
University of Waterloo

CS240 - Spring 2023

Assignment 5

Due Date: Wednesday July 26, 5pm

You should have submitted AID02 before the due date of this assignment. The
agreement will indicate what you must do to ensure the integrity of your grade. If you are
having difficulties with the assignment, course staff are there to help (provided it isn’t last
minute).

The Academic Integrity Declaration must be signed and submitted on time or
the assessment will not be marked.

Please read https://student.cs.uwaterloo.ca/~cs240/s23/assignments.phtml#guidelines
for guidelines on submission. Each question must be submitted individually to
MarkUs as a PDF with the corresponding file names: a5q1.pdf, a5q2.pdf, . . . It is a
good idea to submit questions as you go so you aren’t trying to create several PDF files at
the last minute.

Late Policy: Assignments are due at 5:00pm, with the grace period until 11:59pm. Assign-
ments submitted after 11:59pm on the due date will not be accepted but may be reviewed
(by request) for feedback purposes only.

Question 1 [3+3+3+3+1 marks]

Consider a hash table dictionary with universe U = {0, 1, 2, . . . , 25} and size M = 5. If
items with keys k = 17, 10, 20, 13 are inserted in that order, draw the resulting hash table if
we resolve collisions using:

(a) Chaining with h(k) = (k + 2) mod 5.

(b) Linear probing with h(k) = (k + 2) mod 5

(c) Double hashing with h1(k) = (k + 2) mod 5 and h2(k) = 1 + (k mod 4).

(d) Cuckoo hashing with h1(k) = (k + 2) mod 5 and h2(k) = ⌊k/5⌋.

(e) Identify a serious problem with the choice of hash functions in part (d).

1

https://student.cs.uwaterloo.ca/~cs240/s23/assignments.phtml#guidelines


Question 2 [3+4 marks]

(a) Assume that we have a hash table of size 6 and that our keys are selected uniformly at
random from the set A = {1, 2, 3, . . . , 600}. Consider the following two hash functions:

h1(k) = k mod 6,

h2(k) = 2k mod 6.

Which hash function is better? Justify your answer.

(b) Let S be a set of n keys mapped to a hash table also of size n using chaining. We make
the uniform hashing assumption, and we call cn the expected number of empty slots.
Prove that lim

n→∞
cn/n = 1/e, where e ≈ 2.71828183.

You can use the fact that lim
n→∞

(1 − 1/n)n = 1/e. We recommend you use indicator

variables I0, . . . , In−1, that take values 0 or 1, depending on whether the corresponding
entry in the table is empty or not; then, find the expected value of each Ii.

Question 3 [4+4+4 marks]

In this question, we consider a modified version of open-addressing hashing. In this modified
version, the insert operation works as follows. To insert a key k, we perform linear probing
until we either reach an empty position in the hash table or probe a position that is not
empty. Say the nonempty position in the table contains the key k′. Then, if k′ > k, we
replace k′ with k at that position and call the insert operation on k′. If k′ ≤ k, continue
trying to insert k in the position after k′, as is done in normal linear probing. In this way,
the value of the key we are trying to insert into the hash table is strictly increasing.

For each question that follows, we may assume that no key is ever deleted from the hash
table.

(a) For a hash table of size M = 10 and the hash function h(x) = x mod 10, run this
modified hash algorithm using the insertion sequence {31, 26, 16, 23, 11, 30, 20}. Show
the hash table after each insertion is complete; that is, after no more probing is required.

(b) Argue that, regardless of the values of M and h(x), the insertion operation will always
terminate after a finite number of probes.

You may assume that there is still space in the hash table upon each insertion and that
all probe sequences consist of some permutation of the positions of the hash table.

(c) Argue that the number of probes made during an insert could be Ω(n2). That is, for
arbitrarily large values of n, give an example of a hash table with n keys and size
M > n such that insertion of a key into the hash table will require at least cn2 probes
for some constant c > 0. Justify insertions.

The most straightforward approach would be to use linear probing with the hash
function h(x) = x mod M , but you can choose to use another hash function if you
want (as long as it can map to all entries of the table).

2



Question 4 [4+6+5 marks]

(a) Give the (x, y) coordinates of three points in the plane for which the corresponding
quadtree has height exactly 6. (Do not give the plane partitions.)

(b) The spread of a point set is the ratio of the maximum distance between points to the
minimum distance between points. Prove that spread of any set of n points in the
plane is Ω(

√
n).

(c) A set of n points in the plane is called dense if its spread is O(
√
n). Prove that the

height of the quadtree on any dense point set is O(log n).

Question 5 [4+2+8 marks]

Using kd-trees, we can report all points in a two-dimensional range in time O(n1/2 + k),
where n is the number of points stored in the data structure and k is the number of reported
points. In this problem, you will describe a data structure that needs O(n) space and answers
two-dimensional range reporting queries in O(n1/3 log(n)+k) time. We assume for simplicity
that all points have different x-coordinates.

(a) As a warm-up, consider the following particular case of a 2d range query: we store a
set S of r points, and we have to process a query rectangle Q = [a, b] × [c, d], but we
know that all points in S satisfy the constraint a ≤ x ≤ b. What data structure would
you use to store the points in S, and how long would the query take?

Let S denote the set of points stored in the data structure we want to design. Divide
S into equal-sized subsets Si for i = 1, ...,m, with m = n1/3, according to x-coordinates
of points: for any points p in Si and q in Sj , the x-coordinate of p is smaller than the
x-coordinate of q if and only if i < j (we assume that m is an integer, for simplicity). We
keep two different data structures for every set Si; one of them is a kd-tree that stores all
points of Si (you will have to find what the other one is).

(b) How many elements are there in Si, and what would be the cost of a range search in
Si, using a kd-tree?

(c) Describe the data structure and give an algorithm that achieves the run-time claimed
above (you have to justify the run-time).

Hint: if we consider a query Q = [a, b] × [c, d], consider which sets Si need to be
queried, and observe that (at most) two of them should be handled differently from
the other ones. The two data structures for Si will be handy here.

3


	[3+3+3+3+1 marks]
	[3+4 marks]
	[4+4+4 marks]
	[4+6+5 marks]
	[4+2+8 marks]

