CS 240 - Data Structures and Data Management

Module 9: String Matching

A. Jamshidpey N. Nasr Esfahani M. Petrick Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2022

Outline

- 9 String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Outline

- 9 String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Pattern Matching Definition [1]

- Search for a string (pattern) in a large body of text
- T[0..n-1] The **text** (or **haystack**) being searched within
- P[0..m-1] The **pattern** (or **needle**) being searched for
- ullet Strings over **alphabet** Σ
- Return smallest i such that

$$P[j] = T[i+j]$$
 for $0 \le j \le m-1$

- This is the first **occurrence** of *P* in *T*
- If P does not **occur** in T, return FAIL
- Applications:
 - ► Information Retrieval (text editors, search engines)
 - Bioinformatics
 - ► Data Mining

Pattern Matching Definition [2]

Example:

- T = "Where is he?"
- $P_1 =$ "he"
- $P_2 = \text{``who''}$

Definitions:

- **Substring** T[i..j] $0 \le i \le j < n$: a string of length j i + 1 which consists of characters $T[i], \ldots T[j]$ in order
- A **prefix** of T: a substring T[0..i] of T for some $0 \le i < n$
- A **suffix** of T: a substring T[i..n-1] of T for some $0 \le i \le n-1$

General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:

- A guess or shift is a position i such that P might start at T[i]. Valid guesses (initially) are $0 \le i \le n m$.
- A **check** of a guess is a single position j with $0 \le j < m$ where we compare T[i+j] to P[j]. We must perform m checks of a single **correct** guess, but may make (many) fewer checks of an **incorrect** guess.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess.

Brute-force Algorithm

Idea: Check every possible guess.

```
Bruteforce::patternMatching(T[0..n-1], P[0..m-1])
T: String of length n (text), P: String of length m (pattern)
1. for i \leftarrow 0 to n-m do
2. if strcmp(T[i..i+m-1], P) = 0
3. return "found at guess i"
4. return FAIL
```

Note: strcmp takes $\Theta(m)$ time.

```
strcmp(T[i..i+m-1], P[0..m-1])

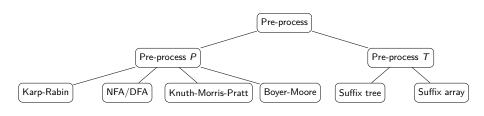
1. for j \leftarrow 0 to m-1 do

2. if T[i+j] is before P[j] in \Sigma then return -1

3. if T[i+j] is after P[j] in \Sigma then return 1

4. return 0
```

Brute-Force Example


• Example: T = abbbababbab, P = abba

	a	b	b	b	a	b	a	b	b	a	b
	а	b	b	a							
		a									
			a								
				a							
ſ					а	b	b				
						a					
							a	b	b	a	

- What is the worst possible input?
 - $P = a^{m-1}b$, $T = a^n$
- Worst case performance $\Theta((n-m) \cdot m)$
- This is $\Theta(mn)$ e.g. if $m \le n/2$.

How to improve?

- lacktriangle Do extra **preprocessing** on the pattern P
 - ► Karp-Rabin
 - Boyer-Moore
 - Deterministic finite automata (DFA), KMP
 - ► We **eliminate guesses** based on completed matches and mismatches.
- Do extra preprocessing on the text T
 - Suffix-trees
 - ► Suffix-arrays
 - ▶ We create a data structure to find matches easily.

Outline

- 9 String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Karp-Rabin Fingerprint Algorithm – Idea

Idea: use hashing to eliminate guesses

- Compute fingerprint (hash function) for each guess
- If different from P's fingerprint, then the guess cannot be an occurrence ⇒ no need to do a string-compare.
- Example: P = 59265, T = 31415926535
 - ▶ Use standard hash-function: flattening + modular (radix R = 10):

$$h(x_0...x_4) = (x_0x_1x_2x_3x_4)_{10} \mod 97$$

► $h(P) = 59265 \mod 97 = 95$.

3	1	4	1	5	9	2	6	5	3	5
	hash	ı-valı	ue 8	4						
		hash	-val	ue 9	4					
			hash	-valı						
				hash	8					
			5							

► The first four guesses do not use any checks.

