Final Help Session - Practice Problems

Note: This is a sample of problems designed to help prepare for the final exam. These problems do not encompass the entire coverage of the exam (and have a heavy emphasis on post-midterm material even though the exam is cumulative), nor do they reflect the length of the exam, and should not be used as a reference for its content.

1 True/False

For each statement below, write true or false.
a) Open addressing hashing that uses linear probing will require two hash functions.
b) Suffix trees for pattern matching require preprocessing the pattern.
c) When doing range search on a quadtree, if there is no point within the range specified, the worst case runtime complexity is in $\Theta(h)$.
d) Every string consisting of English characters and one end-character can be decoded with inverse BWT.
e) When using KMP to search for the pattern $\mathrm{a}^{m-1} \mathrm{~b}$ in the text a^{n}, the positions of the pattern shifts are the same as the brute-force algorithm.
f) If $\alpha=1$ for hashing with chaining, inserting a new key will always fail.
g) A modified version of the Boyer-Moore algorithm that uses a first-occurrence array (denoting the index of the first occurrence of the argument character) instead of a last-occurrence array will always successfully find the first occurrence of a pattern P in a text T (if it appears in T).
h) A modified version of the Boyer-Moore algorithm that compares characters from the start of the pattern and moving forward (instead of starting from the end of the pattern and moving backward) when checking a pattern shift will always successfully find the first occurrence of a pattern P in a text T (if it appears in T).
i) A range tree storing n points - where n is of the form $2^{h+1}-1$ - such that the primary tree and all associated trees are perfect (i.e., all levels are full) has $(n+1) \log (n)$ nodes in the primary trees and all associated trees combined.
j) A modified version of a kd-tree, where every internal node is split by the x-coordinate, will maintain $O(\log n)$ height and $O(\sqrt{n}+s)$ time.

2 Multiple Choice

Pick the best answer for each question.
a) Which of the following functions $f(i)$ would cause interpolation search to have the least worst-case runtime on an array A with $A[i]=f(i)$?
i) $f(i)=\log (i)$
ii) $f(i)=i$
iii) $f(i)=i^{2}$
iv) $f(i)=2^{i}$
b) Given $h_{0}(k)=k \bmod 7$ in a hash table of size 7 , which of the following hash functions would be most suitable for h_{1} in double hashing?
i) $h_{1}(k)=k^{2} \bmod 7$
ii) $h_{1}(k)=(k \bmod 6)+1$
iii) $h_{1}(k)=2 \cdot(k \bmod 4)$
iv) $h_{1}(k)=\left\lfloor\frac{1}{2} \cdot(k \bmod 13)\right\rfloor$
c) Given $h_{0}(k)=k \bmod 7$ with two hash tables, each of size 7 , which of the following hash functions would be most suitable for h_{1} in cuckoo hashing?
i) $h_{1}(k)=k^{2} \bmod 7$
ii) $h_{1}(k)=(k \bmod 6)+1$
iii) $h_{1}(k)=2 \cdot(k \bmod 4)$
iv) $h_{1}(k)=\left\lfloor\frac{1}{2} \cdot(k \bmod 13)\right\rfloor$
d) If the root of a quadtree represents the region $[0,128) \times[0,128)$ while the deepest (lowest) internal node represents the region $[88,92) \times[24,28)$, what is the height of the quadtree?
i) 4
ii) 5
iii) 6
iv) 7
e) Which one of the following statements about compressed tries is false?
i) Every internal node stores an index indicating the bit position to be tested on a search.
ii) The root of the compressed trie always tests the first bit.
iii) A compressed trie that stores n keys always contains less than n internal nodes.
iv) The height of a compressed trie never exceeds the length of the longest string it stores.
f) Given that P is not in T, and $m=\sqrt{n}$, which of the following pattern matching algorithms would have the lowest best-case runtime for searching (excluding preprocessing) for P in T ?
i) Rabin-Karp
ii) Knuth-Morris-Pratt
iii) Boyer-Moore Bad Character
iv) Suffix Array
g) CS240 is a course about
i) Data structures and algorithms
ii) Unreasonable time management
iii) Reconsidering academic/life choices
iv) Learning beauty tips from the style ieons ISAs
v) All of the above

3 Running Time

When Prashanth goes to sleep, his brain generates a number n and then runs an algorithm called Dream (n, hour). This algorithm has two inputs: the number n and the hour at which Prashanth goes to sleep, which is either 9:30 PM, 10:00 PM, or 10:30 PM. The runtime of $\operatorname{Dream}(n$, hour $)$ is n^{i} computations where i is the number of hours that Prashanth sleeps.
If Prashanth sleeps at 9:30PM, he will get between 8 to 9 hours of sleep. If he goes to sleep at 10:00 PM, he will get exactly 7.5 hours of sleep. If he sleeps at $10: 30 \mathrm{PM}$, he will get between 5 to 7 hours of sleep.

