
University of Waterloo

CS240 Winter 2023
Assignment 3

Due Date: Wednesday, March 8 at 5:00pm

If you are having difficulties with the assignment, course staff are there to help (provided
it isn’t last minute).

Please read https://student.cs.uwaterloo.ca/~cs240/w23/assignments.phtml#guidelines

for guidelines on submission. Each question must be submitted individually to
MarkUs as a PDF with the corresponding file names: a3q1.pdf, a3q2.pdf, ... , a3q6.pdf .
It is a good idea to submit questions as you go so you aren’t trying to create several PDF
files at the last minute.

Late Policy: Assignments are due at 5:00pm, with the grace period until 11:59pm. Assign-
ments submitted after 11:59 on the due date will not be accepted but may be reviewed (by
request) for feedback purposes only.

Notes:

• Logarithms are in base 2, if not mentioned otherwise.

• Array indices start from 0.

Question 1 AVL Tree Operations [0+4+3+6=13 marks]

As discussed in class, it is possible to implement AVL trees such that the nodes store only
the balance factor {−1, 0, 1} at each node instead of the height of the subtree rooted at the
node.

a) Practice (not worth any marks): Starting from an empty AVL tree, insert the following
keys in order. You should obtain the tree shown in figure 1.

41, 72, 33, 45, 60, 25, 3, 12, 17, 47

b) Show the process of inserting the key 15 into the tree in figure 1. Specifically, draw
the tree, with balance factors, after the initial BST insert and after each call to
restructure.

c) Suppose the key 41 were deleted from the original tree in figure 1. Would this cause
a tree rotation? Briefly justify.

1

https://student.cs.uwaterloo.ca/~cs240/w23/assignments.phtml#guidelines


41

?

25

?

12

?

3

?

17

?

33

?

60

?

45

?

47

?

72

?

Figure 1: Binary tree T for question 1

d) Show the process of deleting the key 72 from the original tree in figure 1. Specifically,
draw the tree, with balance factors, after the initial BST delete and after each call to
restructure.

Question 2 AVL Tree Height [3+3+3=9 marks]

In this question, we will prove a recurrence for the height of an AVL tree that leads to a
tighter bound (i.e. a lower constant factor) than the proof shown in class.

Let Th be an AVL tree of height h with a minimum number of nodes. Let N(h) be the
number of nodes and NL(h) the number of leaves of Th.

Recall from class that Th can be viewed recursively as a tree containing a root with two,
possibly empty, subtrees Th−1 and Th−2.

a) Prove that for h ≥ 1, N(h) = N(h− 1) + NL(h).

b) Prove that for h ≥ 0, NL(h) = F (h + 1), where F (i) is the ith Fibonacci number.
(F (0) = 0, F (1) = 1, F (n) = F (n− 1) + F (n− 2))

c) Prove that for h ≥ 0, N(h) = F (h+ 3)− 1. You must use parts a) and b) to prove c).

Question 3 Merging AVL Trees [3+4=7 marks]

a) Describe an algorithm Join(TA, TB, hA, hB) which merges two AVL trees TA and TB

whose initial heights hA and hB are given. You may assume that:

i Every key in A is less than every key in B.

ii hA and hB differ by at most one.

2



Your algorithm must run in time O(hA + hB). Justify that your algorithm produces a
valid AVL tree and that it runs in the specified runtime.

Erratum: The nodes in TA and TB are labeled with heights, not balance factors.

b) Describe an algorithm Join2(TA, TB, hA, hB) as in part a), except that assumption ii
is replaced by the following:

iii hA < hB

As in part a), justify that your algorithm produces a valid AVL tree and that it runs
in O(hA + hB) = O(hB) time.

Question 4 Bounded-Height Skip Lists [4+4=8 marks]

Suppose you have a skip list with only three levels. The lower level has n + 2 entries
−∞ < a0 < · · · < an−1 < +∞. The middle one has k + 2 entries, where k is an integer that
divides n (so that n = mk for some integer m); we assume that (with the exceptions of ±∞),
these entries are evenly spread out so they correspond to −∞, a0, am, a2m, . . . , a(k−1)m,+∞.
The top level holds −∞,+∞.

a) What is the worst-case running time for a search on this list? Give a Θ(. . .) expression
involving k and n, and justify your answer.

b) For a given n, explain how to choose k to minimize the worst-case running time. Prove
that your choice of k is optimal and give a Θ(. . .) bound on the worst-case running
time given your choice of k.

Erratum: Your choice of k does not need to divide n.

Question 5 Interpolation Search [3+4+4=11 marks]

a) Execute interpolation search for the key k = 120 in the following array:

[0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 42, 50, 60, 70, 75, 80, 120, 125, 144, 150, 175, 190, 199, 200]

For each iteration of the loop, your answer must include the values of ` and r at the
start of the iteration, as well as the value of m, if any, computed in that iteration.

b) Consider interpolation search on a sorted array A[0, . . . , n−1] that stores real numbers.
Suppose that A[i] = ai + b for all i ∈ {0, . . . , n − 1}, where a and b are real numbers
and a 6= 0. For example if A = {5, 7, 9, 11, 13, 15} then a = 2 and b = 5. Prove
that the interpolation search on A takes O(1) (no matter if the search is successful or
unsuccessful).

3



c) Recall that the worst-case search time for interpolation search is Θ(n). Give a family
of an arrays An, each with n distinct values, (i.e., by defining An[i] = f(i) for some
function f) as well as search keys kn such that searching for kn in An has runtime
Θ(n). (There are many examples of such inputs, but you only need one for each n).
You must prove the runtime of the algorithm on your inputs is in Θ(n).

Question 6 Trie Operations [2+2+3+3 = 10 marks]

In this question, when drawing tries, follow the convention that $ is always to the left of 0,
and 0 is always to the left of 1.

a) Draw the standard (uncompressed) binary trie on the following keys:

1001, 001, 1111, 10110, 10, 11, 10100, 1, 000, 101, 00

Add $ to the keys as necessary.

b) Repeat part (a), except use a compressed trie.

c) Draw the result of inserting the keys 100 and 1010 into your answer for part (a).

d) Draw the result of deleting the keys 10100, 11, and 1001 from your answer for part (b).

4


	AVL Tree Operations [0+4+3+6=13 marks]
	AVL Tree Height [3+3+3=9 marks]
	Merging AVL Trees [3+4=7 marks]
	Bounded-Height Skip Lists [4+4=8 marks]
	Interpolation Search [3+4+4=11 marks]
	Trie Operations [2+2+3+3 = 10 marks]

