CS 240 - Data Structures and Data Management

Module 7: Dictionaries via Hashing

Leili Rafiee Sevyeri Éric Schost
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2023

Outline

(7) Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

Outline

(7) Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \leq k<M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- $\operatorname{search}(k)$: Check whether $A[k]$ is NIL
- insert $(k, v): A[k] \leftarrow v$
- delete $(k): A[k] \leftarrow$ NIL

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \leq k<M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- $\operatorname{search}(k)$: Check whether $A[k]$ is NIL
- insert $(k, v): A[k] \leftarrow v$
- delete $(k): A[k] \leftarrow$ NIL

Each operation is $\Theta(1)$.
Total space is $\Theta(M)$.
What sorting algorithm does this remind you of?

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \leq k<M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- $\operatorname{search}(k):$ Check whether $A[k]$ is NIL
- insert $(k, v): A[k] \leftarrow v$
- delete $(k): A[k] \leftarrow$ NIL

Each operation is $\Theta(1)$.
Total space is $\Theta(M)$.
What sorting algorithm does this remind you of? Bucket Sort

Hashing

Two disadvantages of direct addressing:

- It cannot be used if the keys are not integers.
- It wastes space if M is unknown or $n \ll M$.

Hashing idea: Map (arbitrary) keys to integers in range $\{0, \ldots, M-1\}$ and then use direct addressing.

Details:

- Assumption: We know that all keys come from some universe U. (Typically $U=$ non-negative integers, sometimes $|U|$ finite.)
- We design a hash function $h: U \rightarrow\{0,1, \ldots, M-1\}$. (Commonly used: $h(k)=k \bmod M$. We will see other choices later.)
- Store dictionary in hash table, i.e., an array T of size M.
- An item with key k should ideally be stored in slot $h(k)$, i.e., at $T[h(k)]$.

Hashing example

$U=\mathbb{N}, M=11, \quad h(k)=k \bmod 11$.
The hash table stores keys $7,13,43,45,49,92$. (Values are not shown).

Collisions

- Generally hash function h is not injective, so many keys can map to the same integer.
- For example, $h(46)=2=h(13)$ if $h(k)=k \bmod 11$.
- We get collisions: we want to insert (k, v) into the table, but $T[h(k)]$ is already occupied.

Collisions

- Generally hash function h is not injective, so many keys can map to the same integer.
- For example, $h(46)=2=h(13)$ if $h(k)=k \bmod 11$.
- We get collisions: we want to insert (k, v) into the table, but $T[h(k)]$ is already occupied.
- There are many strategies to resolve collisions:

Outline

(7) Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

Hashing with Chaining

Simplest collision-resolution strategy: Each slot stores a bucket containing 0 or more KVPs.

- A bucket could be implemented by any dictionary realization (even another hash table!).
- The simplest approach is to use unsorted linked lists for buckets. This is called collision resolution by chaining.

Hashing with Chaining

Simplest collision-resolution strategy: Each slot stores a bucket containing 0 or more KVPs.

- A bucket could be implemented by any dictionary realization (even another hash table!).
- The simplest approach is to use unsorted linked lists for buckets. This is called collision resolution by chaining.
- $\operatorname{search}(k)$: Look for key k in the list at $T[h(k)]$. Apply MTF-heuristic!
- insert (k, v) : Add (k, v) to the front of the list at $T[h(k)]$.
- delete(k): Perform a search, then delete from the linked list.

Chaining example

$M=11, \quad h(k)=k \bmod 11$

Chaining example

$M=11, \quad h(k)=k \bmod 11$
insert(41)
$h(41)=8$

Chaining example

$M=11, \quad h(k)=k \bmod 11$
insert(41)
$h(41)=8$

Chaining example

$M=11, \quad h(k)=k \bmod 11$
insert(46)
$h(46)=2$

Chaining example

$M=11, \quad h(k)=k \bmod 11$
insert(46)
$h(46)=2$

Chaining example

$M=11, \quad h(k)=k \bmod 11$
insert(16)

Chaining example

$M=11, \quad h(k)=k \bmod 11$
insert(16)

Chaining example

$M=11, \quad h(k)=k \bmod 11$
insert(79)
$h(79)=2$

Complexity of chaining

Run-times: insert takes time $\Theta(1)$.
search and delete have run-time $\Theta(1+$ size of bucket $T[h(k)])$.

