1$)

$$
\sum_{\substack{\text { I:size(I)=n, } \\ \text { pivot is } i}} T(I) \leq(n-1)!c n+(n-1)!\max \left\{T^{\text {avr }}(i), T^{\text {avr }}(n-i-1)\right\}
$$

- Therefore $T^{a v r}(n) \leq c n+\frac{1}{n} \sum_{i=0}^{n-1} \max \left\{T^{a v r}(i), T^{a v r}(n-i-1)\right\}$

Average-Case Analysis of quick-select1

- Let $n=4, i=1$

$$
\sum_{\begin{array}{l}
I: S i z e(I)=4, \\
\text { pivot is } \mathbf{1}
\end{array}} T(I)=\begin{array}{r}
T(\{0,2,3,1\})+T(\{0,3,2,1\}) \\
+T(\{2,0,3,1\})+T(\{2,3,0,1\}) \\
+T(\{3,0,2,1\})+T(\{3,2,0,1\})
\end{array}
$$

- Total work is proportional to comparisons, will count comparisons

| comparisons to
 partition: | 3 | 3 | 3 | 3 | 3 | 3 | $3(3)$! |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| instances | $\{0,2,3,1\}$ | $\{0,3,2,1\}$ | $\{2,0,3,1\}$ | $\{2,3,0,1\}$ | $\{3,0,2,1\}$ | $\{3,2,0,1\}$ | |

Average-Case Analysis of quick-select1

- Let $n=4, i=1$

$$
\sum_{\begin{array}{l}
I: S i z e(I)=4, \\
\text { pivot is } \mathbf{1}
\end{array}} T(I)=\begin{array}{r}
T(\{0,2,3,1\})+T(\{0,3,2,1\}) \\
+T(\{2,0,3,1\})+T(\{2,3,0,1\}) \\
+T(\{3,0,2,1\})+T(\{3,2,0,1\})
\end{array}
$$

- Total work is proportional to comparisons, will count comparisons

Average-Case Analysis of quick-select1

- Let $n=4, i=1$

$$
\sum_{\begin{array}{c}
I: S i z e(I)=4, \\
\text { pivot is } \mathbf{1}
\end{array}} T(I)=\begin{array}{r}
T(\{0,2,3,1\})+T(\{0,3,2,1\}) \\
+T(\{2,0,3,1\})+T(\{2,3,0,1\}) \\
+T(\{3,0,2,1\})+T(\{3,2,0,1\})
\end{array}
$$

- Total work is proportional to comparisons, will count comparisons

Total recursive comparisons $\frac{3!}{2!} 2!T^{a v r}(2)=3!T^{a v r}(2)$

Average-Case Analysis of quick-select1

- Let $n=4, i=1$

$$
\sum_{\begin{array}{l}
I:: i z e(I)=4,
\end{array}} T(I)=\begin{array}{r}
T(\{0,2,3,1\})+T(\{0,3,2,1\}) \\
\text { pivot is } \mathbf{1}
\end{array} \quad \begin{array}{r}
T(\{2,0,3,1\})+T(\{2,3,0,1\}) \\
+T(\{3,0,2,1\})+T(\{3,2,0,1\})
\end{array}
$$

- Total work is proportional to comparisons, will count comparisons

Abstract

comparisons to

 partition:instances
partitions
\{0,2,3, 1
3
3
3
3
3

(\{0) $\{2,3\}$
(50) $\{3,2\}$
(50) $\{3,2\}$

Case 2: $k<i$

$$
\begin{aligned}
\begin{aligned}
\text { Total recursive comparisons } \frac{3!}{1!} 1!T^{a v r}(1) & =3!T^{a v r}(1) \\
{[\text { Case 1, total recursive comparisons: }} & \left.=3!T^{a v r}(2)\right] \\
\text { Combining both cases, total recursive comparisons: } & \leq 3!\max \left\{T^{a v r}(1), T^{a v r}(2)\right\}
\end{aligned} .\left\{\begin{array}{l}
\text { a }
\end{array}\right.
\end{aligned}
$$

$$
\begin{equation*}
\leq 3(3)!+3!\max \left\{T^{\text {avr }}\right. \tag{1}
\end{equation*}
$$

Average-Case Analysis of quick-select1

- Let $n=4, i=1$

$$
\sum_{\begin{array}{c}
I:: i z e(I)=4,
\end{array}} T(I)=\begin{array}{r}
T(\{0,2,3,1\})+T(\{0,3,2,1\}) \\
\text { pivot is } \mathbf{1}
\end{array} \quad \begin{array}{r}
T(\{2,0,3,1\})+T(\{2,3,0,1\}) \\
+T(\{3,0,2,1\})+T(\{3,2,0,1\})
\end{array}
$$

