CS 240 - Data Structures and Data Management

Module 10: Compression

A. Jamshidpey N. Nasr Esfahani M. Petrick

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo
Spring 2022

Outline

(10) Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Outline

(10) Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Data Storage and Transmission

The problem: How to store and transmit data?
Source text The original data, string S of characters from the source alphabet Σ_{S}
Coded text The encoded data, string C of characters from the coded alphabet Σ_{C}
Encoding An algorithm mapping source texts to coded texts
Decoding An algorithm mapping coded texts back to their original source text

Note: Source "text" can be any sort of data (not always text!) Usually the coded alphabet Σ_{C} is just binary: $\{0,1\}$.

Detour: streams

Usually S and C are stored as streams.

- Input-stream: Read one character at a time (via top/pop) Also supports isEmpty. Sometimes need reset.
- Output-stream: Write one character at a time (via append)
- Convenient for handling huge texts (start processing while loading)

Judging Encoding Schemes

We can always measure efficiency of encoding/decoding algorithms.
What other goals might there be?

- Processing speed
- Reliability (e.g. error-correcting codes)
- Security (e.g. encryption)
- Size (main objective here)

Encoding schemes that try to minimize the size of the coded text perform data compression. We will measure the compression ratio:

$$
\frac{|C| \cdot\left\lceil\log \left|\Sigma_{C}\right|\right\rceil}{|S| \cdot\left\lceil\log \left|\Sigma_{S}\right|\right\rceil}
$$

Types of Data Compression

Logical vs. Physical

- Logical Compression uses the meaning of the data and only applies to a certain domain (e.g. sound recordings)
- Physical Compression only knows the physical bits in the data, not the meaning behind them
Lossy vs. Lossless
- Lossy Compression achieves better compression ratios, but the decoding is approximate; the exact source text S is not recoverable
- Lossless Compression always decodes S exactly

For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)
We will concentrate on physical, lossless compression algorithms. These techniques can safely be used for any application.

Character Encodings

A character encoding (or more precisely character-by-character encoding) maps each character in the source alphabet to a string in coded alphabet.

$$
E: \Sigma_{S} \rightarrow \Sigma_{C}^{*}
$$

For $c \in \Sigma_{S}$, we call $E(c)$ the codeword of c

Two possibilities:

- Fixed-length code: All codewords have the same length.
- Variable-length code: Codewords may have different lengths.

Fixed-length codes

ASCII (American Standard Code for Information Interchange), 1963:

char	null	start of heading	start of text	end of text	\ldots	0	1	\ldots	A	B	\ldots	\sim	delete
code	0	1	2	3	\ldots	48	49	\ldots	65	66	\ldots	126	127

- 7 bits to encode 128 possible characters: "control codes", spaces, letters, digits, punctuation A•P.P.L.E $\rightarrow(65,80,80,76,69) \rightarrow 10000011010000101000010011001000101$
- Standard in all computers and often our source alphabet.
- Not well-suited for non-English text:

ISO-8859 extends to 8 bits, handles most Western languages

Other (earlier) examples: Caesar shift, Baudot code, Murray code
To decode a fixed-length code (say codewords have k bits), we look up each k-bit pattern in a table.

Variable-Length Codes

Overall goal: Find an encoding that is short.
Observation: Some letters in Σ occur more often than others. So let's use shorter codes for more frequent characters.

For example, the frequency of letters in typical English text is:

e	12.70%	d	4.25%	p	1.93%
t	9.06%	l	4.03%	b	1.49%
a	8.17%	c	2.78%	v	0.98%
o	7.51%	u	2.76%	k	0.77%
i	6.97%	m	2.41%	j	0.15%
n	6.75%	w	2.36%	x	0.15%
s	6.33%	f	2.23%	q	0.10%
h	6.09%	g	2.02%	z	0.07%
r	5.99%	y	1.97%		

Variable-Length Codes

Example 1: Morse code.

Example 2: UTF-8 encoding of Unicode:

- Encodes any Unicode character (more than 107,000 characters) using 1-4 bytes

Encoding

Assume we have some character encoding $E: \Sigma_{S} \rightarrow \Sigma_{C}^{*}$.

