Tutorial 9: July 11

1. Consider the following points being stored in a 2 D range tree: $(2,12),(17,77),(23,92),(40,47),(55,91)$, $(67,27),(89,79),(99,53),(10,23),(35,7),(61,40),(95,56),(22,42),(88,15),(42,2)$.
a) Draw the x-BST for this range tree.
b) Draw the corresponding y-BSTs for the points $(88,15),(61,40)$ and $(67,27)$.
c) Perform a range-search with the query rectangle $[35,90] \times[5,30]$, indicating all boundary nodes and topmost inside nodes.
2. Suppose you have a set of n horizontal line segments in a plane, where line segment ℓ_{i} has coordinates $\left(x_{i}, y_{i}\right)$ and $\left(x_{i}^{\prime}, y_{i}\right)$. Assume that all coordinates are integers.

For each of the range-search queries below, design a data structure and provide an algorithm to answer the queries in $O\left(\log ^{3} n+s\right)$ time, where s is the number of lines reported. Each range-search query is a rectangle of the form $[a, b] \times[c, d]$.
a) The algorithm reports all line segments that are entirely contained inside the query rectangle. For the example below, the algorithm would return $\ell_{2}, \ell_{5}, \ell_{7}$ and ℓ_{8}.
b) The algorithm reports all line segments that intersect the query rectangle. For the example below, the algorithm reports all line segments except ℓ_{4} and ℓ_{9}.