- Total work is proportional to comparisons, will count comparisons comparisons to partition:
instances

$$
\{0,2,3,1
$$

3
3
3
3
3

partitions	$\{0\}\{2,3\}\{0\}\{3,2\}$	$\{0\}\{2,3\}$
Case $2: k<i$	$\underbrace{T(\{0\})}_{1!T^{\text {avr }}(1)}+\underbrace{T(\{0\})}_{1!T^{\text {avr }}(1)}+\underbrace{T(\{0\})}_{1!T^{\text {avr }}(1)}+\underbrace{T(\{0\})}_{1!T^{\text {avr }}(1)}+\underbrace{T(\{0\})}_{1!T^{\text {avr }}(1)}+\underbrace{T(\{0\})}_{1!T^{\text {avr }}(1)}$	

Comt

$$
\sum_{\substack{I: s i z e(I)=n, \\ \text { pivot is } i}} T(I) \leq(n-1)!c n+(n-1)!\max \left\{T^{a v r}(i), T^{a v r}(n-i-1)\right\}
$$

```
s 3(3)!+3! max{Tavr (1),T\mp@subsup{T}{}{avr}(2)}
```


Average-Case Analysis of quick-select1

$$
T(n) \leq c \cdot n+\frac{1}{n} \sum_{i=0}^{n-1} \max \{T(i), T(n-i-1)\}
$$

Theorem: $T(n) \in \mathrm{O}(n)$
Proof:

- will prove $T(n) \leq 4 c n$ by induction on n
- base case, $n=1: T(1)=c \leq 4 c \cdot 1$
- induction hypothesis: assume $T(m) \leq 4 c m$ for all $m<n$
- need to show $T(n) \leq 4 c n \quad$ induction hypothesis applies

$$
T(n) \leq c \cdot n+\frac{1}{n} \sum_{i=0}^{n-1} \max \{T(i), T(n-i-1)\}
$$

$$
\leq c \cdot n+\frac{1}{n} \sum_{i=0}^{n-1} \max \{4 c i, 4 c(n-i-1)\}
$$

$$
\leq c \cdot n+\frac{4 c}{n} \sum_{i=0}^{n-1} \max \{i, n-i-1\}
$$

Average-Case Analysis of quick-select1

 Proof: (cont.) $T(n) \leq c \cdot n+\frac{4 c}{n} \sum_{i=0}^{n-1} \max \{i, n-i-1\} \leq c \cdot n+\frac{4 c}{n} \cdot \frac{3}{4} n^{2}=4 c n$$$
\begin{aligned}
& \sum_{i=0}^{n-1} \max \{i, n-i-1\}=\sum_{i=0}^{\frac{n}{2}-1} \max \{i, n-i-1\}+\sum_{i=\frac{n}{2}}^{n-1} \max \{i, n-i-1\} \\
& \quad=\max \{0, \underline{n-1}\}+\max \left\{1, \underline{n-2\}}+\max \{2, \underline{n-3}\}+\cdots+\max \left\{\frac{n}{2}-1, \frac{n}{2}\right\}\right.
\end{aligned}
$$

$$
+\max \left\{\frac{n}{2}, \frac{n}{2}-1\right\}+\max \left\{\frac{n}{2}+1, \frac{n}{2}-2\right\}+\cdots+\max \{n-1,0\}
$$

$$
=\underbrace{(n-1)+(n-2)+\cdots+\frac{n}{2}}+\frac{n}{2}+\left(\frac{n}{2}+1\right)+\cdots(n-1)=\left(\frac{3 n}{2}-1\right) \frac{n}{2}
$$

$$
\left(\frac{3 n}{2}-1\right) \frac{n}{4} \quad\left(\frac{3 n}{2}-1\right) \frac{n}{4}
$$

$$
\leq \frac{3}{4} n^{2}
$$

Average-Case Analysis of quick-select1

- Proved average case time $T(n)$ is $O(n)$
- Average case is also $\Omega(n)$ since have to perform partition (A, p)
- Therefore average case is $T(n)$ is $\Theta(n)$

Outline

- Sorting and Randomized Algorithms
- QuickSelect
- Randomized Algorithms
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Randomized Algorithms

- A randomized algorithm is one which relies on some random numbers in addition to the input
- The cost will depend on both the input and the random numbers used
- Goal
- shift the dependency of run-time from what we cannot control (the input), to what we can control (random numbers)
- no more bad instances, just unlucky numbers
- if running time is long on some instance, it's because we generated unlucky random numbers, not because of the instance itself
- Side note
- computers cannot generate truly random numbers
- we assume there is a pseudo-random number generator (PRNG), a deterministic program that uses an initial value or seed to generate a sequence of seemingly random numbers
- quality of randomized algorithm depends on the quality of the PRNG