Karp-Rabin Fingerprint Algorithm – First Attempt

```
Karp-Rabin-Simple::patternMatching(T, P)

1. h_P \leftarrow h(P[0..m-1)]

2. for i \leftarrow 0 to n-m

3. h_T \leftarrow h(T[i..i+m-1])

4. if h_T = h_P

5. if strcmp(T[i..i+m-1], P) = 0

6. return "found at guess i"

7. return FAIL
```

- Never misses a match: $h(T[i..i+m-1]) \neq h(P) \Rightarrow \text{guess } i \text{ is not } P$
- h(T[i..i+m-1]) depends on m characters, so naive computation takes $\Theta(m)$ time per guess
- Running time is $\Theta(mn)$ if P not in T (how can we improve this?)

Karp-Rabin Fingerprint Algorithm - Fast Update

Crucial insight: We can update the fingerprints in constant time.

- Use previous hash to compute next hash
- \circ O(1) time per hash, except first one

Example:

- Pre-compute: 10000 mod 97 = 9
- Previous hash: 41592 mod 97 = 76
- Next hash: 15926 mod 97 = ??

Observe:
$$15926 = (41592 - 4 \cdot 10000) \cdot 10 + 6$$

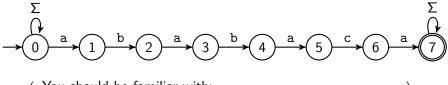
$$15926 \bmod 97 = \left(\underbrace{(\underbrace{41592 \bmod 97}_{76 \ (\text{previous hash})} - 4 \cdot \underbrace{10000 \bmod 97}_{9 \ (\text{pre-computed})}}\right) \cdot 10 + 6) \bmod 97$$

$$= \left((76 - 4 \cdot 9) \cdot 10 + 6\right) \bmod 97 = 18$$

Karp-Rabin Fingerprint Algorithm – Conclusion

```
Karp-Rabin-RollingHash::patternMatching(T, P)
       M \leftarrow suitable prime number
2. h_P \leftarrow h(P[0..m-1)])
3. h_T \leftarrow h(T[0..m-1)]
4. s \leftarrow 10^{m-1} \mod M
5. for i \leftarrow 0 to n - m
            if h_{\tau} = h_{\rho}
6.
                  if strcmp(T[i..i+m-1], P) = 0
7.
                       return "found at guess i"
8.
9.
            if i < n - m // compute hash-value for next guess
                  h_T \leftarrow ((h_T - T[i] \cdot s) \cdot 10 + T[i+m]) \mod M
10.
       return "FAIL"
11.
```

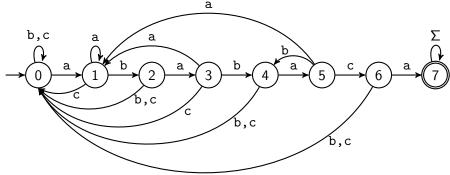
- Choose "table size" M to be **random** prime in $\{2, ..., mn^2\}$
- Expected time O(m+n), worst-luck time $O(m \cdot n)$ (extremely unlikely)
- Improvement: reset M if no match at $h_T = h_P$


Outline

9 String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

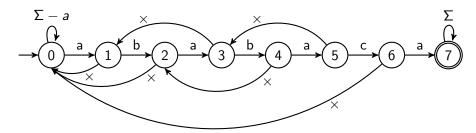
String Matching with Finite Automata


Example: Automaton for the pattern P = ababaca

- You should be familiar with: finite automaton, DFA, NFA, converting NFA to DFA transition function δ , states Q, accepting states F
- The above finite automation is an NFA
- State q expresses "we have seen P[0..q-1]"
 - ▶ NFA accepts *T* if and only if *T* contains ababaca
 - But evaluating NFAs is very slow.

String matching with DFA

Can show: There exists an equivalent small DFA ($\Sigma = \{a, b, c\}$).

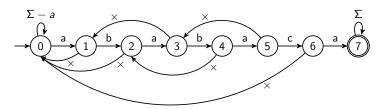

- Easy to test whether P is in T.
- But how do we find the arcs?
- We will not give the details of this since there is an even better automaton.

