University of Waterloo

CS240 Winter 2023
Assignment 5

Due Date: Wednesday, April 5 at 5:00pm

If you are having difficulties with the assignment, course staff are there to help (provided
it isn’t last minute).

Please read https://student.cs.uwaterloo.ca/~cs240/w23/assignments.phtml#guidelines
for guidelines on submission. Each question must be submitted individually to
MarkUs as a PDF with the corresponding file names: abql.pdf, abq2.pdf, ... | abq6.pdf.

It is a good idea to submit questions as you go so you aren’t trying to create several PDF

files at the last minute.

Late Policy: Assignments are due at 5:00pm, with the grace period until 11:59pm. Assign-

ments submitted after 11:59 on the due date will not be accepted but may be reviewed (by
request) for feedback purposes only.

Question 1 [34+4 = 7 marks]|

KarpRabinModified(T, P)
1. M < suitable prime number
2. hp <+ h(P[0..m—1)])
3. hp <« h(T[0..m—1)])
4. 54 10™ 1 mod M
5. NEW LINE
6. 14+0
a)| 7. whilei<n—m-—1
8. if hp =hp
9. if stremp(T[i..i+m—1],P) =0
10. return “found at guess ¢’
11. if i <n—m—1// compute hash-value for next guess
12. NEW LINE
13. 141+ 2
14. return “FAIL”

Suppose we are searching for a pattern P of length m in text T of length n using
KarpRabin algorithm, but we are interested in a match only at even positions in the
text T'. Above we provide most of this modified algorithm. Insert a single assignment

https://student.cs.uwaterloo.ca/~cs240/w23/assignments.phtml#guidelines

b)

on line 5 and a single assignment on line 12 to complete the algorithm. Explain your
answer.

Suppose we have a text T" and string S, both of length n, and the alphabet for both
text and string are digits {0, 1,...9}. Let h be the hash function we use for Rabin-Karp,
and assume that for any substring x in text T" and any substring y in string S, z =y
if and only if h(z) = h(y). Design an algorithm, in pseudocode or in English, that
returns Y ., , h(S[i..n—1]) where k is the smallest integer s.t. S[k...n —1] is present
in 7. The running time of your algorithm must be O(nlogn). Briefly justify running
time and correctness.

Question 2 [4+4 = 8 marks]

a)

b)

Compute the KMP failure array for the pattern P = bbbabb. If you wish, you can show
the intermediate steps, but providing the final answer is sufficient.

Show how to search for pattern P = bbbabb in the text T = bbbcbbacbbbbbabb using
the KMP algorithm. Indicate in a table such as Table [I] which characters of P were
compared with which characters of T, like the example in Module 9. Place each
character of P in the column of the compared-to character of 7. Put round brackets
around characters if an actual comparison was not performed. You may need to add
extra rows to the table.

bib|blc/biblajc/b|b/bib|/bla|b|b

Table 1: Table for KMP problem.

Question 3 [3+6=9 marks|

In this question, we will develop a version of Boyer-Moore algorithm which expands the bad
character heuristic by using 'next-to-last’ occurrence array, in addition to the last occurrence

array.

a) Define N(c) as the next-to-last occurrence of character in pattern P. For example, if
P = aabra, then N('a’) = 1. Design an algorithm to compute N in O(m + X) running
time, where m is the length of pattern P. You can describe your algorithm either in
pseudo-code or in English. Briefly justify the running time and correctness of your
algorithm (one sentence for correctness and one sentence for the running time).

Erratum: A previous version of this assignment required time efficiency O(m), which
was not intended.

b) Develop a modified version of Boyer-Moore algorithm that makes use of both the last
occurrence array L and the next-to-last occurrence array N. If text and pattern char-
acters match, just as in the standard Boyer-Moore, your algorithm must decrease both
1 and j. Whenever a mismatch occurs, your algorithm should make the largest possible
validl] shift of the pattern, based on the information in L and N. You must provide
pseudo-code for your algorithm as well as a justification for your modifications. Your
pseudocode should be named as BoyerMooreModified(T, P, L, N), where the input
parameters, respectively, are the text, pattern, the last and next-to-last occurrence
arrays.

Question 4 [244 = 6 marks]|

a) Construct the suffix array for S = balbes. You can show the intermediate steps, but
showing the final answer is sufficient.

b) Design an algorithm that given a string S and its suffix array A, checks whether a
string S has a substring of length k that appears at least k times in worst case running
time O(kn). Here n is the length of S. For example, if S = blahblah, and k = 2, your
algorithm should return true as there is a substring bl repeated 2 times. If k = 3, your
algorithm should return false as there is no substring of length 3 of S that appears at
least 3 times. You can assume k < n.

Question 5 [3+2+5 = 10 marks]

a) Build the Huffman’s tree for the string AAABBCCCCCD and give the coded text. When
building the tree, put the smaller weight subtree to the left. If subtrees have the same
weight, put the tree which has the character earlier in the alphabet to the left. Show
all the intermediate steps.

b) Prove that in the Huffman’s tree, there are at least two leaves at the deepest level and
the two leftmost deepest leaves must have the same parent.

c) Suppose we perform an in-order traversal of an arbitrary Huffman’s tree (the left
subtree visited before the right subtree), and as we reach a leaf, we output to a list L

'Here valid means that while you make the largest shift, you do not skip any shifts where a match is
possible.

the character stored at this leaf, together with the depth of the leaf. Give an algorithm
of runtime cost O(nlogn) that reconstructs the Huffman’s tree from L, where n is the
number of leaves in the tree. Justify your answer.

Hint: use techniques similar to the construction of the Huffman’s tree from frequencies.

Question 6 [3+3= 6 marks]

a)

b)

Use the LZW method to compress the source text S = ABCABCACAB where the source
alphabet is ¥ = {A, B,C} and the corresponding codenumbers are A = 65, B =
66, C' = 67. The next new codenumber your algorithm creates should be 68. Show the
coded text using codenumbers and also give the dictionary D you constructed during
encoding. You do not need to show the intermediate steps.

Suppose the alphabet is ¥ = {a,b, c}. Give the string of length 10 for which LZW
compression is the worst possible. If there are many strings leading to the worst
compression possible, your string should be the smallest according to the lexicographic
order. Explain why this string leads to the worst possible compression.

	[3+4 = 7 marks]
	[4+4 = 8 marks]
	[3+6=9 marks]
	[2+4 = 6 marks]
	[3+2+5 = 10 marks]
	[3+3= 6 marks]