Expected Running Time

- How do we measure the running time of a randomized algorithm?
- it depends on the input I and on R, the sequence of random numbers an algorithm choses during execution
- Define $T(I, R)$ to be running time of randomized algorithm for instance I and R
- The expected running time $T^{\exp }(I)$ for instance I is expected value for $T(I, R)$

$$
T^{\exp }(I)=\boldsymbol{E}[T(I, R)]=\sum_{\substack{\text { all possible } \\ \text { sequences } R}} T(I, R) \cdot \operatorname{Pr}[R]
$$

- Worst-case expected running time

$$
T^{\exp }(n)=\max _{\{I: \operatorname{size}(I)=n\}} T^{\exp }(I)
$$

- Average-case expected running time

$$
T^{\exp }(n)=\frac{1}{|I: \operatorname{size}(I)=n|} \sum_{I: \operatorname{Size}(I)=n} T^{\exp }(I)
$$

- Usually design A so that all instances of size n have the same expected run time
- Thus the average and worst case expected run times are the same, and we just = compute the worst case expected time

Expected Running Time

- How do we measure the running time of a randomized algorithm?
- it depends on the input I and on R, the sequence of random numbers an algorithm choses during execution
- Define $T(I, R)$ to be running time of randomized algorithm for instance I and R
- The expected running time $T^{\text {exp }}(I)$ for instance I is expected value for $T(I, R)$

$$
T^{\exp }(I)=\boldsymbol{E}[T(I, R)]=\sum_{\substack{\text { all possible } \\ \text { sequences } R}} T(I, R) \cdot \operatorname{Pr}[R]
$$

- Worst-case expected running time

$$
T^{\exp }(n)=\max _{\{I: \operatorname{size}(I)=n\}} T^{\exp }(I)
$$

- Average-case expected running time $T^{\exp }(n)=\frac{1}{|I: \operatorname{size}(I)=n|} \sum_{I: \operatorname{Size}(I)=n} T^{\exp }(I)$
- Usually design A so that all instances of size n have the same expected run time
- Thus average and worst case expected run times are usually the same
- just compute the worst case expected time
- Sometimes we also want to know the running time if we got really unlucky with the random numbers R we generate during the execution, or, formally

$$
\max _{R} \max _{\{I: s i z e(I)=n\}} T(I, R)
$$

Randomized QuickSelect: Shuffle

- Goal: create a randomized version of QuickSelect for which all input has the same expected run-time
- First idea: first randomly permute input using shuffle and then run selection algorithm

$$
\begin{aligned}
& \text { shuffle }(A) \\
& A: \text { array of size } n \\
& \quad \text { for } i \leftarrow 0 \text { to } n-1 \text { do } \\
& \quad \operatorname{swap}(A[i], A[\text { random }(i+1)])
\end{aligned}
$$

- $\operatorname{random}(n)$ returns an integer uniformly sampled from $\{0,1,2, \ldots, n-1\}$
- can show that expected running time is $\Theta(n)$, the same as average running time

Randomized QuickSelect: Shuffle

- Goal: create a randomized version of QuickSelect for which all input has the same expected run-time
- First idea: first randomly permute input using shuffle and then run selection algorithm

```
shuffle(A)
A : array of size n
    for }i\leftarrow0\mathrm{ to }n-1\mathrm{ do
        swap(A[i], A[random(i+1)])
```

- $\operatorname{random}(n)$ returns an integer uniformly sampled from $\{0,1,2, \ldots, n-1\}$
- can show that expected running time is $\Theta(n)$, the same as average running time
- if we get very unlucky with random numbers, we could get a sorted or almost sorted array after shuffle, resulting in $O\left(n^{2}\right)$ performance for selection algorithm
- probability of this happening is almost zero
- whereas the user is quite likely to give instance which is sorted or almost sorted to the selection algorithm
- probability is far from zero, humans often produce almost sorted data

Randomized QuickSelect: Random Pivot

- Second idea: select a random pivot from $\{0,1,2, \ldots, n-1\}$

```
choose-pivot2(A)
    return random(A.size())
```

- Simpler and more efficient than shuffling the array
- Usually fastest in practice
- Expected running time is again $\Theta(n)$

Efficiency of Randomized QuickSelect

```
quick-select2(A, k)
    p\leftarrowchoose-pivot2(A)
    "the rest"
```

```
choose-pivot2(A)
```

 return \(\operatorname{random}(A . \operatorname{size}())\)
 - Assume all elements of A are distinct
- Select pivot with equal probability at each recursive call, and independently from other recursive calls
- $\quad P($ pivot has index $i)=\frac{1}{n}$ for any instance of size n
- $\quad T^{e x p}(I)$ depends only on the size of I, not the contents of I
- Let $T^{\exp }(n)$ be expected time on an instance of size n
- Running time to partition array is $c n$, and with probability $1 / n$ pivot-index is i

running time if pivot index is $i \leq c \cdot n+\max \left\{T^{\exp }(i), T^{\exp }(n-i-1)\right\}$