Outline

9 String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Knuth-Morris-Pratt Motivation


- Use a new type of transition \times ("failure"):
 - ► At most one per state, use it only if no other transition fits.
 - ▶ Does **not** consume a character.
 - ► With these rules, computations of the automaton are deterministic. (But it is formally not a valid DFA.)
- Can store **failure-function** in an array F[0..m-1]
 - ▶ The failure arc from state j leads to F[j-1]
- Given the failure-array, we can easily test whether P is in T: Automaton accepts T if and only if T contains ababaca

Knuth-Morris-Pratt Algorithm

```
KMP::patternMatching(T, P)
1. F \leftarrow failureArray(P)
2. i \leftarrow 0 // current character of T to parse
3. i \leftarrow 0 // current state: we have seen P[0..j-1]
4. while i < n do
5.
            if P[i] = T[i]
                  if j = m - 1
6.
                        return "found at guess i - m + 1"
7.
                  else
8.
9.
                        i \leftarrow i + 1
10.
                       i \leftarrow i + 1
            else // i. e. P[j] \neq T[i]
11.
12.
                  if i > 0
                       i \leftarrow F[i-1]
13.
                  else
14.
15.
                        i \leftarrow i + 1
 16.
       return FAIL
```

String matching with KMP – Example

Example: T = abababaca, P = ababaca

b b a b b С b b а а а а а b b a a a X (a) (a) (b) b X (a) (b) X X X

state: 1 2 3 4 5 3,4 2,0 0 1 2 3 4 5 6 7

(after reading this character)

String matching with KMP – Failure-function

Assume we reach state j+1 and now have mismatch.

shift by 1?				P[0j-1]	
shift by 2?				P[0j-2]	

- Can eliminate "shift by 1" if $P[1..j] \neq P[0..j-1]$.
- Can eliminate "shift by 2" if P[1..j] does not end with P[0..j-2].
- ullet Generally eliminate guess if that prefix of P is not a suffix of P[1..j].
- So want longest prefix $P[0..\ell-1]$ that is a suffix of P[1..j].
- ullet The ℓ characters of this prefix are matched, so go to state $\ell.$

F[j] = head of failure-arc from state j+1

= length of the longest prefix of P that is a suffix of P[1..j].

KMP Failure Array – Example

F[j] is the length of the longest prefix of P that is a suffix of P[1..j].

Consider P = ababaca

j	P[1j]	Prefixes of P	longest	F[j]
0	٨	Λ , a, ab, aba, abab, ababa,	٨	0
1	b	Λ , a, ab, aba, abab, ababa,	٨	0
2	ba	Λ , a, ab, aba, abab, ababa,	a	1
3	bab	Λ , a, ab, aba, abab, ababa,	ab	2
4	baba	Λ , a, ab, aba, ababa,	aba	3
5	babac	Λ , a, ab, aba, abab, ababa,	٨	0
6	babaca	Λ , a, ab, aba, abab, ababa,	a	1

This can clearly be computed in $O(m^3)$ time, but we can do better!

Computing the Failure Array

```
KMP::failureArray(P)
P: String of length m (pattern)
1. F[0] \leftarrow 0
2. j \leftarrow 1 // index within parsed text
3. \ell \leftarrow 0 // reached state
4. while j < m do
5.
             if P[j] = P[\ell]
                   \ell \leftarrow \ell + 1
6.
                   F[i] \leftarrow \ell
7.
                   i \leftarrow i + 1
8.
             else if \ell > 0
9.
                   \ell \leftarrow F[\ell-1]
10.
             else
11.
                   F[i] \leftarrow 0
12.
                   i \leftarrow i + 1
13.
```

Correctness-idea: F[j] is defined via pattern matching of P in P[1..j]. So KMP uses itself! Already-built parts of $F[\cdot]$ are used to expand it.

KMP - Runtime

failureArray

- Consider how $2j \ell$ changes in each iteration of the while loop
 - ▶ i and ℓ both increase by $1 \Rightarrow 2i \ell$ increases
 - ℓ decreases $(F[\ell-1] < \ell) \Rightarrow 2j \ell$ increases $-\mathsf{OR}$ -
 - ▶ j increases $\Rightarrow 2j \ell$ increases
- Initially $2j \ell \ge 0$, at the end $2j \ell \le 2m$
- So no more than 2m iterations of the while loop.
- Running time: $\Theta(m)$

KMP main function

- failureArray can be computed in $\Theta(m)$ time
- Same analysis gives at most 2n iterations of the while loop since $2i j \le 2n$.
- Running time KMP altogether: $\Theta(n+m)$

-OR-

Outline

9 String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Boyer-Moore Algorithm

Fastest pattern matching on English text.

