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Range searches

So far: search(k) looks for one specific item.
New operation RangeSearch: look for all items that fall within a
given range.

I Input: A range, i.e., an interval I = (x , x ′)
It may be open or closed at the ends.

I Want: Report all KVPs in the dictionary whose key k satisfies k ∈ I

Example: 5 10 11 17 19 33 45 51 55 59

RangeSearch( (18,45] ) should return {19, 33, 45}

Let s be the output-size, i.e., the number of items in the range.
We need Ω(s) time simply to report the items.
Note that sometimes s = 0 and sometimes s = n; we therefore keep it
as a separate parameter when analyzing the run-time.
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Range searches in existing dictionary realizations

Unsorted list/array/hash table: Range search requires Ω(n) time:
We have to check for each item explicitly whether it is in the range.

Sorted array: Range search in A can be done in O(log n + s) time:

RangeSearch( (18,45] ) 5 10 11 17 19 33 45 51 55 59
↑i ↑i ′

Using binary search, find i such that x is at (or would be at) A[i ].
Using binary search, find i ′ such that x ′ is at (or would be at) A[i ′]
Report all items A[i+1...i ′−1]
Report A[i ] and A[i ′] if they are in range

BST: Range searches can similarly be done in time O(height+s) time.
We will see this in detail later.
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Multi-Dimensional Data
Range searches are of special interest for multi-dimensional data.
Example: flights that leave between 9am and noon, and cost $300-$500

6:00 8:00 10:00 12:00 14:00 16:00 departure time$200
$250
$300
$350
$400
$450
$500
$550
$600
$650
$700

price

Each item has d aspects (coordinates): (x0, x1, · · · , xd−1)
Aspect values (xi) are numbers
Each item corresponds to a point in d-dimensional space
We concentrate on d = 2, i.e., points in Euclidean plane
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Multi-dimensional Range Search
(Orthogonal) d-dimensional range search: Given a query rectangle A,
find all points that lie within A.
The time for range searches depends on how the points are stored.

Could store a 1-dimensional dictionary (where the key is some
combination of the aspects.)
Problem: Range search on one aspect is not straightforward
Could use one dictionary for each aspect
Problem: inefficient, wastes space
Better idea: Design new data structures specifically for points.

I Quadtrees
I kd-trees
I range-trees

Assumption: Point are in general position:
No two x -coordinates or y -coordinates are the same.

I Simplifies presentation; data structures can be generalized.
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Quadtrees
We have n points S = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the plane.

We need a bounding box R: a square containing all points.
Can find R by computing minimum and maximum x and y values in S
The width/height of R should be a power of 2

Structure (and also how to build the quadtree that stores S):
Root r of the quadtree is associated with region R
If R contains 0 or 1 points, then root r is a leaf that stores point.
Else split: Partition R into four equal subsquares (quadrants)
RNE ,RNW ,RSW ,RSE
Partition S into sets SNE ,SNW ,SSW ,SSE of points in these regions.

I Convention: Points on split lines belong to right/top side
Recursively build tree Ti for points Si in region Ri and make them
children of the root.
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Quadtrees example

p0

p1

p2

p3 p4

p5
p6

p7

p8

p9

Easier for humans: omit empty sub-
trees, label edges

[0, 16)×[0, 16)

p4

NE
[0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9

NE
p3

NW

∅ p1

SE

SW
p8

SE

NW
[0, 8)×[0, 8)

p6

NE
p0

NW
p2

SW
p7

SE

SW
p5

SE
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Quadtree Dictionary Operations

search: Analogous to binary search trees and tries
insert:

I Search for the point
I Split the leaf while there are two points in one region

delete:
I Search for the point
I Remove the point
I If its parent has only one point left: delete parent

(and recursively all ancestors that have only one point left)
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Quadtree Insert example

p0

p1

p2

p3
p4

p5
p6

p7

p8

p9

p10

insert(p10)
[0, 16)×[0, 16)

p4 [0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9 p3 ∅ p1

p8

[0, 8)×[0, 8)

p6 p0 p2 p7

p5

Jamshidpey,Esfahani,Petrick (CS-UW) CS240 – Module 8 Spring 2022 9 / 38



Quadtree Insert example
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Quadtree Range Search
QTree::RangeSearch(r ← root,A)
r : The root of a quadtree, A: Query-rectangle
1. R ← region associated with node r
2. if (R ⊆ A) then // inside node
3. report all points below r ; return
4. if (R ∩ A is empty) then // outside node
5. return