Efficiency of Randomized QuickSelect

running time if pivot-index is $i \leq c \cdot n+\max \left\{T^{\exp }(i), T^{\exp }(n-i-1)\right\}$

- Taking expectation over pivot index i

$$
\begin{aligned}
& T^{\exp }(n)=\sum_{i=0}^{n-1}(\text { running time if pivot index is } i) P(\text { index of pivot is } i) \\
& \quad \leq \sum_{i=0}^{n-1}\left(c n+\max \left\{T^{\exp }(i), T \exp (n-i-1\}\right) \frac{1}{n}\right. \\
& \leq c n+\sum_{i=0}^{n-1} \frac{1}{n} \max \left\{T^{\exp }(i), T^{\exp }(n-i-1)\right\}
\end{aligned}
$$

- Same recurrence as for non-randomized average case
- Resolves to $\Theta(n)$ expected time on instance of size n
- Side note
- there is selection algorithm "Median of Medians" (cs341) that has worst-case running time $O(n)$
- uses double recursion
- slower in practice

QuickSelect: Badly Designed Randomization

```
choose-random-pivot-badly(A)
    if A. size \geq 3 return random(3)
    else return 0
```

$$
T^{\exp }(n)=\max _{\{I: \operatorname{size}(I)=n\}} T^{\exp }(I)
$$

- Worst instance is sorted array $I_{n}=\{0,1, \ldots, n-1\}$
- $\quad T^{\exp }\left(I_{n}\right)= \begin{cases}c n+\frac{1}{3} T^{\exp }\left(I_{n-1}\right)+\frac{1}{3} T^{\exp }\left(I_{n-2}\right)+\frac{1}{3} T^{\exp }\left(I_{n-3}\right) & \text { if } n \geq 3 \\ c & \text { if } n<3\end{cases}$
- $\quad T^{\exp }\left(I_{n}\right) \geq c n+T\left(I_{n-3}\right)$ if $n \geq 3$
- Resolves to $\Theta\left(n^{2}\right)$
- Worst case expected time is $\Theta\left(n^{2}\right)$

Outline

- Sorting and Randomized Algorithms
- QuickSelect
- Randomized Algorithms
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

QuickSort

- Hoare developed partition and quick-select in 1960
- He also used them to sort based on partitioning

$$
\begin{aligned}
& \text { quick-sort1 }(A) \\
& \text { Input: array } A \text { of size } n \\
& \text { if } n \leq 1 \text { then return } \\
& p \leftarrow \operatorname{choose-pivot1(A)} \\
& i \leftarrow \operatorname{partition}(A, p) \\
& \text { quick-sort1 }(A[0,1, \ldots, i-1]) \\
& \text { quick-sort1 }(A[i+1, \ldots, n-1])
\end{aligned}
$$

- Let $T(n)$ to be the runtime on size n array
- If we know pivot-index i, then $T(n)=c n+T(i)+T(n-i-1)$
- Worst case $T(n)=T(n-1)+c n$
- recurrence solved in the same way as quick-select1, $\Theta\left(n^{2}\right)$
- Best case $T(n)=T([n / 2\rceil)+T(\lfloor n / 2\rfloor)+c n$
- solved in the same way as merge-sort, $\Theta(n \log n)$

Average-case analysis of quick-sort1

- Make the same assumptions as for quick-select1
- Deriving recurrence equation is similar to quick-select1, but recurse on both sides

$$
i=2
$$

1	0	$v=2$	3	5	8	9	6	4	7
recurse									
recurse									

- Using the same approach as for quick-select1, average running time is

$$
T(n)=\frac{1}{n} \sum_{i=0}^{n-1}(c n+T(i)+T(n-i-1)), \quad n \geq 2
$$

- Running time is proportional to the number of comparisons
- Recurrence for counting comparisons

$$
T(n)=\frac{1}{n} \sum_{i=0}^{n-1}(n+T(i)+T(n-i-1)), \quad n \geq 2
$$

Average-case analysis of quick-sort1

- First let us get a simpler recursive expression for $T(n)$

$$
\begin{aligned}
T(n) & =\frac{1}{n} \sum_{i=0}^{n-1}(n+T(i)+T(n-i-1)) \\
& =n+\frac{1}{n} \sum_{i=0}^{n-1} T(i)+\frac{1}{n} \sum_{i=0}^{n-1} T(n-i-1) \\
T(0)+ & T(1)+\cdots+T(n-1) T(n-1)+T(n-2)+\cdots+T(0) \\
& =n+\frac{2}{n} \sum_{i=0}^{n-1} T(i)
\end{aligned}
$$

- Thus $T(n)=n+\frac{2}{n} \sum_{i=0}^{n-1} T(i)$

Average-case analysis $T(n)=n+\frac{2}{n} \sum_{i=0}^{n-1} T(i)$ is $\Theta(n \log n)$
of quick-sort1