- Note that E is a dictionary with keys in Σ_{S}.
- E.g. could store E as array indexed by Σ_{S}.

```
charByChar::encoding(E,S,C)
E : the encoding dictionary
```



```
1. while S is non-empty
2. }x\leftarrowE.\operatorname{search}(S.pop()
3. C.append}(x
```

Example: encode text "WATT" with Morse code:

Decoding

The decoding algorithm must map Σ_{C}^{*} to Σ_{S}^{*} ．
－The code must be uniquely decodable．
－This is false for Morse code as described！
－ーー・ーーー decodes to WATT and ANO and WJ．
（Morse code uses＇end of character＇pause to avoid ambiguity．）
－From now on only consider prefix－free codes E ： no codeword is a prefix of another
－This corresponds to a trie with characters of Σ_{S} only at the leaves．

－The codewords need no end－of－string symbol $\$$ if E is prefix－free．

Decoding of Prefix-Free Codes

Any prefix-free code is uniquely decodable (why?)

$$
\begin{aligned}
& \text { prefixFree:: decoding }(T, C, S) \\
& T \text { : trie of a prefix-free code } \\
& C \text { : input-stream with characters in } \Sigma_{C}, S \text { : output-stream } \\
& \text { 1. while } C \text { is non-empty } \\
& \text { 2. } r \leftarrow T \text {.root } \\
& \text { 3. while } r \text { is not a leaf } \\
& \text { 4. if } C \text { is empty or } r \text { has no child labelled C.top() } \\
& \text { 5. return "invalid encoding" } \\
& \text { 6. } r \leftarrow \text { child of } r \text { that is labelled with } C \text {. pop () } \\
& \text { 7. S.append(character stored at } r \text {) }
\end{aligned}
$$

Run-time: $O(|C|)$.

Encoding from the Trie

We can also encode directly from the trie.

```
prefixFree::encoding(T,S,C)
T : trie of a prefix-free code
```



```
    1. }E\leftarrow\mathrm{ array of nodes in T indexed by }\mp@subsup{\Sigma}{S}{
    2. for all leaves \ell in T
    3. }\quadE[\mathrm{ character at }\ell]\leftarrow
    4. while }S\mathrm{ is non-empty
    5. }\quadw\leftarrow\mathrm{ empty string
    6. }\quadv\leftarrowE[S.pop()
    7. while v}\mathrm{ is not the root
    8. w.prepend(character from v to its parent)
    9. // Now w is the encoding of character from S.
    10. C.append(w)
```

Run-time: $O(|T|+|C|)$
This is in $O\left(\left|\Sigma_{S}\right|+|C|\right)$ if T has no node with 1 child.

Example: Prefix-free Encoding/Decoding

Code as table: | $c \in \Sigma_{S}$ | \sqcup | A | E | N | O | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E(c)$ | 000 | 01 | 101 | 001 | 100 | 11 |

Code as trie:

- Encode AN $_{\sqcup}$ ANT $\rightarrow 010010000100111$
- Decode $111000001010111 \rightarrow$ TO』EAT

Outline

(10) Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Huffman's Algorithm: Building the best trie

For a given source text S, how to determine the "best" trie that minimizes the length of C ?
(1) Determine frequency of each character $c \in \Sigma$ in S
(2) For each $c \in \Sigma$, create " c " (height-0 trie holding c).
(3) Our tries have a weight: sum of frequencies of all letters in trie. Initially, these are just the character frequencies.
(4) Find the two tries with the minimum weight.
(5) Merge these tries with new interior node; new weight is the sum. (Corresponds to adding one bit to the encoding of each character.)
(6) Repeat last two steps until there is only one trie left What data structure should we store the tries in to make this efficient?

Example: Huffman tree construction

Example text: GREENENERGY, $\Sigma_{S}=\{G, R, E, N, Y\}$
Character frequencies: $G: 2, \quad R: 2, \quad E: 4, \quad N: 2 \quad Y: 1$

GREENENERGY $\rightarrow 0001001011101110110000001$
Compression ratio: $\frac{25}{11 \cdot|\log 5|} \approx 76 \%$
(If the Huffman tree is full, for example, if the frequencies were equal or almost equal, the frequencies are not skewed enough to lead to good compression. In this case, compression ratio $=1$.)