// The node is a boundary node, recurse
6. if (r is a leaf) then
7. p ← point stored at r
8. if p is in A return p
9. else return
10. for each child v of r do
11. QTree::RangeSearch(v ,A)

Note: We assume here that each node of the quadtree stores the
associated square. Alternatively, these could be re-computed during the
search (space-time tradeoff).
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Quadtree range search example

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

p10

Red: Search stopped due to R ∩ A = ∅.

Green: Search stopped due to R ⊆ A.

Blue: Must continue search in children
/ evaluate.

[0, 16)×[0, 16)

p4 [0, 8)×[8, 16)

∅ ∅ [0, 4)×[8, 12)

p9 p3 ∅ p1

p8

[0, 8)×[0, 8)

[4, 8)× [4, 8)

p10 ∅ p6 ∅

p0 p2 p7

p5
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Quadtree Analysis

Crucial for analysis: what is the height of a quadtree?
I Can have very large height for bad distributions of points

p2
p1

(0, 0)I spread factor of points S:

β(S) = sidelength of R
minimum distance between points in S

I Can show: height h of quadtree is in Θ(log β(S))
Complexity to build initial tree: Θ(nh) worst-case
Complexity of range search: Θ(nh) worst-case even if the answer is ∅
But in practice much faster.
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Quadtrees in other dimensions

Quad-tree of 1-dimensional points:

[0,32)

[0,16)

00000
0

[8,16)

01001
0

[12,16)

01100
0

01110
1

1

1

0
[16,32)

[24,32)

[24,28)

11000
0

11010
1

0
11100
1

1

1

0“Points:” 9 12 14 24 26 28

Same as a pruned trie

Quadtrees also easily generalize to higher dimensions (octrees, etc. )
but are rarely used beyond dimension 3.
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Quadtree summary
Very easy to compute and handle
No complicated arithmetic, only divisions by 2 (bit-shift!) if the
width/height of R is a power of 2
Space potentially wasteful, but good if points are well-distributed
Variation: We could stop splitting earlier and allow up to S points in
a leaf (for some fixed bound S).
Variation: Use quad-tree to store pixelated images.
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kd-trees

We have n points S = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)}
Quadtrees split square into quadrants regardless of where points are
(Point-based) kd-tree idea: Split the region such that (roughly) half
the point are in each subtree
Each node of the kd-tree keeps track of a splitting line in one
dimension (2D: either vertical or horizontal)
Convention: Points on split lines belong to right/top side
Continue splitting, switching between vertical and horizontal lines,
until every point is in a separate region

(There are alternatives, e.g., split by the dimension that has better aspect
ratios for the resulting regions. No details.)

Jamshidpey,Esfahani,Petrick (CS-UW) CS240 – Module 8 Spring 2022 15 / 38



kd-tree example

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

(−∞, p8.x)×(−∞, p1.y)
x<p2.x?

p0

Y
p2

N

Y
· · ·

x<p9.x?

p3

Y
· · ·

y<p9.y?

p1

Y
p9

N

N

N

Y
{(x , y) : x≥p8.x}

y<p6.y?

· · ·
x<p5.x?

p7

Y
p5

N

Y
· · ·

x<p6.x?

p8

Y
· · ·

y<p4.y?

p6

Y
p4

N

N

N

N

For ease of drawing, we will usually not show the associated regions.
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Constructing kd-trees

Build kd-tree with initial split by x on points S:
If |S| ≤ 1 create a leaf and return.
Else X := quick-select(S, bn

2c) (select by x -coordinate)
Partition S by x -coordinate into Sx<X and Sx≥X

I b n
2c points on one side and d n

2e points on the other.
(Recall: Points in general position.)

Create left subtree recursively (splitting by y) for points Sx<X .
Create right subtree recursively (splitting by y) for points Sx≥X .

