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Direct Addressing
Special situation: For a known M ∈ N, every key k is an integer with
0 ≤ k < M.

We can then implement a dictionary easily: Use an array A of size M that
stores (k, v) via A[k]← v .
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pig8

search(k): Check whether A[k] is NIL

insert(k, v): A[k]← v
delete(k): A[k]← NIL

Each operation is Θ(1).
Total space is Θ(M).

What sorting algorithm does this remind you of?
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Hashing
Two disadvantages of direct addressing:

It cannot be used if the keys are not integers.
It wastes space if M is unknown or n� M.

Hashing idea: Map (arbitrary) keys to integers in range {0, . . . ,M−1}
and then use direct addressing.

Details:
Assumption: We know that all keys come from some universe U.
(Typically U = N.)
We design a hash function h : U → {0, 1, . . . ,M − 1}.
(Commonly used: h(k) = k mod M. We will see other choices later.)
Store dictionary in hash table, i.e., an array T of size M.
An item with key k should ideally be stored in slot h(k), i.e., at
T [h(k)].
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Hashing example
U = N, M = 11, h(k) = k mod 11.
The hash table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).
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Collisions
Generally hash function h is not injective, so many keys can map to
the same integer.

I For example, h(46) = 2 = h(13) if h(k) = k mod 11.
We get collisions: we want to insert (k, v) into the table,
but T [h(k)] is already occupied.
There are many strategies to resolve collisions:

multiple items at location
(Chaining)

alternate slots in array
(Open addressing)

many alternate slots
(Probe sequence)

Linear Probing . . . Double Hashing

one alternate slot
(Cuckoo Hashing)
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Separate Chaining

Simplest collision-resolution strategy: Each slot stores a bucket containing
0 or more KVPs.

A bucket could be implemented by any dictionary realization (even
another hash table!).
The simplest approach is to use unsorted linked lists for buckets.
This is called collision resolution by separate chaining.

search(k): Look for key k in the list at T [h(k)].
Apply MTF-heuristic!
insert(k, v): Add (k, v) to the front of the list at T [h(k)].
delete(k): Perform a search, then delete from the linked list.
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Chaining example
M = 11, h(k) = k mod 11
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Complexity of chaining
Run-times: insert takes time O(1).
search and delete have run-time O(1 + size of bucket T (h(k))).

The average bucket-size is n
M =: α.

(α is also called the load factor.)
However, this does not imply that the average-case cost of search and
delete is O(1 + α).
(If all keys hash to the same slot, then the average bucket-size is still
α, but the operations take time Θ(n) on average.)
Uniform Hashing Assumption: Each hash function value is equally
likely.
(This depends on the input and how we choose the function  later.)
Under this assumption, each key collides is expected to collide with
n−1
M other keys and the average-case cost of search and delete is
hence O(1 + α).
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Load factor and re-hashing

For all collision resolution strategies, the run-time evaluation is done
in terms of the load factor α = n/M.
We keep the load factor small by rehashing when needed:

I Keep track of n and M throughout operations
I If α gets too large, create new (twice as big) hash-table, new

hash-function(s) and re-insert all items in the new table.
Rehashing costs Θ(M + n) but happens rarely enough that we can
ignore this term when amortizing over all operations.
We should also re-hash when α gets too small, so that M ∈ Θ(n)
throughout, and the space is always Θ(n).

Summary: If we maintain α ∈ Θ(1), then (under the uniform hashing
assumption) the average cost for hashing with chaining is O(1) and the
space is Θ(n).
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Open addressing
Main idea: Avoid the links needed for chaining by permitting only one
item per slot, but allowing a key k to be in multiple slots.

search and insert follow a probe sequence of possible locations for key k:
〈h(k, 0), h(k, 1), h(k, 2), . . .〉 until an empty spot is found.

delete becomes problematic:
Cannot leave an empty spot behind; the next search might otherwise
not go far enough.
Idea 1: Move later items in the probe sequence forward.
Idea 2: lazy deletion: Mark spot as deleted (rather than NIL) and
continue searching past deleted spots.

Simplest method for open addressing: linear probing
h(k, i) = (h(k) + i) mod M, for some hash function h.
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Linear probing example

M = 11, h(k, i) = (h(k) + i) mod 11.
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Probe sequence operations

probe-sequence::insert(T , (k, v))
1. for (j = 0; j < M; j++)
2. if T [h(k, j)] is NIL or “deleted”
3. T [h(k, j)] = (k, v)
4. return “success”
5. return “failure to insert” // need to re-hash

probe-sequence-search(T , k)
1. for (j = 0; j < M; j++)
2. if T [h(k, j)] is NIL
3. return “item not found”
4. else if T [h(k, j)] has key k
5. return T [h(k, j)]
6. // ignore “deleted” and keep searching
7. return “item not found”
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Independent hash functions

Some hashing methods require two hash functions h0, h1.
These hash functions should be independent in the sense that the
random variables P(h0(k) = i) and P(h1(k) = j) are independent.
Using two modular hash-functions may often lead to dependencies.
Better idea: Use multiplicative method for second hash function:
h(k) = bM(kA− bkAc)c,

I A is some floating-point number
I kA− bkAc computes fractional part of kA, which is in [0, 1)
I Multiply with M to get floating-point number in [0,M)
I Round down to get integer in {0, . . . ,M − 1}

Knuth suggests A = ϕ =
√
5−1
2 ≈ 0.618.
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Double Hashing

Assume we have two hash independent functions h0, h1.
Assume further that h1(k) 6= 0 and that h1(k) is relative prime with
the table-size M for all keys k.