Important components:

 Reverse-order searching: Compare P with a guess moving backwards

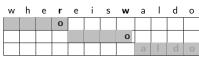
When a mismatch occurs, choose the better of the following two options:

- Bad character jumps: Eliminate guesses based on mismatched characters of \mathcal{T} .
- Good suffix jumps: Eliminate guesses based on matched suffix of P.

Forward-searching vs. reverse-searching

P: aldo

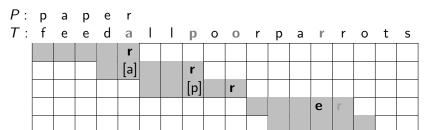
T: whereiswaldo


Forward-searching:

w	h	е	r	е	i	s	w	а	-1	d	0
a											
	a										
		a									

- w does not occur in P.
 - \Rightarrow shift pattern past w.
- h does not occur in P.
 - \Rightarrow shift pattern past h.

With forward-searching, no guesses are ruled out.


Reverse-searching:

- r does not occur in P.
 - \Rightarrow shift pattern past r.
- w does not occur in P.
 - \Rightarrow shift pattern past w.

This bad character heuristic works well with reverse-searching.

Bad character heuristic details

- Mismatched character in the text is a
- Shift the guess until a in P aligns with a in T
 - ▶ All skipped guessed are impossible since they do not match a
- Shift the guess until last p in P aligns with p in T
 - ► Use "last" since we cannot rule out this guess.
- As before, shift completely past \circ since \circ is not in P.
- Finding r does not help ⇒ shift by one unit.
 - ► Here the other strategy will do better.

Last-Occurrence Array

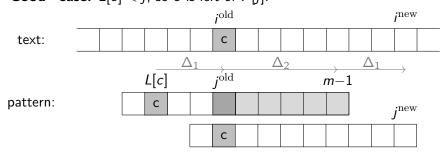
- Build the **last-occurrence array** L mapping Σ to integers
- L[c] is the largest index i such that P[i] = c
- We will see soon: If c is not in P, then we should set L[c] = -1

Pattern:

0	1	2	3	4
р	а	р	ω	r

Last-Occurrence Array:

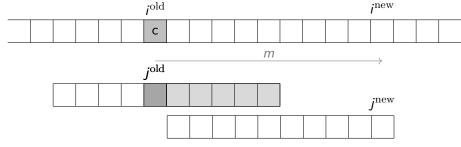
char	p	а	е	r	all others					
$L[\cdot]$	2	1	3	4	-1					


• We can build this in time $O(m + |\Sigma|)$ with simple for-loop

BoyerMoore::lastOccurrenceArray(P[0..m-1])

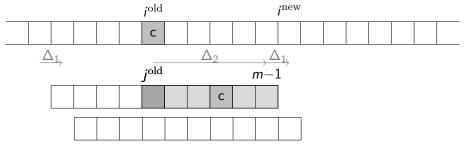
- 1. initialize array L indexed by Σ with all -12. **for** $j \leftarrow 0$ **to** m-1 **do** $L[P[j]] \leftarrow j$
- return L
- But how should we do the update?

Bad character heuristic formula


We will always compare T[i] and P[j]. How to update at a mismatch? "Good" case: L[c] < j, so c is left of P[j].

- $j^{\text{new}} = m-1$ (we re-start the search from the right end)
- $i^{\text{new}} = \text{corresponding index in } T$. What is it?
 - $\Delta_1 =$ amount that we should shift $= j^{\text{old}} L[c]$
 - Δ_2 = how much we had compared = $(m-1) j^{\text{old}}$
 - $lacksquare i^{
 m new}=i^{
 m old}+\Delta_2+\Delta_1=i^{
 m old}+(m-1)-L[c]$

Bad character heuristic formula


Bad case 1: *c* does not occur in *P*.

- We want to shift past $T[i^{\text{old}}]$, so need $i^{\text{new}} = i^{\text{old}} + m$
- What value of L[c] would achieve this automatically?
 - ▶ formula was $i^{\text{new}} = i^{\text{old}} + (m-1) L[c]$
 - \Rightarrow set L[c] := -1

Bad character heuristic formula

Bad case 2: L[c] > j, so c is right of P[j].

