Tutorial 02: May 23

1. Relationships Between Order Notations

Prove or disprove following statements. To prove a statement, provide a proof or justification based on the definition of order notation. To disprove the statement, you can either provide a counter example and explain it or show truth of the statement leads to contradiction.

- (a) If $f(n) \in o(g(n))$, then $f(n) \notin \Omega(g(n))$. Assume that both f(n), g(n) > 0 for n > 0. Note that this statement is part of slides for Module 01.
- (b) There exists f(n) and g(n) such that $f(n) \in o(g(n))$ and $f(n) \in \omega(g(n))$
- (c) If $f(n) \in O(g(n))$, then $2^{f(n)} \in O(2^{g(n)})$.

2. Little-o / Little- ω : Electric Boogaloo

Prove following using first-principles. Find n_0 value that satisfies the inequality.

- (a) Prove that $3^n 2n^2 \in \omega(2.9^n)$. (You are allowed to use calculator for this question.)
- (b) Prove that $2000n^2 \in o(n^n)$. Note that n > 0.

3. Pseudo-code Runtime Analysis

Analyze the following piece of pseudo-code and give a tight (Θ) bound on the running time as a function of n.

```
i = 2
x = 0
while (i < n):
    for j = 1 to n:
        for k = 1 to j:
            x = x + 1
        i = i * i
```