Examples from Module 1

Example 1. Prove that $2n^2 + 3n + 11 \in O(n^2)$ from first principles.

We need to find c and n_0 such that:

$$0 \le 2n^2 + 3n + 11 \le cn^2 \quad \text{for all } n \ge n_0$$

The first inequality automatically holds for all $n \ge 0$. For the second, we note that:

$$2n^{2} + 3n + 11 \le 2n^{2} + 3n^{2} + 11n^{2}$$
$$= 16n^{2}$$

So we take c = 16 and n_0 to satisfy the inequality.

Example 2. Prove that $f(n) = 2n^2 + 3n + 11 \in \Omega(n^2)$ from first principles.

We simply take $c = n_0 = 1$, then for all $n \ge n_0$, we have that $cn^2 = n^2 \le 2n^2 + 2n + 11$. Example 3. Prove that $\frac{1}{2}n^2 - 5n \in \Omega(n^2)$ from first principles.

Rearrange by splitting the quadratic term, then factor out n:

$$\frac{1}{2}n^2 - 5n = \frac{1}{4}n^2 + \frac{1}{4}n^2 - 5n$$
$$= \frac{1}{4}n^2 + n\left(\frac{1}{4} - 5n\right)$$

If we have $n \ge 20$, then $\frac{1}{4} - 5n \ge 0$. So taking $c = \frac{1}{4}$ and $n_0 = 20$, we have:

$$\frac{1}{4}n^2 + n\left(\frac{1}{4} - 5n\right) \ge \frac{1}{4}n^2 = cn^2$$

Example 4. Prove that $\log_b(n) \in \Theta(\log n)$ for all b > 1 from first principles.

Set $c_1 = c_2 = \frac{1}{\log b}$ and use the change of base formula:

$$c_1 \log n = \frac{\log n}{\log b}$$
$$= \log_b n$$
$$= \frac{\log n}{\log b}$$
$$= c_2 \log n$$

Example 5. Let f(n) be a polynomial of degree $d \ge 0$:

$$f(n) = c_d n^d + c_{d-1} n^{d-1} + \dots + c_1 n + c_0$$

for some $c_d > 0$. Prove $f(n) \in \Theta(n^d)$.

$$\lim_{n \to \infty} \frac{f(n)}{n^d} = \lim_{n \to \infty} \left(\frac{\sum_{i=0}^d c_i n^i}{n^d} \right)$$
$$= \sum_{i=0}^d \lim_{n \to \infty} \frac{c_i n^i}{n^d}$$
$$= \lim_{n \to \infty} \frac{c_d n^d}{n^d} + \sum_{i=0}^{d-1} \lim_{n \to \infty} \frac{c_i n^i}{n^d}$$

For i < d, $\frac{c_i n^i}{n^d} = \frac{c_i}{n^{d-i}}$ goes to 0 as $n \to \infty$, so:

$$\lim_{n \to \infty} \frac{c_d n^d}{n^d} + \sum_{i=0}^{d-1} \lim_{n \to \infty} \frac{c_i n^i}{n^d} = \lim_{n \to \infty} \frac{c_d n^d}{n^d}$$
$$= c_d$$

Because the limit is a positive constant, $f(n) \in \Theta(n^d)$.

Example 6. Prove that $n(2 + \sin n\pi/2)$ is $\Theta(n)$.

Because $\lim_{n\to\infty} (2 + \sin n\pi/2)$ does not exist, we can't use the limit theorem. But $|\sin x| \le 1$, so:

$$1 \le 2 + \sin n\pi/2 \qquad \le 3$$

$$n \le n(2 + \sin n\pi/2) \qquad \le 3n$$

Example 7. Compare the growth rates of $f(n) = \log n$ and g(n) = n

$$\lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{\ln n / \ln 2}{n}$$
Change of base
$$= \frac{1}{\ln 2} \lim_{n \to \infty} \frac{\ln n}{n}$$
$$= \frac{1}{\ln 2} \lim_{n \to \infty} \frac{1/n}{1}$$
l'Hôpital's rule
$$= 0$$

Thus $\log n \in o(n)$.

Example 8. Compare the growth rates of $f(n) = (\log n)^c$ and $g(n) = n^d$ for integer c, d > 0. Lemma.

$$\lim_{n \to \infty} \frac{(\ln n)^c}{n^d} = 0$$

Proof. Proof by induction on c, base case is in the previous example.

For $c \geq 2$,

$$\lim_{n \to \infty} \frac{(\ln n)^c}{n^d} = \lim_{n \to \infty} \frac{c(\ln n)^{c-1}/n}{dn^{d-1}}$$
l'Hôpital's
$$= \frac{c}{d} \lim_{n \to \infty} \frac{(\ln n)^{c-1}}{n^d}$$
$$= \frac{c}{d} 0$$
$$= 0$$

l'Hôpital's rule w/ chain rule

Induction

So for the functions in the example:

$$\lim_{n \to \infty} \frac{(\log n)^c}{n^d} = \frac{1}{(\ln 2)^c} \lim_{n \to \infty} \frac{(\ln n)^c}{n^d}$$
$$= 0$$

Thus $(\log n)^c \in o(n^d)$.

Change of base

Lemma