Prove or disprove the following statements:
a) In the worst case, the running time of Dream is $\Theta\left(n^{9}\right)$.
b) In the best case, the running time of Dream is $\omega\left(n^{5}\right)$
c) If Prashanth sleeps at 10:00 PM, the running time of Dream is $\Omega\left(n^{7.5}\right)$
d) The running time of Dream is $O\left(i^{n}\right)$.
e) After learning about some data structures in CS 240 that could help speed up his algorithm, Prashanth speeds up his Dream algorithm so that it runs in $\Theta(i)$ time where i is still the number of hours that he sleeps. The running time of Dream is $o(1)$.

4 Hashing

Let $p \geq 3$ be prime, and consider the universe of keys $U=\left\{0,1, \ldots, p^{2}-1\right\}$.
a) With a hash table of size p, and using double hashing with $h_{0}(k)=k \bmod p$ and $h_{1}(k)=\lfloor k / p\rfloor+1$, give a sequence of two keys to be inserted that results in failure.
b) With two hash tables of sizes p and $(p-1)$, and using cuckoo hashing with $h_{0}(k)=k$ mod p and $h_{1}(k)=k \bmod (p-1)$, give a sequence of four keys to be inserted that results in failure.

5 Huffman Compression

a) The following message was compressed using Huffman encoding and transmitted together with its dictionary:

0010000111010101110001011010010

Char	(space)	$:$ (colon)	d	ℓ	p	s	u	w
Code	100	1011	1010	010	001	000	11	011

Decompress the string using the dictionary and write the final message.
b) Agent Esfajamshidpetrick doesn't know the information in the message beforehand, but upon seeing the decoded string, he immediately realizes that the message has been tampered with. Explain how Arvidark determined this.

6 Karp-Rabin

For Karp-Rabin pattern matching, consider the following hash function for strings over the alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$:

$$
\begin{aligned}
h(P)= & (\# \text { of occurrences of } \mathrm{A})+2 \times(\# \text { of occurrences of } \mathrm{C}) \\
& +3 \times(\# \text { of occurrences of } \mathrm{G})+4 \times(\# \text { of occurrences of } \mathrm{T})
\end{aligned}
$$

Given the pattern $P=$ TAGCAT and sequence $T=$ TGCCGATGTAGCTAGCAT, use the table below to show all the character comparisons performed during Karp-Rabin pattern matching. Start a new pattern shift (in which character comparison occurs) in a new row. You may not need all the available space.

T	G	C	C	G	A	T	G	T	A	G	C	T	A	G	C	A	T

Table 1: Table for Karp-Rabin problem.

7 Consecutive Trie Strings

Given an uncompressed trie T that stores a list of binary strings, design an algorithm Consecutive $\left(b_{1}, b_{2}\right)$ that takes two binary strings in T as input, and outputs true if the strings are consecutive in pre-order
traversal of the trie, and outputs false otherwise. Assume that branches are ordered as $\$, 0,1$. The runtime should be bounded by $O\left(\left|b_{1}\right|+\left|b_{2}\right|\right)$.

For example, suppose T stores $\{000,01,0110,101,11\}$.
Consecutive $(0110,101)$ outputs true.
Consecutive $(01,000)$ outputs true.
Consecutive $(11,000)$ outputs false.

8 Burrows-Wheeler Transform

For the following questions, assume $k>0$ and $\ell>0$.
a) Consider the string S of the form (AH) ${ }^{k}$ A (e.g., AHAHA for $k=2$). What is the Burrows-Wheeler Transform for this string?
b) Consider the string S of the form $\mathrm{H}^{k} \mathrm{~A}^{\ell}$ (e.g., HHHAAAA for $k=3, \ell=4$). What is the Burrows-Wheeler Transform for this string?
c) Consider the string S of the form $\mathrm{A}^{k} \mathrm{H}^{\ell}$ (e.g., AAAAAHH for $k=5, \ell=2$). What is the Burrows-Wheeler Transform for this string?

9 Encoding Schemes

Suppose you need to design an encoding algorithm for source texts of length n over the alphabet $\{0,1,2,3\}$, given that all source texts begin with an even digit and alternate between even and odd digits. There are no constraints on the alphabet of the coded text, but the encoding must be lossless.
a) Design an encoding scheme (i.e. both an encoding algorithm and a decoding algorithm) that achieves the lowest best-case compression ratio.
b) Design an encoding scheme that achieves the lowest worst-case compression ratio.
c) Prove that the worst-case compression ratio in part (b) is optimal, i.e. there is no encoding scheme that achieves a lower worst-case compression ratio.

10 Suffix Trees

Zahra discovered a secret message in the form of a Suffix Tree S, indicating the location of a hidden treasure.
a) Design an algorithm that recovers the original text T from its corresponding suffix tree S. The algorithm should run in $O(n)$ time while using $O(n)$ auxiliary space.
b) Determine the original text for the following suffix tree:

Figure 1: Mysterious Suffix Tree

11 Lexicographically Least Permutation

The lexicographically least permutation of a string is the permutation for which the characters are in nondecreasing order. For example, the lexicographically least permutation of COUNTSORT\$ is \$CNOORSTTU.