Building with initial y -split symmetric.
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Constructing kd-trees

Run-time:
Find X and partition S in Θ(n) expected time using
randomized-quick-select.
Both subtrees have ≈ n/2 points.

T exp(n) = 2T exp(n/2) + O(n) (sloppy recurrence)

This resolves to Θ(n log n) expected time.
This can be reduced to Θ(n log n) worst-case time by pre-sorting (no
details).

Height: h(1) = 0, h(n) ≤ h(dn/2e) + 1.
This resolves to O(log n) (specifically dlog ne).
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kd-tree Dictionary Operations

search (for single point): as in binary search tree using indicated
coordinate
insert: search, insert as new leaf.
delete: search, remove leaf.

Problem: After insert or delete, the split might no longer be at exact
median and the height is no longer guaranteed to be dlog2 ne.

We can maintain O(log n) height by occasionally re-building entire
subtrees. (No details.) But rangeSearch will be slower.

kd-trees do not handle insertion/deletion well.
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kd-tree Range Search
Range search is exactly as for quad-trees, except that there are only
two children.

kdTree::RangeSearch(r ← root,A)
r : The root of a kd-tree, A: Query-rectangle
1. R ← region associated with node r
2. if (R ⊆ A) then report all points below r ; return
3. if (R ∩ A is empty) then return
4. if (r is a leaf) then
5. p ← point stored at r
6. if p is in A return p
7. else return
8. for each child v of r do
9. kdTree::RangeSearch(v ,A)

We assume again that each node stores its associated region.
To save space, we could instead pass the region as a parameter and
compute the region for each child using the splitting line.
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kd-tree: Range Search Example

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

x<p8.x?

y<p1.y?

x<p2.x?

p0 p2

x<p9.x?

p3 y<p9.y?

p1 p9

y<p6.y?

x<p5.x?

p7 p5

x<p6.x?

p8 y<p4.y?

p6 p4

Red: Search stopped due to R ∩ A = ∅. Green: Search stopped due to R ⊆ A.
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p7 p5
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kd-tree: Range Search Complexity

The complexity is O(s + Q(n)) where
I s is the output-size
I Q(n) is the number of “boundary” nodes (blue):

F kdTree::RangeSearch was called.
F Neither R ⊆ A nor R ∩ A = ∅

Can show: Q(n) satisfies the following recurrence relation (no
details):

Q(n) ≤ 2Q(n/4) + O(1)

This solves to Q(n) ∈ O(
√

n)
Therefore, the complexity of range search in kd-trees is O(s +

√
n)
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kd-tree: Higher Dimensions

kd-trees for d-dimensional space:
I At the root the point set is partitioned based on the first coordinate
I At the subtrees of the root the partition is based on the second

coordinate
I At depth d − 1 the partition is based on the last coordinate
I At depth d we start all over again, partitioning on first coordinate

Storage: O(n)
Height: O(log n)
Construction time: O(n log n)
Range search time: O(s + n1−1/d )

This assumes that d is a constant.
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Outline

8 Range-Searching in Dictionaries for Points
Range Searches
Multi-Dimensional Data
Quadtrees
kd-Trees
Range Trees
Conclusion
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Towards Range Trees

Both Quadtrees and kd-trees are intuitive and simple.
But: both may be very slow for range searches.
Quadtrees are also potentially wasteful in space.

New idea: Range trees T

T(v)

v

P(v)

P(v)

Somewhat wasteful in space, but much faster range search.
Tree of trees (a multi-level data structure)
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2-dimensional Range Trees

Primary structure:
Balanced binary search tree
T that stores P and uses
x-coordinates as keys.