Proof

Multiply by n :

$$
n T(n)=n^{2}+2 \sum_{i=0}^{n-1} T(i)
$$

Plug in $n-1$:

$$
(n-1) T(n-1)=(n-1)^{2}+2 \sum_{i=0}^{n-2} T
$$

Subtract:

$$
n T(n)-(n-1) T(n-1)=2 n-1+2 T(n-1)
$$

Rearrange :

$$
n T(n)=(n+1) T(n-1)+2 n-1
$$

Divide by $(n+1) n: \quad \frac{T(n)}{n+1}=\frac{T(n-1)}{n}+\frac{2 n-1}{n(n+1)}$
Let $A(n)=\frac{T(n)}{n+1}: \quad A(n)=A(n-1)+\frac{2 n-1}{n(n+1)}=A(n-2)+\frac{2(n-1)-1}{(n-1) n}+\frac{2 n-1}{n(n+1)}$

Therefore: $A(n)=c \log n$

$$
=\cdots=\sum_{i=1}^{n} \frac{2 i-1}{i(i+1)}=\sum_{\Theta(\log n)}^{n} \frac{2}{i+1}-\underbrace{\sum_{i=1}^{n} \frac{1}{i(i+1)}}_{\Theta(1)}
$$

Finally: $T(n)=(n+1) A(n)=c(n+1) \log n \in \Theta(n \log n)$

Improvement ideas for QuickSort

- Randomize by using choose-pivot2, giving $\Theta(n \log n)$ expected time for quick-sort2
- The auxiliary space is Ω (recursion depth)
- $\Theta(n)$ in the worst-case
- can be reduce to $\Theta(\log n)$ worst-case by
- recurse in smaller sub-array first
- replacing the other recursion by a while-loop (tail call elimination)
- Stop recursion when, say $n \leq 10$
- array is not completely sorted, but almost sorted
- at the end, run insertionSort, it sorts in just $O(n)$ time since all items are within 10 units of the required position
- Arrays with many duplicates sorted faster by changing partition to produce three subsets

- Programming tricks
- instead of passing full arrays, pass only the range of indices
- avoid recursion altogether by keeping an explicit stack

QuickSort with Tricks

```
quick-sort3(A,n)
    initialize a stack S of index-pairs with {(0,n-1)}
    while}S\mathrm{ is not empty
        (l,r)\leftarrowS.pop() // get the next subproblem
        S.push((i+1,r)) // store larger problem in S for later
        r\leftarrowi-1 // next work on the left side
    InsertionSort(A)
```

- This is often the most efficient sorting algorithm in practice

Outline

- Sorting and Randomized Algorithms
- QuickSelect
- Randomized Algorithms
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Lower bounds for sorting

- We have seen many sorting algorithms

Sort	Running Time	Analysis
Selection Sort	$\Theta\left(n^{2}\right)$	worst-case
Insertion Sort	$\Theta\left(n^{2}\right)$	worst-case
Merge Sort	$\Theta(n \log n)$	worst-case
Heap Sort	$\Theta(n \log n)$	worst-case
quick-sort1	$\Theta(n \log n)$	average-case
quick-sort2	$\Theta(n \log n)$	expected

- Question: Can one do better than $\Theta(n \log n)$ running time?
- Answer: It depends on what we allow
- No: comparison-based sorting lower bound is $\Omega(n \log n)$
- no restriction on input, just must be able to compare
- Yes: non-comparison-based sorting can achieve $\mathrm{O}(n)$
- restrictions on input

The Comparison Model

- All sorting algorithms seen so far are in the comparison model
- In the comparison model data can only be accessed in two ways
- comparing two elements
- $A[i] \leq A[j]$
- moving elements around (e.g. copying, swapping)
- This makes very few assumptions on the things we are sorting
- just count the number of above operations
- Under comparison model, will show that any sorting algorithm requires $\Omega(n \log n)$ comparisons
- This lower bound is not for an algorithm, it is for the sorting problem
- How can we talk about problem without algorithm?
- count number of comparisons any sorting algorithm has to perform

Decision Tree

- Decision tree succinctly describes all the decisions that are taken during the execution of an algorithm and the resulting outcome
- For each sorting algorithm we can construct a corresponding decision tree
- Given decision tree, we can deduce the algorithm
- Decision tree can be constructed for any algorithm, not just sorting

Decision Tree Example

- Decision tree for a concrete comparison based sorting algorithm, with 3 nonrepeating elements [x_{0}, x_{1}, x_{2}]