- The average bucket-size is $\frac{n}{M}=: \alpha$. (α is also called the load factor.)
- However, this does not imply that the average-case cost of search and delete is $\Theta(1+\alpha)$.
(If all keys hash to the same slot, then the average bucket-size is still α, but the operations take time $\Theta(n)$ on average.)
- We need some assumptions on the hash-functions and the keys!

Complexity of chaining

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?

Complexity of chaining

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?

Assume that the hash-function is chosen randomly.

- Uniform Hashing Assumption: U is finite and any possible hash-function is equally likely to be chosen as hash-function.
(This is not at all realistic, but the assumption makes analysis possible.)

Complexity of chaining

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?

Assume that the hash-function is chosen randomly.

- Uniform Hashing Assumption: U is finite and any possible hash-function is equally likely to be chosen as hash-function.
(This is not at all realistic, but the assumption makes analysis possible.)
- Can show:
- $P(h(k)=i)=\frac{1}{M}$ for any key k and slot i,
- Hash-values of any two keys are independent of each other.

Complexity of chaining

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?

Assume that the hash-function is chosen randomly.

- Uniform Hashing Assumption: U is finite and any possible hash-function is equally likely to be chosen as hash-function.
(This is not at all realistic, but the assumption makes analysis possible.)
- Can show:
- $P(h(k)=i)=\frac{1}{M}$ for any key k and slot i,
- Hash-values of any two keys are independent of each other.
- Under this assumption, each key in dictionary is expected to collide with $\frac{n-1}{M}$ other keys and the expected cost of search and delete is hence $\Theta(1+\alpha)$.

Load factor and re-hashing

- For all collision resolution strategies, the run-time evaluation is done in terms of the load factor $\alpha=n / M$.
- We keep the load factor small by rehashing when needed:
- Keep track of n and M throughout operations
- If α gets too large, create new (twice as big) hash-table, new hash-function(s) and re-insert all items in the new table.
- Rehashing costs $\Theta(M+n)$ but happens rarely enough that we can ignore this term when amortizing over all operations.
- We should also re-hash when α gets too small, so that $M \in \Theta(n)$ throughout, and the space is always $\Theta(n)$.

Summary: If we maintain $\alpha \in \Theta(1)$, then (under the uniform hashing assumption) the expected cost for hashing with chaining is $O(1)$ and the space is $\Theta(n)$.

Outline

(7) Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.
search and insert follow a probe sequence of possible locations for key k : $\langle h(k, 0), h(k, 1), h(k, 2), \ldots\rangle$ until an empty spot is found.
delete becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- Idea 1: Move later items in the probe sequence forward.
- Idea 2: lazy deletion: Mark spot as deleted (rather than NIL) and continue searching past deleted spots.

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.
search and insert follow a probe sequence of possible locations for key k : $\langle h(k, 0), h(k, 1), h(k, 2), \ldots\rangle$ until an empty spot is found.
delete becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- Idea 1: Move later items in the probe sequence forward.
- Idea 2: lazy deletion: Mark spot as deleted (rather than NIL) and continue searching past deleted spots.

Simplest method for open addressing: linear probing $h(k, i)=(h(k)+i) \bmod M$, for some hash function h.

Linear probing example

$M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11$.

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	
9	
10	43

Linear probing example

$M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11$.
insert(41)
$h(41,0)=8$

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	
10	43

Linear probing example

$$
M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11 .
$$

Linear probing example

$$
M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11 .
$$

Linear probing example

$M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11$.

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	43

Linear probing example

$M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11$.

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	43

Linear probing example

$M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11$.

Linear probing example

$M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11$.

