Examples from Module 1

Example 1. Prove that $2 n^{2}+3 n+11 \in O\left(n^{2}\right)$ from first principles.
We need to find c and n_{0} such that:

$$
0 \leq 2 n^{2}+3 n+11 \leq c n^{2} \quad \text { for all } n \geq n_{0}
$$

The first inequality automatically holds for all $n \geq 0$. For the second, we note that:

$$
\begin{aligned}
2 n^{2}+3 n+11 & \leq 2 n^{2}+3 n^{2}+11 n^{2} \\
& =16 n^{2}
\end{aligned}
$$

So we take $c=16$ and n_{0} to satisfy the inequality.
Example 2. Prove that $f(n)=2 n^{2}+3 n+11 \in \Omega\left(n^{2}\right)$ from first principles.
We simply take $c=n_{0}=1$, then for all $n \geq n_{0}$, we have that $c n^{2}=n^{2} \leq 2 n^{2}+2 n+11$.
Example 3. Prove that $\frac{1}{2} n^{2}-5 n \in \Omega\left(n^{2}\right)$ from first principles.
Rearrange by splitting the quadratic term, then factor out n :

$$
\begin{aligned}
\frac{1}{2} n^{2}-5 n & =\frac{1}{4} n^{2}+\frac{1}{4} n^{2}-5 n \\
& =\frac{1}{4} n^{2}+n\left(\frac{1}{4}-5 n\right)
\end{aligned}
$$

If we have $n \geq 20$, then $\frac{1}{4}-5 n \geq 0$. So taking $c=\frac{1}{4}$ and $n_{0}=20$, we have:

$$
\frac{1}{4} n^{2}+n\left(\frac{1}{4}-5 n\right) \geq \frac{1}{4} n^{2}=c n^{2}
$$

Example 4. Prove that $\log _{b}(n) \in \Theta(\log n)$ for all $b>1$ from first principles.
Set $c_{1}=c_{2}=\frac{1}{\log b}$ and use the change of base formula:

$$
\begin{aligned}
c_{1} \log n & =\frac{\log n}{\log b} \\
& =\log _{b} n \\
& =\frac{\log n}{\log b} \\
& =c_{2} \log n
\end{aligned}
$$

Example 5. Let $f(n)$ be a polynomial of degree $d \geq 0$:

$$
f(n)=c_{d} n^{d}+c_{d-1} n^{d-1}+\cdots+c_{1} n+c_{0}
$$

for some $c_{d}>0$.
Prove $f(n) \in \Theta\left(n^{d}\right)$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{f(n)}{n^{d}} & =\lim _{n \rightarrow \infty}\left(\frac{\sum_{i=0}^{d} c_{i} n^{i}}{n^{d}}\right) \\
& =\sum_{i=0}^{d} \lim _{n \rightarrow \infty} \frac{c_{i} n^{i}}{n^{d}} \\
& =\lim _{n \rightarrow \infty} \frac{c_{d} n^{d}}{n^{d}}+\sum_{i=0}^{d-1} \lim _{n \rightarrow \infty} \frac{c_{i} n^{i}}{n^{d}}
\end{aligned}
$$

For $i<d, \frac{c_{i} n^{i}}{n^{d}}=\frac{c_{i}}{n^{d-i}}$ goes to 0 as $n \rightarrow \infty$, so:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{c_{d} n^{d}}{n^{d}}+\sum_{i=0}^{d-1} \lim _{n \rightarrow \infty} \frac{c_{i} n^{i}}{n^{d}} & =\lim _{n \rightarrow \infty} \frac{c_{d} n^{d}}{n^{d}} \\
& =c_{d}
\end{aligned}
$$

Because the limit is a positive constant, $f(n) \in \Theta\left(n^{d}\right)$.
Example 6. Prove that $n(2+\sin n \pi / 2)$ is $\Theta(n)$.
Because $\lim _{n \rightarrow \infty}(2+\sin n \pi / 2)$ does not exist, we can't use the limit theorem.
But $|\sin x| \leq 1$, so:

$$
\begin{array}{lr}
1 \leq 2+\sin n \pi / 2 & \leq 3 \\
n \leq n(2+\sin n \pi / 2) & \leq 3 n
\end{array}
$$

Example 7. Compare the growth rates of $f(n)=\log n$ and $g(n)=n$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\log n}{n} & =\lim _{n \rightarrow \infty} \frac{\ln n / \ln 2}{n} & & \text { Change of base } \\
& =\frac{1}{\ln 2} \lim _{n \rightarrow \infty} \frac{\ln n}{n} & & \\
& =\frac{1}{\ln 2} \lim _{n \rightarrow \infty} \frac{1 / n}{1} & & \text { l'Hôpital's rule } \\
& =0 & &
\end{aligned}
$$

Thus $\log n \in o(n)$.
Example 8. Compare the growth rates of $f(n)=(\log n)^{c}$ and $g(n)=n^{d}$ for integer $c, d>0$.
Lemma.

$$
\lim _{n \rightarrow \infty} \frac{(\ln n)^{c}}{n^{d}}=0
$$

Proof. Proof by induction on c, base case is in the previous example.

For $c \geq 2$,

$$
\begin{array}{rlr}
\lim _{n \rightarrow \infty} \frac{(\ln n)^{c}}{n^{d}} & =\lim _{n \rightarrow \infty} \frac{c(\ln n)^{c-1} / n}{d n^{d-1}} & \text { l'Hôpital's rule w/ chain rule } \\
& =\frac{c}{d} \lim _{n \rightarrow \infty} \frac{(\ln n)^{c-1}}{n^{d}} & \\
& =\frac{c}{d} 0 & \text { Induction } \\
& =0 &
\end{array}
$$

So for the functions in the example:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{(\log n)^{c}}{n^{d}} & =\frac{1}{(\ln 2)^{c}} \lim _{n \rightarrow \infty} \frac{(\ln n)^{c}}{n^{d}} \\
& =0
\end{aligned}
$$

Change of base
Lemma

Thus $(\log n)^{c} \in o\left(n^{d}\right)$.

