
CS 240: Data Structures and Data Management Spring 2023

Tutorial 06: June 19

1. Runtime of MSD-RadixSort
Analyze and justify runtime of MSD-RadixSort. As discussed in the lecture, the run-time of MSD-
RadixSort is Θ(mnR) where R is the base of each element, m is the number of digits, and n is the
number of elements.

MSD-Radix-sort(A, l, r, d)

if l < r

bucket-sort(A[l,r], d)

if there are digits left // recures in sub-arrays

l’ = l

while (l’ < r) do

r’ = maximal s.t. A[l’,...,r’] all have the same dth digit

MSD-Radix-sort(A, l’, r’, d+1)

l’ = r’+1

2. Numbers in Range
We have an array A of n non-negative integers such that each integer is less than k. Give an O(n+ k)
time preprocessing algorithm such that queries of the form “how many integers are there in A that
are in the range [a, b]?” can be answered in O(1) time. Note that a and b are not fixed; they are
parameters given to the query algorithm.

3. Multiplicity Sorting Consider the problem of sorting an array A of n elements with multiplicity
n/k. That is, A consists of k distinct elements (y1, y2, . . . , yk), where each yi occurs n/k times in A.
Prove that any algorithm in the comparison model requires Ω(n log k) comparisons to sort A in the
worst-case.
Note: ∀m ≥ 0,

(
m
e

)m ≤ m! ≤ mm.

1