Huffman's Algorithm: Pseudocode

Huffman::encoding (S, C)

S : input-stream with characters in Σ_{S}, C : output-stream

1. $f \leftarrow$ array indexed by Σ_{S}, initially all-0
// frequencies
2. while S is non-empty do increase $f[S \cdot \operatorname{pop}()]$] by 1
3. $Q \leftarrow$ min-oriented priority queue that stores tries $\quad / /$ initialize PQ
4. for all $c \in \Sigma_{S}$ with $f[c]>0$ do
5. \quad.insert(single-node trie for c with weight $f[c]$)
6. while Q.size >1 do
// build decoding trie
7. $\quad T_{1} \leftarrow$ Q.deleteMin(), $f_{1} \leftarrow$ weight of T_{1}
8. $\quad T_{2} \leftarrow$ Q.deleteMin(), $f_{2} \leftarrow$ weight of T_{2}
9. \quad.insert(trie with T_{1}, T_{2} as subtries and weight $f_{1}+f_{2}$)
10. $T \leftarrow$ Q.deleteMin
11. C.append(encoding trie T)
12. Re-set input-stream S
13. prefixFree::encoding (T, S, C) // actual encoding

Huffman Coding Discussion

- We require $\left|\Sigma_{S}\right| \geq 2$.
- Note: constructed trie is not unique.

So decoding trie must be transmitted along with the coded text.

- This may make encoding bigger than source text!
- Encoding must pass through text twice (to compute frequencies and to encode). Cannot use a stream unless it can be re-set.
- Encoding run-time: $O\left(\left|\Sigma_{S}\right| \log \left|\Sigma_{S}\right|+|C|\right)$
- Decoding run-time: $O(|C|)$
- The constructed trie is optimal in the sense that coded text is shortest (among all prefix-free character-encodings with $\Sigma_{C}=\{0,1\}$). See course notes for proof.
- Many variations (give tie-breaking rules, estimate frequencies, adaptively change encoding,)

Outline

(10) Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Run-Length Encoding

- Variable-length code
- Example of multi-character encoding: multiple source-text characters receive one code-word.
- The source alphabet and coded alphabet are both binary: $\{0,1\}$.
- Decoding dictionary is uniquely defined and not explicitly stored.

When to use: if S has long runs: $\underbrace{00000} \underbrace{111} \underbrace{0000}$
Encoding idea:

- Give the first bit of S (either 0 or 1)
- Then give a sequence of integers indicating run lengths.
- We don't have to give the bit for runs since they alternate.

Example becomes: 0, 5, 3, 4
Question: How to encode a run length k in binary?

Prefix-free Encoding for Positive Integers

Use Elias gamma coding to encode k :

- 【log $k\rfloor$ copies of 0 , followed by
- binary representation of k (always starts with 1)

k	$\lfloor\log k\rfloor$	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
\vdots	\vdots	\vdots	\vdots

RLE Encoding

```
RLE::encoding(S,C)
S: input-stream of bits, C: output-stream
1. }b\leftarrowS.top(); C.append(b
2. while S is non-empty do
3. }k\leftarrow1// length of ru
4. while (S is non-empty and S.top () =b) do
5.
                                    k++; S.pop()
    // compute and append Elias gamma code
K}\leftarrow\mathrm{ empty string
while k>1
        C.append(0)
        K.prepend(k mod 2)
        k\leftarrow\lfloork/2\rfloor
        K.prepend(1)
        // K}\mathrm{ is binary encoding of }
11. K.prepend(1)
12. C.append(K)
13. }\quadb\leftarrow1-
```