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	43

Linear probing example

$$
M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11 .
$$

Linear probing example

$$
M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11 .
$$

search(63)
$h(63,0)=8$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	deleted

Linear probing example

$$
M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11 .
$$

search(63)
$h(63,1)=9$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	deleted

Linear probing example

$$
M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11 .
$$

search(63)
$h(63,2)=10$

Linear probing example

$$
M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11 .
$$

search(63)
$h(63,3)=0$

Linear probing example

$$
M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11 .
$$

search(63)
$h(63,4)=1$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
0	deleted

Linear probing example

$$
M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11 .
$$

search(63)
$h(63,5)=2$

Linear probing example

$M=11, \quad h(k)=k \bmod 11, \quad h(k, i)=(h(k)+i) \bmod 11$.

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
0	deleted

Probe sequence operations

$$
\begin{aligned}
& \text { probe-sequence::insert }(T,(k, v)) \\
& \text { 1. for }(j=0 ; j<M ; j++) \\
& \text { 2. } \\
& \text { if } T[h(k, j)] \text { is NIL or "deleted" } \\
& \text { 3. } \\
& \text { 4. } \\
& \text { 5. return "failure to insert" } \quad / / \text { need to re-hash }
\end{aligned}
$$

```
probe-sequence-search( }T,k
    1. for (j=0;j<M;j++)
    2. if T[h(k,j)] is NIL
    3. return "item not found"
    4. else if T[h(k,j)] has key k
    5. return T[h(k,j)]
    6. // ignore "deleted" and keep searching
    7. return "item not found"
```


Independent hash functions

- Some hashing methods require two hash functions h_{0}, h_{1}.
- These hash functions should be independent in the sense that the random variables $P\left(h_{0}(k)=i\right)$ and $P\left(h_{1}(k)=j\right)$ are independent.
- Using two modular hash-functions may often lead to dependencies.

Independent hash functions

- Some hashing methods require two hash functions h_{0}, h_{1}.
- These hash functions should be independent in the sense that the random variables $P\left(h_{0}(k)=i\right)$ and $P\left(h_{1}(k)=j\right)$ are independent.
- Using two modular hash-functions may often lead to dependencies.
- Better idea: Use multiplication method for second hash function: $h(k)=\lfloor M(k A-\lfloor k A\rfloor)\rfloor$,
- A is some floating-point number with $0<A<1$
- $k A-\lfloor k A\rfloor$ computes fractional part of $k A$, which is in $[0,1)$
- Multiply with M to get floating-point number in $[0, M)$
- Round down to get integer in $\{0, \ldots, M-1\}$

Independent hash functions

- Some hashing methods require two hash functions h_{0}, h_{1}.
- These hash functions should be independent in the sense that the random variables $P\left(h_{0}(k)=i\right)$ and $P\left(h_{1}(k)=j\right)$ are independent.
- Using two modular hash-functions may often lead to dependencies.
- Better idea: Use multiplication method for second hash function: $h(k)=\lfloor M(k A-\lfloor k A\rfloor)\rfloor$,
- A is some floating-point number with $0<A<1$
- $k A-\lfloor k A\rfloor$ computes fractional part of $k A$, which is in $[0,1)$
- Multiply with M to get floating-point number in $[0, M)$
- Round down to get integer in $\{0, \ldots, M-1\}$
- Some observations/suggestions:
- Multiplying with A is used to scramble the keys.
- Good scrambling is achieved with $A=\varphi=\frac{\sqrt{5}-1}{2} \approx 0.618033988749 \ldots$.

Double Hashing

- Assume we have two hash independent functions h_{0}, h_{1}.
- Assume further that $h_{1}(k) \neq 0$ and that $h_{1}(k)$ is relative prime with the table-size M for all keys k.
- Choose M prime.
- Modify standard hash-functions to ensure $h_{1}(k) \neq 0$ E.g. modified multiplication method: $h(k)=1+\lfloor(M-1)(k A-\lfloor k A\rfloor)\rfloor$
- Double hashing: open addressing with probe sequence

$$
h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M
$$

- search, insert, delete work just like for linear probing, but with this different probe sequence.