- Bad character heuristic not helpful in this case.
- ullet We want to shift by $\Delta_1:=1$ units

$$i^{
m new} = i^{
m old} + \Delta_2 + \Delta_1 = i^{
m old} + 1 + (m-1) - j^{
m old}$$

Unified formula for all cases:

$$i^{\text{new}} = i^{\text{old}} + (m-1) - \min\{L[c], j^{\text{old}} - 1\}$$

Boyer-Moore Algorithm

```
Boyer-Moore::patternMatching(T,P)
1. L \leftarrow lastOccurrenceArray(P)
2. S \leftarrow \text{good suffix array computed from } P
3. i \leftarrow m-1, j \leftarrow m-1
   while i < n and j > 0 do
            // current guess begins at index i-j
           if T[i] = P[j]
            i \leftarrow i - 1
             i \leftarrow i - 1
8
            else
                 i \leftarrow i + m - 1 - \min\{L[T[i]], j - 1\}
9
10.
                i \leftarrow m-1
     if j = -1 return "found at T[i+1..i+m]"
11.
       else return FAIL
12.
```

If good suffix heuristic is used, then line 9 should be

$$i \leftarrow i + m - 1 - \min\{L[T[i]], S[j]\}$$

where S will be explained below.

Good Suffix Heuristic

S[j] expresses

"since P[j+1..m-1] was matched, how much should we shift?"

- Doing examples is easy, but the formula is complicated (no details)
- $S[\cdot]$ computable (similar to KMP failure function) in $\Theta(m)$ time.

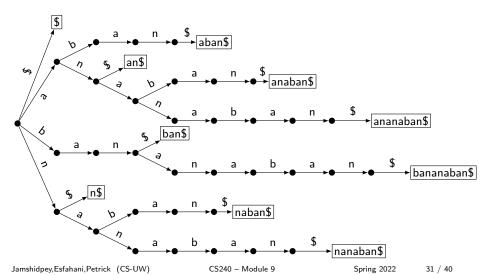
Summary:

- Boyer-Moore performs very well (even without good suffix heuristic).
- ullet On typical *English text* Boyer-Moore looks at only pprox 25% of T
- Worst-case run-time for is O(mn), but in practice much faster. [There are ways to ensure O(n) run-time. No details.]

Outline

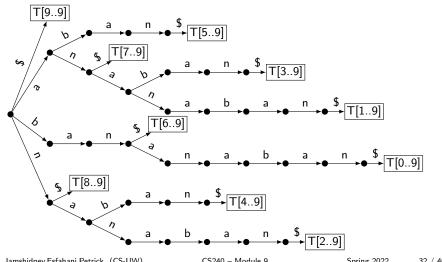
9 String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

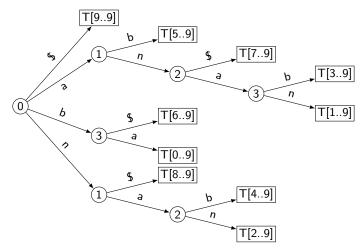

Tries of Suffixes and Suffix Trees

- What if we want to search for many patterns P within the same fixed text T?
- Idea: Preprocess the text T rather than the pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T.
- So want to store all suffixes of T in a trie.
- To save space:
 - ► Use a compressed trie.
 - ► Store suffixes implicitly via indices into *T*.
- This is called a suffix tree.

Trie of suffixes: Example


T =bananaban has suffixes

 $\{\texttt{bananaban}, \, \texttt{ananaban}, \, \texttt{nanaban}, \, \texttt{anaban}, \, \texttt{naban}, \, \texttt{aban}, \, \texttt{ban}, \, \texttt{an}, \, \texttt{n}, \, \Lambda\}$


Tries of suffixes

Store suffixes via indices:

Suffix tree

Suffix tree: Compressed trie of suffixes

More on Suffix Trees

Building:

- Text T has n characters and n+1 suffixes
- We can build the suffix tree by inserting each suffix of T into a compressed trie. This takes time $\Theta(n^2|\Sigma|)$.
- There is a way to build a suffix tree of T in $\Theta(n|\Sigma|)$ time. This is quite complicated and beyond the scope of the course.

Pattern Matching:

- Essentially search for P in compressed trie.
 Some changes are needed, since P may only be prefix of stored word.
- Run-time: $O(|\Sigma|m)$.

Summary: Theoretically good, but construction is slow or complicated, and lots of space-overhead → rarely used.

Outline

9 String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Suffix Arrays

- Relatively recent development (popularized in the 1990s)
- Sacrifice some performence for simplicity:
 - ► Slightly slower (by a log-factor) than suffix trees.
 - ► Much easier to build.
 - Much simpler pattern matching.
 - ► Very little space; only one array.