RLE Decoding

$$
\begin{aligned}
& \text { RLE::decoding }(C, S) \\
& C \text { : input-stream of bits, } S \text { : output-stream } \\
& \text { 1. } \quad b \leftarrow C \cdot \operatorname{pop}() \quad / / \text { bit-value for the current run } \\
& \text { 2. while } C \text { is non-empty } \\
& \text { 3. } \quad \ell \leftarrow 0 \quad / / \text { length of base-2 number -1 } \\
& \text { 4. while } C . \operatorname{pop}()=0 \text { do } \ell++ \\
& \text { 5. } k \leftarrow 1 \quad / / \text { base-2 number converted } \\
& \text { 6. for }(j \leftarrow 1 \text { to } \ell) \text { do } k \leftarrow k * 2+C . p o p() \\
& \text { 7. } \quad \text { for }(j \leftarrow 1 \text { to } k) \text { do } S \text {.append }(b) \\
& \text { 8. } \quad b \leftarrow 1-b
\end{aligned}
$$

If $C \cdot \operatorname{pop}()$ is called when there are no bits left, then C was not valid input.

RLE Example

```
Encoding:
S = 111111100100000000000000000000111111111111
```

Decoding:
$C=00001101001001010$
$S=00000000000001111011$

RLE Properties

- An all-0 string of length n would be compressed to $2\lfloor\log n\rfloor+2 \in o(n)$ bits.
- Usually, we are not that lucky:
- No compression until run-length $k \geq 6$
- Expansion when run-length $k=2$ or 4
- Used in some image formats (e.g. TIFF)
- Method can be adapted to larger alphabet sizes (but then the encoding of each run must also store the character)
- Method can be adapted to encode only runs of 0 (we will need this soon)

Outline

(10) Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Longer Patterns in Input

Huffman and RLE take advantage of frequent/repeated single characters.
Observation: Certain substrings are much more frequent than others.

- English text:

Most frequent digraphs: TH, ER, ON, AN, RE, HE, IN, ED, ND, HA Most frequent trigraphs: THE, AND, THA, ENT, ION, TIO, FOR, NDE

- HTML: "<a href", "<img src", "
"
- Video: repeated background between frames, shifted sub-image

Ingredient 1 for Lempel-Ziv-Welch compression: take advantage of such substrings without needing to know beforehand what they are.

Adaptive Dictionaries

ASCII, UTF-8, and RLE use fixed dictionaries.
In Huffman, the dictionary is not fixed, but it is static: the dictionary is the same for the entire encoding/decoding.

Ingredient 2 for LZW: adaptive encoding:

- There is a fixed initial dictionary D_{0}. (Usually ASCII.)
- For $i \geq 0, D_{i}$ is used to determine the i th output character
- After writing the i th character to output, both encoder and decoder update D_{i} to D_{i+1}
Encoder and decoder must both know how the dictionary changes.

LZW Overview

- Start with dictionary D_{0} for $\left|\Sigma_{S}\right|$. Usually $\Sigma_{S}=$ ASCII, then this uses codenumbers $0, \ldots, 127$.
- Every step adds to dictionary a multi-character string, using codenumbers $128,129, \ldots$.
- Encoding:
- Store current dictionary D_{i} as a trie.
- Parse trie to find longest prefix w already in D_{i}. So all of w can be encoded with one number.
- Add to dictionary the substring that would have been useful: add $w K$ where K is the character that follows w in S.
- This creates one child in trie at the leaf where we stopped.
- Output is a list of numbers. This is usually converted to bit-string with fixed-width encoding using 12 bits.
- This limits the codenumbers to 4096.

LZW Example

Dictionary:

Final output: $\underbrace{00000100000}_{65} \underbrace{000001001111}_{78} \underbrace{00001000000}_{128} \underbrace{000001000001}_{65} \underbrace{000001010011}_{83} \underbrace{00001000000}_{128} \underbrace{000010000001}_{129}$

LZW encoding pseudocode

```
LZW::encoding(S,C)
S : input-stream of characters, C: output-stream
    1. Initialize dictionary D with ASCII in a trie
    2. id }\quad\mathrm{ ( }\leftarrow12
    3. while S is non-empty do
    4. }\quadv\leftarrow\mathrm{ root of trie D
    5. while (S is non-empty and v has a child c labelled S.top())
    6. v
    7. C.append(codenumber stored at v)
    8. if S is non-empty
```