Double hashing example

$M=11, \quad h_{0}(k)=k \bmod 11, \quad h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1$

Double hashing example

$M=11, \quad h_{0}(k)=k \bmod 11, \quad h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1$
insert(41)
$h_{0}(41)=8$
$h(41,0)=8$

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	
10	43

Double hashing example

$M=11, \quad h_{0}(k)=k \bmod 11, \quad h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1$
insert(194)
$h_{0}(194)=7$
$h(194,0)=7$

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	
10	43

Double hashing example

$M=11, \quad h_{0}(k)=k \bmod 11, \quad h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1$
insert(194)
$h_{0}(194)=7$
$h(194,0)=7$
$h_{1}(194)=9$
$h(194,1)=5$

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	
10	43

Double hashing example

$M=11, \quad h_{0}(k)=k \bmod 11, \quad h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1$
insert(194)
$h_{0}(194)=7$
$h(194,0)=7$
$h_{1}(194)=9$
$h(194,1)=5$
$h(194,2)=3$

0	
1	45
2	13
3	194
4	92
5	49
6	
7	7
8	41
9	
10	43

Outline

(7) Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

Cuckoo hashing

We use two independent hash functions h_{0}, h_{1} and two tables T_{0}, T_{1}.
Main idea: An item with key k can only be at $T_{0}\left[h_{0}(k)\right]$ or $T_{1}\left[h_{1}(k)\right]$.

- search and delete then take constant time.
- insert always initially puts a new item into $T_{0}\left[h_{0}(k)\right]$ If $T_{0}\left[h_{0}(k)\right]$ is occupied: "kick out" the other item k^{\prime}, which we then attempt to re-insert into its alternate position $T_{1}\left[h_{1}\left(k^{\prime}\right)\right]$
This may lead to a loop of "kicking out". We detect this by aborting after too many attempts.
In case of failure: rehash with a larger M and new hash functions.
insert may be slow, but is expected to be constant time if the load factor is small enough.

Cuckoo hashing insertion

$$
\begin{array}{ll}
\text { cuckoo::insert }(k, v) \\
\text { 1. } & i \leftarrow 0 \\
\text { 2. } & \text { do at most } 2 n \text { times: } \\
\text { 3. } & \text { if } T_{i}\left[h_{i}(k)\right] \text { is NIL } \\
\text { 4. } & T_{i}\left[h_{i}(k)\right] \leftarrow(k, v) \\
\text { 5. } & \text { return "success" } \\
\text { 6. } & \operatorname{swap}\left((k, v), T_{i}\left[h_{i}(k)\right]\right) \\
\text { 7. } & i \leftarrow 1-i \\
\text { 8. return "failure to insert" } \quad / / \text { need to re-hash }
\end{array}
$$

Can prove: after $2 n$ iterations, there was a loop in the "kicking out" sequence

In practice, one would stop the iterations much earlier already.

Cuckoo hashing example

$M=11$,

$$
h_{0}(k)=k \bmod 11, \quad h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor
$$

Cuckoo hashing example

 $M=11$, $h_{0}(k)=k \bmod 11$, $h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor$$$
\begin{aligned}
& \text { insert(51) } \\
& \begin{array}{l}
i=0 \\
k=51 \\
h_{0}(k)=7 \\
h_{1}(k)=5
\end{array}
\end{aligned}
$$

	T_{0}
0	44
1	
2	
3	
4	59
5	
6	
7	
8	
9	
10	

Cuckoo hashing example

 $M=11$, $h_{0}(k)=k \bmod 11$, $h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor$$$
\begin{aligned}
& \text { insert(51) } \\
& \begin{array}{l}
i=0 \\
k=51 \\
h_{0}(k)=7 \\
h_{1}(k)=5
\end{array}
\end{aligned}
$$