Set of all possible inputs

$$
\begin{aligned}
& \text { 0, 1, } 2 \longrightarrow x_{0}<x_{1}<x_{2} \text { output }\left[x_{0}, x_{1}, x_{2}\right] \\
& 0,2,1 \longrightarrow x_{0}<x_{2}<x_{1} \quad \text { output }\left[x_{0}, x_{2}, x_{1}\right] \\
& \text { 1, 0, } 2 \longrightarrow x_{1}<x_{0}<x_{2} \quad \text { output }\left[x_{1}, x_{0}, x_{2}\right] \\
& \text { 1, 2, } 0 \longrightarrow x_{2}<x_{0}<x_{1} \quad \text { output }\left[x_{2}, x_{0}, x_{1}\right] \\
& \text { 2, 0, } 1 \longrightarrow x_{1}<x_{2}<x_{0} \quad \text { output }\left[x_{1}, x_{2}, x_{0}\right] \\
& \text { 2, 1, } 0 \longrightarrow x_{2}<x_{1}<x_{0} \quad \text { output }\left[x_{2}, x_{1}, x_{0}\right]
\end{aligned}
$$

- Have to determine which of the 6 inputs we are given before can give output
- unique output for each distinct input

Decision Tree

- Decision tree for a concrete comparison based sorting algorithm, with 3 non-repeating elements

- Root corresponds to the set of all possible inputs
- Interior nodes are comparisons: each comparison splits the set of possible inputs into two
- Know correct sorting order only when the set of possible inputs shrinks to size one
- nodes where possible input shrunk to size one are leaves, when reach them, can output sorting result
- Sorting algorithm will traverse a path starting at root and ending at a leaf
- length of the path is the number of comparisons to be made
- Tree height is the number of comparisons required for sorting in the worst case

Decision Tree

- Decision tree for a concrete comparison based sorting algorithm, with 3 non-repeating elements

- Algorithm could do more comparisons than necessary
- Thus can have more leafs than possible inputs
- But the number of leaves must be at least the number of possible inputs

Decision Tree

- General case: n non-repeating elements
- Many sorting algorithms, for each one we have its own decision tree
- decision trees will have various heights

- Smallest height gives us the lower bound on the sorting problem
- Can we reason about the best (smallest) possible height any decision tree must have?

Decision Tree

- Can reason about decision tree for any comparison-based sorting algorithm with n non-repeating elements

one possible input	one possible input
one possible input	

- Tree must have at least n ! leaves
- Binary tree with height h has at most 2^{h} leaves
- Height h must be at least such that $2^{h} \geq n$!
- Tree height is the number of comparisons required in the worst case

Lower bound for sorting in the comparison model

Theorem: Any correct comparison-based sorting algorithm requires at least $\Omega(n \log n)$ comparisons

Proof:

- There exists a set of n ! possible inputs s.t. each leads to a different output
- Decision tree must have at least n ! leaves
- Binary tree with height h has at most 2^{h} leaves
- Height h must be at least such that $2^{h} \geq n$!
- Taking logs of both sides
$h \geq \log (n!)=\log (n(n-1) \ldots \cdot 1)=\operatorname{logn+\cdots +\operatorname {log}(\frac {n}{2}+1)+\operatorname {log}\frac {n}{2}+\cdots +\operatorname {log}1}$

$$
\geq \underbrace{\log \frac{n}{2}+\cdots+\log \frac{n}{2}}_{\frac{n}{2} \text { of them }}=\frac{n}{2} \log \frac{n}{2}=\frac{n}{2} \log n-\frac{n}{2} \in \Omega(n \log n)
$$

Outline

- Sorting and Randomized Algorithms
- QuickSelect
- Randomized Algorithms
- OuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Non-Comparison-Based Sorting

- Sort without comparing items to each other
- Non-comparison based sorting is less general than comparison based
- In particular, we need to make assumptions about items we sort
- unlike in comparison based sorting, which sorts any data, as long as it can be compared
- Will assume we are sorting non-negative integers
- can adapt to negative integers
- also to some other data types, such as strings
- but cannot sort arbitrary data

Non-Comparison-Based Sorting

- Simplest example
- suppose all keys in A are integers in range $[0, \ldots, L-1]$
- For non-comparison sorting, running time depends on both
- array size n
- L

Bucket Sort

- Suppose all keys in A are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of initially empty linked lists, initialization is $\Theta(L)$
- Example with $L=15$

c
12
12
14
7
6
7
0
10

B

Bucket Sort

- Suppose all keys in A are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

$k=0$| A |
| :---: |
| |
| 12 |
| 14 |
| 7 |
| 6 |
| 7 |
| 0 |
| 10 |

B

Bucket Sort

- Suppose all keys in A are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

$k=1$| A |
| :---: |
| \begin{tabular}{\|c|}
\hline
\end{tabular}12
 14
 7
 6
 7
 0
 10 |

B

Bucket Sort

- Suppose all keys in A are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

$k=2$	A
	12
	14
	7
	6
	7
	0
	10

B

Bucket Sort

- Suppose all keys in A are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

$k=3$	A
	12
	14
	7
	6
	7
	0
	10

B

Bucket Sort

- Suppose all keys in A are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

A 12 14 14 7 7 67 0 10

B

Bucket Sort

- Suppose all keys in A are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

Bucket Sort

- Suppose all keys in A are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

Bucket Sort

- Suppose all keys in A are integers in range [0, ... $L-1$]
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$
- Now iterate through B and copy non-empty buckets to A

