CS 240: Data Structures and Data Management

Spring 2022

Tutorial 9: July 11

1. Consider the following points being stored in a 2D range tree: (2, 12), (17, 77), (23, 92), (40, 47), (55, 91), (67, 27), (89, 79), (99, 53), (10, 23), (35, 7), (61, 40), (95, 56), (22, 42), (88, 15), (42, 2).

- a) Draw the *x*-BST for this range tree.
- b) Draw the corresponding y-BSTs for the points (88, 15), (61, 40) and (67, 27).
- c) Perform a range-search with the query rectangle $[35, 90] \times [5, 30]$, indicating all boundary nodes and topmost inside nodes.

2. Suppose you have a set of n horizontal line segments in a plane, where line segment ℓ_i has coordinates (x_i, y_i) and (x'_i, y_i) . Assume that all coordinates are integers.

For each of the range-search queries below, design a data structure and provide an algorithm to answer the queries in $O(\log^3 n + s)$ time, where s is the number of lines reported. Each range-search query is a rectangle of the form $[a, b] \times [c, d]$.

- a) The algorithm reports all line segments that are entirely contained inside the query rectangle. For the example below, the algorithm would return ℓ_2 , ℓ_5 , ℓ_7 and ℓ_8 .
- b) The algorithm reports all line segments that intersect the query rectangle. For the example below, the algorithm reports all line segments **except** ℓ_4 and ℓ_9 .