T

T(v)

v

P(v)

P(v)

Every node v of T stores an associate structure T (v):
Let P(v) be all points in subtree of v in T (including point at v)
T (v) stores P(v) in a balanced binary search tree, using the
y-coordinates as key
Note: v is not necessarily the root of T (v)
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Range tree example

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)

(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)
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Range tree example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

(5, 13)

6

(6, 15)

7

(7, 11)

8

(8, 10)

9

(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

primary tree T
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Range tree example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

13
(5, 13)

6

15
(6, 15)

7

11
(7, 11)

8

10
(8, 10)

9

6
(9, 6)

10

(10, 12)

11

8
(11, 8)

12

14
(12, 14)

13

2
(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

T (6)

T (12)

Not all associate
trees are shown.

primary tree T
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Range Tree Space Analysis

Primary tree uses O(n) space.
Associate tree T (v) uses O(|P(v)|) space
(where P(v) are the points at descendants of v in T )
Key insight: w ∈ P(v) means that v is an ancestor of w in T

I Every node w has O(log n) ancestors in T
(Recall that we assume T to be balanced.)

I Every node w belongs to O(log n) sets P(v)
I So

∑
v |P(v)| ≤

∑
w #{ancestors of w} ∈ O(n log n)

Therefore: A range-tree with n points uses O(n log n) space.
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Range Trees Operations

search: search by x -coordinate in T
insert: First, insert point by x -coordinate into T .
Then, walk back up to the root and insert the point by y -coordinate
in all associate trees T (v) of nodes v on path to the root.
delete: analogous to insertion
Problem: We want the binary search trees to be balanced.

I This makes insert/delete very slow if we use AVL-trees.
(A rotation at v changes P(v) and hence requires a re-build of T (v).)

I Solution: Completely rebuild highly unbalanced subtrees (no details)

range-search: search by x -range in T .
Among found points, search by y -range in some associated trees.
Must understand first: How to do (1-dimensional) range search in
binary search tree?

Jamshidpey,Esfahani,Petrick (CS-UW) CS240 – Module 8 Spring 2022 28 / 38



Range Trees Operations

search: search by x -coordinate in T
insert: First, insert point by x -coordinate into T .
Then, walk back up to the root and insert the point by y -coordinate
in all associate trees T (v) of nodes v on path to the root.
delete: analogous to insertion
Problem: We want the binary search trees to be balanced.

I This makes insert/delete very slow if we use AVL-trees.
(A rotation at v changes P(v) and hence requires a re-build of T (v).)

I Solution: Completely rebuild highly unbalanced subtrees (no details)

range-search: search by x -range in T .
Among found points, search by y -range in some associated trees.
Must understand first: How to do (1-dimensional) range search in
binary search tree?

Jamshidpey,Esfahani,Petrick (CS-UW) CS240 – Module 8 Spring 2022 28 / 38



BST Range Search recursive

BST::RangeSearch-recursive(r ← root, x1, x2)
r : root of a binary search tree, x1, x2: search keys
Returns keys in subtree at r that are in range [x1, x2]
1. if r = NIL then return
2. if x1 ≤ r .key ≤ x2 then
3. L← BST::RangeSearch-recursive(r .left, x1, x2)
4. R ← BST::RangeSearch-recursive(r .right, x1, x2)
5. return L ∪ r .{key} ∪ R
6. if r .key < x1 then
7. return BST::RangeSearch-recursive(r .right, x1, x2)
8. if r .key > x2 then
9. return BST::RangeSearch-recursive(r .left, x1, x2)

Keys are reported in in-order, i. e., in sorted order.
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BST Range Search example
BST::RangeSearch-recursive(T , 28, 43)

28 43

52

36

15

9 27

22 35

42

39

37 41

46

49

74

65

60 69

97

86 99

Note: Search from 39 was unnecessary: all its descendants are in range.
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BST Range Search re-phrased

52

35

15

9 27

22 35

42

39

37 41

46

49

74

65

60 69

97

86 99

Search for left boundary x1: this gives path P1

Search for right boundary x2: this gives path P2

This partitions T into three groups: outside, on, or between the
paths.
This classification will be crucial later!
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BST Range Search re-phrased

52

35

15

9 27

22 35

42

39

37 41

46

49

74

65

60 69

97

86 99

boundary nodes: nodes in P1 or P2
I For each boundary node, test whether it is in the range.

outside nodes: nodes that are left of P1 or right of P2
I These are not in the range, we do not visit them.

inside nodes: nodes that are right of P1 and left of P2
I We keep a list of the topmost inside nodes.
I All descendants of such a node are in the range.