	T_{0}
0	44
1	
2	
3	
4	59
5	
6	
7	51
8	
9	
10	

Cuckoo hashing example

 $M=11$, $h_{0}(k)=k \bmod 11$, $h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor$$$
\begin{aligned}
& \text { insert(95) } \\
& \begin{array}{l}
i=0 \\
k=95 \\
h_{0}(k)=7 \\
h_{1}(k)=7
\end{array}
\end{aligned}
$$

	T_{0}
0	44
1	
2	
3	
4	59
5	
6	
7	51
8	
9	
10	

Cuckoo hashing example

 $M=11$, $h_{0}(k)=k \bmod 11$, $h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor$insert(95)
$i=1$
$k=51$
$h_{0}(k)=7$
$h_{1}(k)=5$

Cuckoo hashing example

 $M=11$, $h_{0}(k)=k \bmod 11$, $h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor$$$
\begin{aligned}
& \text { insert(95) } \\
& \begin{array}{l}
i=1 \\
k=51 \\
h_{0}(k)=7 \\
h_{1}(k)=5
\end{array}
\end{aligned}
$$

	T_{0}
0	44
1	
2	
3	
4	59
5	
6	
7	95
8	
9	
10	

Cuckoo hashing example

 $M=11$, $h_{0}(k)=k \bmod 11$, $h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor$insert(26)
$i=0$
$k=26$
$h_{0}(k)=4$
$h_{1}(k)=0$

Cuckoo hashing example

$M=11$, $h_{0}(k)=k \bmod 11$, $h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor$
insert(26)
$i=1$
$k=59$
$h_{0}(k)=4$
$h_{1}(k)=5$

Cuckoo hashing example

 $M=11$, $h_{0}(k)=k \bmod 11$, $h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor$insert(26)
$i=0$
$k=51$
$h_{0}(k)=7$
$h_{1}(k)=5$

Cuckoo hashing example

$M=11$,

$$
h_{0}(k)=k \bmod 11
$$

$$
h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor
$$

insert(26)
$i=1$
$k=95$
$h_{0}(k)=4$
$h_{1}(k)=7$

Cuckoo hashing example

 $M=11$, $h_{0}(k)=k \bmod 11$, $h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor$insert(26)
$i=1$
$k=95$
$h_{0}(k)=4$
$h_{1}(k)=7$

Cuckoo hashing example

$$
M=11, \quad h_{0}(k)=k \bmod 11, \quad h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor
$$

search(59)
$h_{0}(59)=4$
$h_{1}(59)=5$

	T_{0}
0	44
1	
2	
3	
7	26
5	
6	
7	51
8	
9	
10	

Cuckoo hashing example

 $M=11$,delete(59)
$h_{0}(59)=4$
$h_{1}(59)=5$

	T_{0}
0	44
1	
2	
3	
7	26
5	
6	
7	51
8	
9	
10	

Cuckoo hashing discussions

- The two hash-tables need not be of the same size.
- Load factor $\alpha=n /\left(\right.$ size of $T_{0}+$ size of $\left.T_{1}\right)$
- One can argue: If the load factor α is small enough then insertion has $O(1)$ expected run-time.
- This crucially requires $\alpha<\frac{1}{2}$.

Cuckoo hashing discussions

- The two hash-tables need not be of the same size.
- Load factor $\alpha=n /\left(\right.$ size of $T_{0}+$ size of $\left.T_{1}\right)$
- One can argue: If the load factor α is small enough then insertion has $O(1)$ expected run-time.
- This crucially requires $\alpha<\frac{1}{2}$.

There are many possible variations:

- The two hash-tables could be combined into one.
- Be more flexible when inserting: Always consider both possible positions.
- Use $k>2$ allowed locations (i.e., k hash-functions).

Complexity of open addressing strategies

For any open addressing scheme, we must have $\alpha \leq 1$ (why?).
For the analysis, we require $\alpha<1$ and Cuckoo hashing requires $\alpha<1 / 2$.

