Tutorial 5: June 13

1. Consider the AVL Tree shown below and perform the following operations: insert 61, delete 73, delete 49.

2. Insert the numbers $12,11,13,10,20$ into an empty skip-list using the coin flips HHTHTHTTHHHT. Then delete the keys 13 and 20.
3. We consider a modified version of AVL trees where the height difference between the right and left subtrees of any node is in the range $[-2,2]$ instead of $[-1,1]$. These are called AVL- 2 trees. Prove that the height of an AVL- 2 tree on n nodes is in $O(\log n)$.