For the following scenarios, S is a string of length n whose characters are from an ordered alphabet Σ, but the order of the characters is not known. Characters can be compared for equality, but not relative order.
a) Let $h_{1}: \Sigma \rightarrow \mathbb{N}$ be a hash function such that $h_{1}\left(c_{1}\right)<h_{1}\left(c_{2}\right)$ if and only if $c_{1}<c_{2}$. Given S and h_{1}, design an algorithm that generates the lexicographically least permutation of S in $O(n \log n)$ time.
b) Let $h_{2}: \Sigma \rightarrow \mathbb{N}$ be a hash function such that $h_{2}(c)$ maps to the sorted position of c in Σ, i.e., the smallest character in Σ maps to 0 , the second smallest to 1 , and so on. Given S and h_{2}, design an algorithm that generates the lexicographically least permutation of S in $O(n+|\Sigma|)$ time.
c) Suppose S contains n distinct characters. Let C be the Burrows-Wheeler Transform of $S \cdot \$$, i.e., S with $\$$ concatenated at the end, where $\$$ is an end-character which is not in Σ but is smaller than everything in Σ. Given S, C, and $\$$, design an algorithm that generates the lexicographically least permutation of S in $O\left(n^{2}\right)$ time.
For example, given $S=\triangle \mathbf{Q} \downarrow$ and $C=\diamond \circlearrowleft \boldsymbol{\$} \mathbf{\$}$, the lexicographically least permutation of S is

12 String Decoding

The following bit-string C was generated by 3 steps of encoding: BWT, MTF, RLE.

$$
C=001001000110111110001000011111100011111010010010110101100111
$$

a) The final step of encoding was applying RLE to encode C^{\prime} to C. Use run-length decoding to recover C^{\prime}.
b) The middle step of encoding was applying MTF to encode S^{\prime} to C^{\prime}, using the following initial dictionary:

Character	$\$$	-	\ldots	A	L	M	N	O	P	\ldots	Z
Code (DEC)	0	1	\ldots	6	17	18	19	20	21	\ldots	31

The codewords here are shown in decimal, but are each represented using 5 bits of binary. For example, the decimal codeword 7 would be represented as 00111 . This ordering of the characters is also the sorted ordering.

Decode the C^{\prime} from part (a) using MTF to get $S^{\prime}=$ AAPP_0000L\$MM, and show the final dictionary.
c) The first step of encoding was applying BWT to encode S to S^{\prime}. Apply the inverse BWT on S^{\prime} to recover the original text S.

13 Maximal Difference

Consider an array A of n integers. We want to implement a range query called MaxDiff(i,j) which will find the maximal difference between two elements from $A[i]$ to $A[j]$ inclusive, for $i<j$. For example, suppose our array A is:

$$
A=305456345798101
$$

If we run the query $\operatorname{Max} \operatorname{Dif} f(2,9)$, then the subarray from indices 2 to 9 is:

$$
A[2 \ldots 9]=54563457
$$

The largest number is 7 and the smallest number is 3 , so the maximal difference is $7-3=4$. The query $\operatorname{Max} \operatorname{Diff}(2,9)$ should return 4.

Design a data structure for A with space complexity $O(n)$ to answer queries of the form MaxDiff(i,j) in $O(\log n)$ time. There are no constraints on the runtime for preprocessing the array into the data structure.

14 Move-to-Front + Run-Length Encoding

Consider an encoding algorithm that utilizes the following fixed dictionary, where the alphabet consists of letters from A to P:

Char	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
Code	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The steps of the encoding algorithm are:

- Encode each character with the dictionary above using 4-bit codewords, while also applying Move-ToFront.
- Encoding the resulting string with Run-Length-Encoding.
a) Decode the string 1000101100110011, which was encoded using the algorithm described.
b) For each $n>1$, give an example of a valid string whose encoding has the minimum number of bits over all strings of length n.
c) For each $n>1$, give an example of a valid string whose encoding has the maximum number of bits over all strings of length n.

15 Lempel-Ziv-Welch

a) Suppose a text of length n is encoded with LZW into a sequence of w codewords, Assume that the number of bits to represent each codeword is large enough such that the dictionary never becomes full (i.e., a new substring is always added to the dictionary after every step). Give a $\Theta()$ bound in terms of n to denote the smallest value of w.
b) A secret message was reliably intercepted as follows (spaced for convenience):

00011001001000010100000000101000001000010001100000100001010000000000101100001011
Intelligence from other sources indicated that this message was generated by LZW encoding with 8-bit codewords, where the initial dictionary has size 64, though the initial dictionary itself is unknown.
Agent Duan does not know the original text or the initial dictionary, but he immediately realized that their intelligence was false. Explain how Yundi was able to determine this.

