Tutorial 7: June 27

1. Consider an empty compressed multiway trie T. Suppose our alphabet is the standard lowercase English alphabet plus the end-of-word character (\$).
a) Insert the following words into T : attack $\$$, zenith\$, atlas\$, zebra\$, bolt\$, zen\$
b) Search for 'at\$' and 'zenith\$' in T
c) Delete 'zebra\$' from T
2. Consider a hash table of size 7 . For each of the scenarios below, insert the keys $14,10,20,13,7,17$, then delete 14 and search for 13 .
a) Linear Probing with $h(k)=k \bmod 7$.
b) Double Hashing with $h_{1}(k)=k \bmod 7$ and $h_{2}(k)=(k \bmod 5)+1$.
c) Cuckoo Hashing with $h_{1}(k)=k \bmod 7$ and $h_{2}(k)=(k \bmod 5)+1$.
3. Design a dictionary data structure to store key-value-pairs with uniformly distributed integer keys such that the operations for search, insert, and delete have $O(\log n)$ runtime and $O(1)$ expected runtime.
4. Discussion on Questions 2(c), 2(e), and 4(a) from the midterm.