For a 1d range search, report them.
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BST Range Search analysis

Assume that the binary search tree is balanced:
Search for path P1: O(log n)
Search for path P2: O(log n)
O(log n) boundary nodes
We spend O(1) time on each.

52

35

15

9 27

22 35

42

39

37 41

46

49

74

65

60 69

97

86 99

We spend O(1) time per topmost inside node v .
I They are children of boundary nodes, so this takes O(log n) time.

For 1d range search, also report the descendants of v .
I We have

∑
v topmost inside #{descendants of v} ≤ s since subtrees of

topmost inside nodes are disjoint. So this takes time O(s) overall.

Run-time for 1d range search: O(log n + s). This is no faster overall, but
topmost inside nodes will be important for 2d range search.
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Range Trees: Range Search

Range search for A = [x1, x2]× [y1, y2] is a two stage process:
Perform a range search (on the x -coordinates) for the interval [x1, x2]
in primary tree T (BST::RangeSearch(T , x1, x2))

Get boundary and topmost inside nodes as before.

For every boundary node, test to see if the corresponding point is
within the region A.
For every topmost inside node v :

I Let P(v) be the points in the subtree of v in T .
I We know that all x -coordinates of points in P(v) are within range.
I Recall: P(v) is stored in T (v).
I To find points in P(v) where the y -cordinates are within range as well,

perform a range search in T (v): BST::RangeSearch(T (v), y1, y2)
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Range tree range search example

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)

(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)
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Range tree range search example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

(5, 13)

6

(6, 15)

7

(7, 11)

8

(8, 10)

9

(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

primary tree T
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Range tree range search example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

(5, 13)

6

(6, 15)

7

(7, 11)

8

(8, 10)

9

(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

primary tree T
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Range tree range search example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

(5, 13)

6

(6, 15)

7

(7, 11)

8

(8, 10)

9

(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

primary tree T
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Range tree range search example

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

13
(5, 13)

6

15
(6, 15)

7

11
(7, 11)

8

10
(8, 10)

9

6
(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

T (6)

primary tree T
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Range tree range search example

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)

3

(3, 1)(3, 1)

4

(4, 4)(4, 4)

5

13
(5, 13)(5, 13)

6

15
(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

T (6)

T (12)

primary tree T
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Range Trees: Range Search Run-time

O(log n) time to find boundary and topmost inside nodes in primary
tree.
There are O(log n) such nodes.
O(log n + sv ) time for each topmost inside node v ,
where sv is the number of points in T (v) that are reported
Two topmost inside nodes have no common point in their trees
⇒ every point is reported in at most one associate structure
⇒

∑
v topmost inside sv ≤ s

Time for range search in range-tree is proportional to∑
v topmost inside

(log n + sv ) ∈ O(log2 n + s)

(There are ways to make this even faster. No details.)
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Range Trees: Higher Dimensions
Range trees can be generalized to d-dimensional space.
Space O(n (log n)d−1)
Construction time O(n (log n)d )
Range search time O(s + (log n)d )

(Note: d is considered to be a constant.)

Space/time trade-off compared to kd-trees.

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where
the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn+ kν), where kν is
the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum ∑ν kν equals k, the total number of reported points. Furthermore,
the search paths of x and x′ in the main tree T have length O(logn). Hence,
∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
O(n logn) storage and can be constructed in O(n logn) time. By querying this
range tree one can report the points in P that lie in a rectangular query range in
O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(ν) of a node ν in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at ν . For each node ν we construct
an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1
coordinates. This (d −1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d −2)-dimensional range tree of
the points in its subtree, restricted to the last (d −2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109
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stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109
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Range search data structures summary
Quadtrees

I simple (also for dynamic set of points)
I work well only if points evenly distributed
I wastes space for higher dimensions

p0

p1

p2

p3 p4

p5p6

p7

p8

p9

kd-trees
I linear space
I range search time O(

√
n + s)

I inserts/deletes destroy balance and range
search time (no simple fix)

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

range-trees
I range search time O(log2 n + s)
I wastes some space
I inserts/deletes destroy balance (can fix this

with occasional rebuilt)

T

T(v)

v

P(v)

P(v)

Convention: Points on split lines belong to right/top side.
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