9.
10.
```
        create child of v labelled S.top() with codenumber idx
        idx++
```


LZW decoding

- Build dictionary while reading string by imitating encoder.
- We are one step behind.
- Example: | $\mathbf{6 7}$ | $\mathbf{6 5}$ | $\mathbf{7 8}$ | $\mathbf{3 2}$ | $\mathbf{6 6}$ | $\mathbf{1 2 9}$ | $\mathbf{1 3 3}$ | 83 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | A | N | L | B | AN | $\mathbf{?} ? \boldsymbol{?}$ | |

ASCII	
\ldots	
32	
\ldots	
\ldots	
65	A
66	B
67	C
\ldots	
78	N
\ldots	
83	S
\ldots	

What encoder did:
Deduced one step later:

LZW decoding: the catch

- In this example: Want to decode 133, but incomplete in dictionary!
- What happened during the corresponding encoding?

Dictionary
(parts omitted):

- We know: 133 encodes ANx_{1} (for unknown x_{1})
- We know: Next step uses $133=\mathrm{AN} x_{1}$
- So $x_{1}=A$ and 133 encodes ANA

Generally: If code number is about to be added to D, then it encodes
"previous string + first character of previous string"

LZW decoding pseudocode

```
LZW::decoding(C,S)
C: input-stream of integers, S: output-stream
1. }D\leftarrow\mathrm{ dictionary that maps {0,_.,127} to ASCII
2. }\quadidx\leftarrow12
3. code \leftarrowC.pop(); s\leftarrowD(code); S.append(s)
4. while there are more codes in C do
5. }\mp@subsup{s}{\mathrm{ prev }}{}\leftarrows;\operatorname{code}\leftarrowC.pop(
6. if code < idx
7. }s\leftarrowD\mathrm{ (code)
8. else if code = idx // special situation!
9. 
10. else FAIL // Encoding was invalid
11. S.append(s)
12. D.insert(idx, sprev }+s[0]
13. idx++
```


LZW decoding example revisited

67	65	78	32	66	129	$\mathbf{1 3 3}$	$\mathbf{8 3}$
C	A	N	\sqcup	B	AN	ANA	S

LZW decoding - second example

98	97	114	128	114	97	$\mathbf{1 3 1}$	$\mathbf{1 3 4}$	$\mathbf{1 2 9}$	$\mathbf{1 0 1}$	$\mathbf{1 1 0}$
b	a	r	ba	r	a	bar	barb	ar	e	n

- No need to build a trie; store dictionary as array.

ASCII	
\ldots	
97	a
98	b
\ldots	
101	e
\ldots	
110	
n	
114	
\ldots	

input	decodes to	Code \#	String (human)	String (computer)
98	b			
97	a	128	ba	$98, \mathrm{a}$
114	r	129	ar	$97, \mathrm{r}$
128	ba	130	rb	$114, \mathrm{~b}$
114	r	131	bar	$128, \mathrm{r}$
97	a	132	ra	$114, \mathrm{a}$
131	bar	133	ab	$97, \mathrm{~b}$
134	barb	134	barb	$131, \mathrm{~b}$
129	ar	135	barba	$134, \mathrm{a}$
101	e	136	are	$129, \mathrm{e}$
110	n	137	en	$101, \mathrm{n}$

- To save space, store string as code of prefix + one character.
- Can still look up s in $O(|s|)$ time.

Lempel-Ziv-Welch discussion

- Encoding: $O(|S|)$ time, uses a trie of encoded substrings to store the dictionary
- Decoding: $O(|S|)$ time, uses an array indexed by code numbers to store the dictionary.
- Encoding and decoding need to go through the string only once and do not need to see the whole string
\Rightarrow can do compression while streaming the text
- Compresses quite well ($\approx 45 \%$ on English text).

Brief history:

LZ77 Original version ("sliding window") Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ... DEFLATE used in (pk)zip, gzip, PNG
LZ78 Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, ... LZW used in compress, GIF (patent issues!)