I Choose M prime.
I Modify standard hash-functions to ensure h1(k) 6= 0

E.g. modified multiplication method: h(k) = 1 + b(M−1)(kA−bkAc)c

Double hashing: open addressing with probe sequence

h(k, i) = h0(k) + i · h1(k) mod M

search, insert, delete work just like for linear probing,
but with this different probe sequence.
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Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1
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Cuckoo hashing

We use two independent hash functions h0, h1 and two tables T0,T1.

Main idea: An item with key k can only be at T0[h0(k)] or T1[h1(k)].

search and delete then take constant time.
insert always initially puts a new item into T0[h0(k)]
If T0[h0(k)] is occupied: “kick out” the other item, which we then
attempt to re-insert into its alternate position T1[h1(k)]
This may lead to a loop of “kicking out”. We detect this by aborting
after too many attempts.
In case of failure: rehash with a larger M and new hash functions.

insert may be slow, but is expected to be constant time if the load factor
is small enough.
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Cuckoo hashing insertion

cuckoo::insert(k, v)
1. i ← 0
2. do at most 2n times:
3. if Ti [hi (k)] is NIL
4. Ti [hi (k)]← (k, v)
5. return “success”
6. swap((k, v),Ti [hi (k)])
7. i ← 1− i
8. return “failure to insert” // need to re-hash

After 2n iterations, there definitely was a loop in the “kicking out”
sequence (why?)

In practice, one would stop the iterations much earlier already.

Abélard, Biniaz, Schost (SCS, UW) CS240 – Module 7 Spring 2019 17 / 24



Cuckoo hashing example

M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c
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Cuckoo hashing discussions

The two hash-tables need not be of the same size.
Load factor α = n/(size of T0 + size of T1)
One can argue: If the load factor α is small enough then insertion has
O(1) expected run-time.
This crucially requires α < 1

2 .

There are many possible variations:
The two hash-tables could be combined into one.
Be more flexible when inserting: Always consider both possible
positions.
Use k > 2 allowed locations (i.e., k hash-functions).
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Complexity of open addressing strategies
For any open addressing scheme, we must have α < 1 (why?).
Cuckoo hashing requires α < 1/2.

Avg.-case costs: search insert search
(unsuccessful) (successful)

Linear Probing 1
(1− α)2

1
(1− α)2

1
1− α

Double Hashing 1
1− α

1
1− α

1
α

log
( 1
1− α

)

Cuckoo Hashing 1
(worst-case)

α

(1− 2α)2
1

(worst-case)

Summary: All operations have O(1) average-case run-time if the
hash-function is uniform and α is kept sufficiently small.
But worst-case run-time is (usually) Θ(n).
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Choosing a good hash function

Goal: Satisfy uniform hashing assumption
(each hash-index is equally likely)
Proving this is usually impossible, as it requires knowledge of the
input distribution and the hash function distribution.
We can get good performance by choosing a hash-function that is

I unrelated to any possible patterns in the data, and
I depends on all parts of the key.

We saw two basic methods for integer keys:
I Modular method: h(k) = k mod M.

We should choose M to be a prime.
I Multiplicative method: h(k) = bM(kA− bkAc)c,

for some constant floating-point number A with 0 < A < 1.
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Universal Hashing
Every hash function must do badly for some sequences of inputs:

If the universe contains at least M · n keys, then there are n keys that
all hash to the same value.
For this set of keys, we have the worst case.

Idea: Randomization!

When initializing or re-hashing, use as hash function

h(k) =
(
(ak + b) mod p

)
mod M

where p > M is a prime number, and a, b are random numbers in
{0, . . . p − 1}, a 6= 0.
Can prove: For any (fixed) numbers x 6= y , the probability of a
collision using this random function h is at most 1

M .
Therefore the expected run-time is O(1) if α is kept small enough.

We have again shifted the performance from “bad input” to “bad luck”.
Abélard, Biniaz, Schost (SCS, UW) CS240 – Module 7 Spring 2019 22 / 24



Multi-dimensional Data
What if the keys are multi-dimensional, such as strings in Σ∗?

Standard approach is to flatten string w to integer f (w) ∈ N, e.g.

A · P · P · L · E → (65, 80, 80, 76, 69) (ASCII)
→ 65R4 + 80R3 + 80R2 + 76R1 + 68R0

(for some radix R, e.g. R = 255)

We combine this with a modular hash function: h(w) = f (w) mod M

To compute this in O(|w |) time without overflow, use Horner’s rule and
apply mod early. For exampe, h(APPLE ) is

(((((((
65R+80

)
mod M

)
R+80

)
mod M

)
R+76

)
mod M

)
R+69

)
mod M
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Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees
O(log n) worst-case operation cost
Does not require any assumptions, special functions,
or known properties of input distribution
Predictable space usage (exactly n nodes)
Never need to rebuild the entire structure
Supports ordered dictionary operations (rank, select etc.)

Advantages of Hash Tables
O(1) operations (if hashes well-spread and load factor small)
We can choose space-time tradeoff via load factor
Cuckoo hashing achieves O(1) worst-case for search & delete
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