Digit Based Non-Comparison-Based Sorting

- Running time of bucket sort is $\Theta(L+n)$
- n is size of A
- L is range $[0, L)$ of integers in A
- What if L is much larger than n ?
- i.e. A has size 100, range of integers in A is [$0, \ldots, 99999$]
- Assume at most m digits in any key
- pad with leading Os

123	230	021	320	210	232	101

- Can sort 'digit by digit’, can go
- forward, from digit $1 \rightarrow m$ (more obvious)
- backward, from from digit $m \rightarrow 1$ (less obvious)
- bucketsort is perfect for sorting 'by digit'
- Example: A has size 100 , range of integers in A is [0,...,99999]
- integers have at most 5 digits, need only 5 iterations of bucketsort

Bucket Sort on Last Digit

- Equivalent to normal bucket sort if we redefine comparison
- $a \leq b$ if the last digit of a is smaller than (or equal) to the last digit of b

- Bucket sort is stable: equal items stay in original order
- crucial for developing LSD radix sort later

Base R number representation

- Number of distinct digits gives the number of buckets R
- Useful to control number of buckets
- larger R means less digits (less iterations), but more work per iteration (larger bucket array)
- may want exactly 2 , or 4 , or even 128 buckets
- Can do so with base R representation
- digits go from 0 to $R-1$
- R buckets
- numbers are in the range $\left\{0,1, \ldots, R^{m}-1\right\}$
- From now on, assume keys are numbers in base R (R : radix)
- $R=2,10,128,256$ are common
- Example ($R=4$)

123	230	21	320	210	232	101

Single Digit Bucket Sort

```
Bucket-sort(A,d)
A : array of size n, contains numbers with digits in {0,\ldots,R - 1}
d: index of digit by which we wish to sort
    initialize array B[0,\ldots,R-1] of empty lists (buckets)
    for }i\leftarrow0\mathrm{ to }n-1\mathrm{ do
        next \leftarrowA[i]
        append next at end of B[dth digit of next]
    i\leftarrow0
    for j}\longleftarrow0\mathrm{ to }R-1\mathrm{ do
        while }B[j]\mathrm{ is non-empty do
                move first element of B[j] to }A[i++
```

- Sorting is stable: equal items stay in original order
- Run-time $\Theta(n+R)$
- Auxiliary space $\Theta(n+R)$
- $\Theta(R)$ for array B, and linked lists are $\Theta(n)$

Single Digit Bucket Sort

- $\quad \Theta(R)$ for array B, and linked lists are $\Theta(n)$
- Can replace lists by two auxiliary arrays of size R and n, resulting in count-sort
- no details

MSD-Radix-Sort

- Sorts multi-digit numbers from the most significant to the least significant
- Start by sorting the whole array by the first digit

123
232
021
320
210
230
101

MSD-Radix-Sort

- Sorts multi-digit numbers from the most significant to the least significant
- Start by sorting the whole array by the first digit

$\underline{1} 23$
$\underline{2} 32$
$\underline{0} 21$
$\underline{3} 20$
$\underline{2} 10$
$\underline{2} 30$
$\underline{10101}$

MSD-Radix-Sort

- Sorts multi-digit numbers from the most significant to the least significant
- Start by sorting the whole array by the first digit

group 1	$\underline{0} 21$
group 2	123
	101
group 3	$\underline{2} 32$
	$\underline{210}$
	$\underline{230}$
group 4	$\underline{3} 20$

- Cannot sort the whole array by the second digit, will mess up the order
- Have to break down in groups by the first digit
- each group can be safely sorted by the second digit
- call sort recursively on each group, with appropriate array bounds

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
depth 0 depth 1

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
depth 0 depth 1

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
depth 0 depth 1

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion

recursion
recursion
depth 0
depth 1
depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
recursion
depth 0
depth 1
depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion

recursion
recursion
depth 0
depth 1
depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion

recursion
recursion
depth 1
depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion

recursion
recursion
depth 1
depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
recursion
depth 0
depth 1 depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion

recursion
recursion
depth 0
depth 1 depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion	recursion	recursion
depth 0	depth 1	depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion	recursion	recursion
depth 0	depth 1	depth 2