Outline

(10) Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

bzip2 overview

To achieve even better compression, bzip2 uses text transform: Change input into a different text that is not necessarily shorter, but that has other desirable qualities.
text T_{0}

	Burrows-Wheeler transform	If T_{0} has repeated substrings, then T_{1} has long runs of characters.
text T_{1}	Move-to-front transform	If T_{1} has long runs of characters, then T_{2} has long runs of zeros and skewed fre- quencies.
text T_{2}		If T_{2} has long runs of zeroes, then T_{3} is shorter. Skewed frequencies remain.
Modified RLE	Huffman encoding	Compresses well since frequencies are skewed.
T_{3}		

Move-to-Front transform

Recall the MTF heuristic for self-organizing search.
(Dictionary D is stored as an unsorted array or linked list. After an element is)
Use this idea for transforming a text with repeat characters.

- D : array of size $\left|\Sigma_{S}\right|$ that stores Σ_{S}.
- To "encode" char c : Append index i such that $D[i]=c$.
- After each encoding, update D with Move-To-Front heuristic. (Since D has fixed size, we can use $D[0]$ as the front.)

Example: $\Sigma_{S}=\{\mathrm{D}, \mathrm{G}, \mathrm{O}\}$. $S=$ GOOD becomes $C=1,2,0,2$.

Observe: A character in S repeats k times $\Leftrightarrow C$ has run of $k-1$ zeroes
Observe: C contains lots of small numbers and few big ones.

Move-to-Front Encoding/Decoding

```
MTF::encoding(S,C)
1. }D\leftarrow\mathrm{ array with }\mp@subsup{\Sigma}{S}{}\mathrm{ in some pre-agreed, fixed order (usually ASCII)
2. while S is not empty do
3. }\quadc\leftarrowS.pop(
4. }i\leftarrow\mathrm{ index such that }D[i]=
5. C.append(i)
6. for j=i-1 down to 0
7. swap D[j] and D[j+1]
```

Decoding works in exactly the same way:

```
MTF:.decoding(C,S)
    1. D\leftarrow array with \SigmaS in some pre-agreed, fixed order (usually ASCII)
2. while C is not empty do
3. }\quadi\leftarrow\mathrm{ next integer from C
4. S.append(D[i])
5. for j=i-1 down to 0
6. swap D[j] and D[j+1]
```


Outline

(10) Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Burrows-Wheeler Transform

Idea:

- Permute the source text S : the coded text C has the exact same letters (and the same length), but in a different order.
- Goal: If S has repeated substrings, then C should have long runs of characters.
- We need to choose the permutation carefully, so that we can decode correctly.

Details:

- Assume that the source text S ends with end-of-word character $\$$ that occurs nowhere else in S.
- A cyclic shift of S is the concatenation of $S[i+1 . . n-1]$ and $S[0 . . i]$, for $0 \leq i<n$.
- The encoded text C consists of the last characters of the cyclic shifts of S after sorting them.

BWT Encoding Example

$S=\operatorname{alf}_{\sqcup} e^{e a t s}{ }_{\sqcup} a l f a l f a \$$
(1) Write all cyclic shifts
(2) Sort cyclic shifts
(3) Extract last characters from sorted shifts
$C=$
\$alf ${ }_{\sqcup}$ eats ${ }_{\sqcup}$ alfalfa பalfalfa\$alfueats பeats \ddagger alfalfa\$alf $a \$ a l f_{\sqcup} e^{-a t s}{ }_{\square} a l f$ alf f_{\sqcup} eats ${ }_{\sqcup} a l f a l f a \$$ alfa\$alf eats $_{\sqcup}$ alf alfalfa\$alf ${ }_{\bullet}$ eatsu
 eats ${ }_{\text {U }}$ alfalfa\$alf $f_{\sqcup} e a t s a^{\prime} a l f a l f a \$ a l$ fa\$alf ${ }_{\square}$ eats ${ }_{\sqcup} a l f a l$
 lf $_{\sqcup} e a t s_{\sqcup} a l f a l f a \$ a$ lfa\$alf ${ }_{\square}$ eats ${ }_{\square} a l f a$ lfalfa\$alf eats $_{\sqcup}$ a $s_{\sqcup} a l f a l f a \$ a l f_{\sqcup} e a t$ $t_{\sqcup} a l f a l f a \$ a l f_{\sqcup} e a$

Observe: Substring alf occurs three times and causes runs 111 and aaa in C (why?)

