
University of Waterloo
CS240 - Spring 2023

Programming Question 2
Due Date: Wednesday July 19, 5pm

You should have submitted AID02 before the due date of this assignment. The
agreement will indicate what you must do to ensure the integrity of your grade. If you are
having difficulties with the assignment, course staff are there to help (provided it isn’t last
minute).

The Academic Integrity Declaration must be signed and submitted on time or
the assessment will not be marked.

Please read https://student.cs.uwaterloo.ca/~cs240/s23/assignments.phtml#guidelines
for guidelines on submission. Submit the file trie.cpp to Marmoset.

Late Policy: Assignments are due at 5:00pm, with the grace period until 11:59pm.
Assignments submitted after 11:59pm on the due date will not be accepted but may be
reviewed (by request) for feedback purposes only.

In this assignment, you will implement the basic functionalities of tries for strings made
of characters a and b. We will use the implementation described in class, using a special
character (of your choice) to indicate end-of-word (warning: the input strings we use in our
tests do not include this special character; you have to manage it yourselves).

• You have to implement functions to insert, delete (as explained in class) and find
strings. For these functions, you can assume that inputs are well-formed (non-empty
strings made of a and b only).

– If we try to insert a string s already in the trie, you should print
insert: string (print s) already in the trie
(with new line at the end) and continue execution. For instance, if s = aa, we
want to see
insert: string aa already in the trie

– If we try to delete a string s not in the trie, you should print
delete: string (print s) not in the trie
(with new line at the end) and continue execution.

– For find, if you find the string s in the trie, print
find: string (print s) found
else print

1

https://student.cs.uwaterloo.ca/~cs240/s23/assignments.phtml#guidelines


find: string (print s) not found
(with new line at the end) and continue execution.

These functions are defined in the class trie, but for the moment they do nothing.

• You also have to implement a pretty_print function. On input a trie with strings aa,
aaab, b and ba, it should output the following
*─*─*─aa
│ └─*─*─aaab
└─*─b

└─*─ba Note: we do not print the end-of-word character.
Here is how the output is recursively defined. If the current node is empty, the output
is the empty string. If your node contains a string, the output is this string. Else, call
P$, Pa and Pb be the pretty prints corresponding to children $, a and b. Then your
output will be
*─(first line of P$)
│ (…)
│ (last line of P$)
├─(first line of Pa)
│ (…)
│ (last line of Pa)
└─(first line of Pb)

(…)
(last line of Pb)

with a slight adjustment: if any one of P$, Pa or Pb is the empty string, skip it
altogether, and do not print it. For instance, if P$ is the empty string, but Pa and Pb

are not, the output is
*─(first line of Pa)
│ (…)
│ (last line of Pa)
└─(first line of Pb)

(…)
(last line of Pb)

The exact characters you should use (*─├└│ ) are in the skeleton we provide.

• Finally, you have to implement a partial compression function (which will modify
the current trie), where we prune branches that carry only one string. It is defined
recursively as follows: at any node, prune recursively children with labels a and b
(there is nothing to do for the $ child). If all three children store in total one single
string, the current node will hold this string and all children are deleted.
After pruning, you should still be able to pretty print the trie, but we will not insert,
find or delete in a pruned trie.

2



After completing the skeleton we give you, rename it and submit it as a file called trie.cpp.
We give you a mostly empty class for tries, which you have to complete. You can add new
classes / structs, but you cannot change main (we will auto-mark the assignments). You
cannot use any pre-existing class for trees or tries.

3