Idea:

- Store suffixes implicitly (by storing start-indices)
- Store sorting permutation of the suffixes of T.

Suffix Array Example

Text T: b a n a n a b a n \$

i	suffix $T[in-1]$
0	bananaban\$
1	ananaban\$
2	nanaban\$
3	anaban\$
4	naban\$
5	aban\$
6	ban\$
7	an\$
8	n\$
9	\$

sort lexicographically

j	$A^s[j]$			
0	9	\$		
1	5	aban\$		
2	7	an\$		
3	3	anaban\$		
4	1	ananaban\$		
5	6	ban\$		
6	0	bananaban\$		
7	8	n\$		
8	4	naban\$		
9	2	nanaban\$		

Suffix array:

	1								
9	5	7	3	1	6	0	8	4	2

Suffix Array Construction

- Easy to construct using MSD-Radix-Sort.
 - ► Fast in practice; suffixes are unlikely to share many leading characters.
 - ▶ But worst-case run-time is $\Theta(n^2)$
 - ★ *n* rounds of recursions (have *n* chars)
 - ★ Each round takes $\Theta(n)$ time (bucket-sort)
- Idea: We do not need n rounds!

 - Consider sub-array after one round.
 These have same leading char. Ties are broken by rest of words.
 But rest of words are also suffixes → sorted elsewhere
 We can double length of sorted part every round.
 - ▶ $O(\log n)$ rounds enough $\Rightarrow O(n \log n)$ run-time
- Construction-algorithm: MSD-radix-sort plus some bookkeeping
 - needs only one extra array
 - easy to implement
- You do not need to know details (→ cs482).

Pattern matching in suffix arrays

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

$$P = ext{ban:}$$
 $\ell o rac{j}{0} rac{A^s[j]}{T[A^s[j]..n-1]}$ $0 ext{ 9 } \$$ $1 ext{ 5 aban\$}$ $2 ext{ 7 an\$}$ $3 ext{ 3 anaban\$}$ $0 ext{ 4 1 ananaban\$}$ $0 ext{ 5 6 ban\$}$ $0 ext{ 6 0 bananaban\$}$ $0 ext{ 7 8 n\$}$ $0 ext{ 8 4 naban\$}$ $0 ext{ 7 9 2 nanaban\$}$

- $O(\log n)$ comparisons.
- Each comparison is $strcmp(P, T[A^s[\nu]..A^s[\nu] + m 1])$
- O(m) time per comparison \Rightarrow run-time $O(m \log n)$

Pattern matching in suffix arrays

```
SuffixArray::patternMatching(T, P, A^s[0...n-1]
A^s: suffix array of T
    \ell \leftarrow 0. r \leftarrow n-1
2. while (\ell < r)
             \nu \leftarrow \lfloor \frac{\ell+r}{2} \rfloor
3
             i \leftarrow A^s[\nu]
                                                             // Suffix is T[i..n-1]
4.
             s \leftarrow strcmp(P, T[i..i+m-1])
5.
                    // Assuming strcmp handles "out of bounds" suitably
6
              if (s > 0) do \ell \leftarrow \nu + 1
7
              else if (s < 0) do r \leftarrow \nu - 1
8.
9
              else return "found at guess T[i..i+m-1]"
        if strcmp(P, T[A^{s}[\ell]..A^{s}[\ell]+m-1]) = 0
10.
              return "found at guess T[A^s[\ell]..A^s[\ell]+m-1]"
11.
12.
        return FATI.
```

Outline

9 String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

String Matching Conclusion

	Brute- Force	Karp- Rabin	DFA	Knuth- Morris- Pratt	Boyer- Moore	Suffix Tree	Suffix Array
Preproc.	_	O(m)	$O(m \Sigma)$	O(m)	$O(m+ \Sigma)$	$O(n^2 \Sigma)$ $[O(n \Sigma)]$	$O(n\log n)$ $[O(n)]$
Search time	O(nm)	O(n+m) expected	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(n) or better	<i>O</i> (<i>m</i>)	$O(m \log n)$ $[O(m + \log n)]$
Extra space	_	O(1)	$O(m \Sigma)$	<i>O</i> (<i>m</i>)	$O(m+ \Sigma)$	O(n)	O(n)

- Our algorithms stopped once they have found one occurrence.
- Most of them can be adapted to find all occurrences within the same worst-case run-time.