Fast Burrows-Wheeler Encoding

$$
S=\operatorname{alf}_{\sqcup} e^{2 t s}{ }_{\sqcup} a l f a l f a \$
$$

	i ith cyclic shift
0	16 \$alf
	8 ual falfasalffeats
	asalf eeats al
	0 al fueats
	12 alfasalfeatsualf
	9 alfalfa\$alf eats
	atsualfal fasalfue
	eatsual falfasalf
	fadalf
	a fasalf
	faeats
	7 salfalfa\$alf eat
	6 ts ${ }^{\text {chalfalfa\$alf }}$

	A_{s} corresponding suffix
	16 \$
	8 ualfalfa\$alfue
	0 alf feats ${ }_{\text {L }}$ lfalfa\$
	$12 \mathrm{alfa} \mathrm{\$}$
	9 alfalfa
	atsuala
	2 f eats
	$4 \mathrm{fa} \mathrm{\$}$
	1 falfa\$
	1 lf featsual
	10
	6 tsualfalfa\$

- Need: sorting permutation of cyclic shifts.
- Observe: This is the same as the sorting permutation of the suffixes.
- That's the suffix array! Can compute this in $O(n \log n)$ time.
- Can read BWT encoding from suffix array in linear time.

BWT Decoding

Idea: Given C, we can reconstruct the first and last column of the array of cyclic shifts by sorting.
$C=\operatorname{ard} \$ r c a a a a b b$
(1) Last column: C
(2) First column: C sorted
(3) Disambiguate by row-index Can argue: Repeated characters are in the same order in the first and the last column (the sort was stable).
(4) Starting from $\$$, recover S
$\mathrm{S}=$

	a, 0
a,0.	.r,1
a,6.	.d,2
a,7.	\$,3
a,8.	.r,4
a,9.	.c, 5
b, 10 .	.a,6
b,11.	.a,7
c, 5 .	.a,8
d,2.	.a,9
r,1.	.b,10
r,4	

BWT Decoding

BWT::decoding (C[0..n-1], S)

C : string of characters over alphabet Σ_{S}, S : output-stream 1. $\quad A \leftarrow$ array of size $n \quad / /$ leftmost column
2. for $i=0$ to $n-1$
3. $A[i] \leftarrow(C[i], i) \quad / /$ store character and index
4. Stably sort A by character
5. for $j=0$ to $n-1 \quad / /$ where is the $\$$-char?
6. if $C[j]=\$$ break
7. repeat
8. \quad S.append(character stored in $A[j]$)
9. $\quad j \leftarrow$ index stored in $A[j]$
10. until we have appended $\$$

BWT Overview

Encoding cost: $O(n \log n)$

- Read encoding from the suffix array.
- In practice MSD radix sort is good enough (but worst-case $\Theta\left(n^{2}\right)$).

Decoding cost: $O\left(n+\left|\Sigma_{S}\right|\right)$ (faster than encoding)
Encoding and decoding both use $O(n)$ space.
They need all of the text (no streaming possible). BWT is a block compression method.

BWT tends to be slower than other methods, but (combined with MTF, modified RLE and Huffman) gives better compression.

Compression summary

Huffman	Run-length encoding	Lempel-ZivWelch	bzip2 (uses Burrows-Wheeler)
variable-length	variable-length	fixed-length	multi-step
single-character	multi-character	multi-character	multi-step
2-pass, must send dictionary	1-pass	1-pass	not streamable
optimal 01-prefixcode	good on long runs (e.g., pictures)	good on English text	better on English text
requires uneven frequencies	requires runs	requires repeated substrings	requires repeated substrings
rarely used directly	rarely used directly	frequently used	used but slow
part of pkzip, JPEG, MP3	fax machines, old picture-formats	GIF, some variants of PDF, compress	bzip2 and variants