Expected probes \leq	search (unsuccessful)	insert	search (successful)
Linear Probing	$\frac{1}{(1-\alpha)^{2}}$	$\frac{1}{(1-\alpha)^{2}}$	$\frac{1}{1-\alpha}$
(on avg. over keys)			

Summary: All operations have $O(1)$ expected run-time if hash-function chosen uniformly and α is kept sufficiently small.
But for fixed hash-function the worst-case run-time is (usually) $\Theta(n)$.

Outline

(7) Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

Choosing a good hash function

- Satisfying the uniform hashing assumption is impossible: There are too many hash functions; we would not know how to look up $h(k)$.
- We need to compromise:
- Choose a hash-function that is easy to compute.
- But aim for $P(h(k)=i)=\frac{1}{M}$ w.r.t. key-distribution.

Choosing a good hash function

- Satisfying the uniform hashing assumption is impossible: There are too many hash functions; we would not know how to look up $h(k)$.
- We need to compromise:
- Choose a hash-function that is easy to compute.
- But aim for $P(h(k)=i)=\frac{1}{M}$ w.r.t. key-distribution.
- If all keys are used equally often, then this can be doable. But in practice keys are not used equally often.
- We can get good performance by choosing a hash-function that is
- unrelated to any possible patterns in the data, and
- depends on all parts of the key.
- We saw two basic methods for integer keys:
- Modular method: $h(k)=k \bmod M$.

We should choose M to be a prime.

- Multiplicative method: $h(k)=\lfloor M(k A-\lfloor k A\rfloor)\rfloor$, for some constant floating-point number A with $0<A<1$.

Carter-Wegman's universal hashing

Even better: Randomization that uses easy-to-compute hash-functions.

- Requires: all keys are in $\{0, \ldots, p-1\}$ for some (big) prime p.
- Choose $M<p$ arbitrarily, power of 2 is ok.
- Choose two random numbers a, b in $\{0, \ldots p-1\}, a \neq 0$
- Use as hash-function

$$
h(k)=((a k+b) \bmod p) \bmod M
$$

Carter-Wegman's universal hashing

Even better: Randomization that uses easy-to-compute hash-functions.

- Requires: all keys are in $\{0, \ldots, p-1\}$ for some (big) prime p.
- Choose $M<p$ arbitrarily, power of 2 is ok.
- Choose two random numbers a, b in $\{0, \ldots p-1\}, a \neq 0$
- Use as hash-function

$$
h(k)=((a k+b) \bmod p) \bmod M
$$

- Clearly $h(k)$ can be computed in $O(1)$ time.
- Choosing h in this way does not satisfy uniform hashing assumption, but we can prove that two keys collide with probability at most $\frac{1}{M}$.
- This is enough to prove the expected run-time bounds for chaining.

Multi-dimensional Data

What if the keys are multi-dimensional, such as strings in Σ^{*} ?
Standard approach is to flatten string w to integer $f(w) \in \mathbb{N}$, e.g.

$$
\begin{aligned}
A \cdot P \cdot P \cdot L \cdot E \rightarrow & (65,80,80,76,69) \quad(\text { ASCII }) \\
\rightarrow & 65 R^{4}+80 R^{3}+80 R^{2}+76 R^{1}+69 R^{0} \\
& (\text { for some radix } R, \text { e.g. } R=255)
\end{aligned}
$$

We combine this with a modular hash function: $h(w)=f(w) \bmod M$
To compute this in $O(|w|)$ time without overflow, use Horner's rule and apply mod early. For exampe, $h(A P P L E)$ is
$(((((((65 R+80) \bmod M) R+80) \bmod M) R+76) \bmod M) R+69) \bmod M$

Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees

- $O(\log n)$ worst-case operation cost
- Does not require any assumptions, special functions, or known properties of input distribution
- Predictable space usage (exactly n nodes)
- Never need to rebuild the entire structure
- Supports ordered dictionary operations (rank, select etc.)

Advantages of Hash Tables

- $O(1)$ operation cost (if hash-function random and load factor small)
- We can choose space-time tradeoff via load factor
- Cuckoo hashing achieves $O(1)$ worst-case for search \& delete