MSD-Radix-Sort Pseudocode

- Sorts array of m-digit radix- R numbers recursively
- Sort by leading digit, then each group by next digit, etc.

```
MSD-Radix-sort ( }A,l\leftarrow0,r\leftarrown-1,d\leftarrow\mathrm{ leading digit index)
l , r : ~ i n d e x e s ~ b e t w e e n ~ w h i c h ~ t o ~ s o r t , ~ 0 \leq l , r \leq n - 1
    if l<r
        bucket-sort(A [l ..r],d)
        if there are digits left
```

$$
\begin{aligned}
& l^{\prime} \leftarrow l \\
& \text { while }\left(l^{\prime} \leq r\right) \text { do }
\end{aligned}
$$

$$
\text { let } r^{\prime} \geq l^{\prime} \text { be the maximal s.t } A\left[l^{\prime} \ldots r^{\prime}\right] \text { have the same } d \text { th digit }
$$

$$
\text { MSD-Radix-sort }\left(A, l^{\prime}, r^{\prime}, d+1\right)
$$

$$
l^{\prime} \leftarrow r^{\prime}+1
$$

- Run-time $O(m n R)$
- Auxiliary space is $\Theta(m+n+R)$ for bucket sort and recursion stack
- Drawback of MSD-Radix-sort is many recursions

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort Space Analysis

- Bucket-sort
- auxiliary space $\Theta(n+R)$
- Recursion depth is $m-1$
- auxiliary space $\Theta(m)$
- Total auxiliary space $\Theta(n+R+m)$

$\underline{0} 21$
$\underline{123}$
$\underline{101}$
$\underline{2} 32$
$\underline{2} 10$
$\underline{2} 30$
$\underline{320} 20$

MSD-Radix-Sort Time Analysis

- Time spent for each recursion depth
- Depth 0
- one bucket sort on n items
- $\Theta(n+R)$
- All other depths
- lets k be the number of bucket sorts at each depth
- $k \leq n$
- cannot have more bucket sorts than the array size
- each bucket sort is on n_{i} items
- $\sum_{i=0}^{k} n_{i}=n$
- each bucket sort is $n_{i}+R$
- $\sum_{i=0}^{k}\left(n_{i}+R\right)=n+\sum_{i=0}^{k} R \leq n+n R$
- total time at any depth is $O(n R)$

101

123
$\underline{2} 32$
210

230
320
recursion depth 0
recursion depth 1
recursion depth 2

- Number of depths is at most $m-1$
- Total time $O(m n R)$

MSD-Radix-Sort Time Analysis

- Total time $O(m n R)$
- This is $O(n)$ if sort items in limited range
- suppose $R=2$, and we sort are n integers in the range $\left[0,2^{10}\right.$)
- then $m=10, R=2$, and sorting is $O(n)$
- note that n, the number of items to sort, can be arbitrarily large

MSD-Radix-Sort Time Analysis

- Total time $O(m n R)$
- This is $O(n)$ if sort items in limited range
- suppose $R=2$, and we sort are n integers in the range $\left[0,2^{10}\right.$)
- then $m=10, R=2$, and sorting is $O(n)$
- note that n, the number of items to sort, can be arbitrarily large
- This does not contradict $\Omega(n \log n)$ bound on the sorting problem, since the bound applies to comparison-based sorting

LSD-Radix-Sort

- Idea: apply single digit bucket sort from least significant digit to the most significant digit
- Observe that digit bucket sort is stable
- equal elements stay in the original order
- therefore, we can apply single digit bucket sort to the whole array, and the output will be sorted after iterations over all digits

LSD-Radix-Sort

123
230
121
320
210
232
101

prepare to sort by last digit

230
320
210
121
101
232
123

last digit sorted

230
320
210
121
101
232
123

101
210
320
121
123
230
232

last two
digits
sorted

101	101
(210)	121
320	123
121	(210)
123	(230)
(230)	(232)
(232)	320
prepare to sort by first digit	last three digits sorted

- m bucket sorts, on n items each, one bucket sort is $\Theta(n+R)$
- Total time cost $\Theta(m(n+R))$

LSD-Radix-Sort

LSD-radix-sort (A)

A : array of size n, contains m-digit radix- R numbers
for $d \leftarrow$ least significant down to most significant digit do bucket-sort (A, d)

- Loop invariant: after iteration i, A is sorted w.r.t. the last i digits of each entry
- Time cost $\Theta(m(n+R))$
- Auxiliary space $\Theta(n+R)$

Summary

- Sorting is an important and very well-studied problem
- Can be done in $\Theta(n \log n)$ time
- faster is not possible for general input
- HeapSort is the only $\Theta(n \log n)$ time algorithm we have seen with O(1) auxiliary space
- MergeSort is also $\Theta(n \log n)$ time
- Selection and insertion sorts are $\Theta\left(n^{2}\right)$
- QuickSort is worst-case $\Theta\left(n^{2}\right)$, but often the fastest in practice
- BucketSort and RadixSort can achieve $o(n \log n)$ if the input is special
- Best-case, worst-case, average-case can all differ
- Randomized algorithms can eliminate "bad cases", resulting in the same expected time for all cases

