
CS 240 – Data Structures and Data Management

Module 2: Priority Queues

A. Hunt O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

version 2023-01-17 17:09

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 1 / 25

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023

Abstract Data Types

Abstract Data Type (ADT): A description of information and a
collection of operations on that information.

The information is accessed only through the operations.

We can have various realizations of an ADT, which specify:
How the information is stored (data structure)
How the operations are performed (algorithms)

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 2 / 25

Stack ADT

Stack: an ADT consisting of a collection of items with operations:
push: inserting an item
pop: removing (and typically returning) the most recently inserted
item

Items are removed in LIFO (last-in first-out) order.
Items enter the stack at the top and are removed from the top.
We can have extra operations: size, isEmpty, and top

Applications: Addresses of recently visited web sites, procedure calls

Realizations of Stack ADT
using arrays
using linked lists

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 3 / 25

Queue ADT

Queue: an ADT consisting of a collection of items with operations:
enqueue: inserting an item
dequeue: removing (and typically returning) the least recently
inserted item

Items are removed in FIFO (first-in first-out) order.
Items enter the queue at the rear and are removed from the front.
We can have extra operations: size, isEmpty, and front

Applications: Waiting lines, printer queues

Realizations of Queue ADT
using (circular) arrays
using linked lists

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 4 / 25

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023

Priority Queue ADT

Priority Queue: An ADT consisting of a collection of items (each having
a priority) with operations

insert: inserting an item tagged with a priority
deleteMax: removing and returning the item of highest priority

deleteMax is also called extractMax or getmax.
The priority is also called key .

The above definition is for a maximum-oriented priority queue. A
minimum-oriented priority queue is defined in the natural way, replacing
operation deleteMax by deleteMin,

Applications: typical “todo” list, simulation systems, sorting

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 5 / 25

Using a Priority Queue to Sort

PQ-Sort(A[0..n − 1])
1. initialize PQ to an empty priority queue
2. for i ← 0 to n − 1 do
3. PQ.insert(A[i])
4. for i ← n − 1 down to 0 do
5. A[i]← PQ.deleteMax()

Note: Run-time depends on how we implement the priority queue.
Sometimes written as: O(initialization + n · insert + n · deleteMax)

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 6 / 25

Realizations of Priority Queues

Realization 1: unsorted arrays
insert: O(1)
deleteMax: O(n)

Note: We assume dynamic arrays, i. e., expand by doubling as needed.
(Amortized over all insertions this takes O(1) extra time.)

Using unsorted linked lists is identical.
PQ-sort with this realization yields selection sort.

Realization 2: sorted arrays
insert: O(n)
deleteMax: O(1)

Using sorted linked lists is identical.
PQ-sort with this realization yields insertion sort.

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 7 / 25

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023

Realization 3: Heaps

A (binary) heap is a certain type of binary tree.

You should know:
A binary tree is either

I empty, or
I consists of three parts:

a node and two binary trees (left subtree and right subtree).
Terminology: root, leaf, parent, child, level, sibling, ancestor,
descendant, etc.
Any binary tree with n nodes has height at least
log(n + 1)− 1 ∈ Ω(log n).

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 8 / 25

Example Heap

50

29

27

23 26

15

34

8 10

(In our examples we only show the priorities, and we show them directly in
the node. A more accurate picture would be priority = 50, <other info>

)

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 9 / 25

Heaps – Definition

A heap is a binary tree with the following two properties:

1 Structural Property: All the levels of a heap are completely filled,
except (possibly) for the last level. The filled items in the last level
are left-justified .

2 Heap-order Property: For any node i , the key of the parent of i is
larger than or equal to key of i .

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is Θ(log n).

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 10 / 25

Storing Heaps in Arrays

Heaps should not be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in
A[0] and continue with elements level-by-level from top to bottom, in each
level left-to-right.

50A[0]

29A[1]

27A[3]

23A[7] 26 A[8]

15 A[4]

34 A[2]

8A[5] 10 A[6]

0 1 2 3 4 5 6 7 8
A: 50 29 34 27 15 8 10 23 26

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 11 / 25

Heaps in Arrays – Navigation

It is easy to navigate the heap using this array representation:
the root node is at index 0
(We use “node” and “index” interchangeably in this implementation.)
the last node is n − 1 (where n is the size)
the left child of node i (if it exists) is node 2i + 1
the right child of node i (if it exists) is node 2i + 2
the parent of node i (if it exists) is node b i−1

2 c
these nodes exist if the index falls in the range {0, . . . , n−1}

We should hide implementation details using helper-functions!
functions root(), last(), parent(i), etc.

Some of these helper-functions need to know n (but we omit this in the
code for simplicity).

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 12 / 25

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023

Insert in Heaps

Place the new key at the first free leaf
The heap-order property might be violated: perform a fix-up:

fix-up(A, i)
i : an index corresponding to a node of the heap
1. while parent(i) exists and A[parent(i)].key < A[i].key do
2. swap A[i] and A[parent(i)]
3. i ← parent(i)

The new item “bubbles up” until it reaches its correct place in the heap.

Time: O(height of heap) = O(log n).

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 13 / 25

fix-up example

50

29

27

23 26

15

34

8 10

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 14 / 25

deleteMax in Heaps

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

fix-down(A, i)
A: an array that stores a heap of size n
i: an index corresponding to a node of the heap
1. while i is not a leaf do
2. j ← left child of i // Find the child with the larger key
3. if (i has right child and A[right child of i].key > A[j].key)
4. j ← right child of i
5. if A[i].key ≥ A[j].key break
6. swap A[j] and A[i]
7. i ← j

Time: O(height of heap) = O(log n).

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 15 / 25

deleteMax example

50

48

27

23 26

29

15

34

8 10

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 16 / 25

Priority Queue Realization Using Heaps
Store items in array A and globally keep track of size

insert(x)
1. increase size
2. `← last()
3. A[`]← x
4. fix-up(A, `)

deleteMax()
1. `← last()
2. swap A[root()] and A[`]
3. decrease size
4. fix-down(A, root(), size)
5. return A[`]

insert and deleteMax: O(log n) time

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 17 / 25

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023

Sorting using heaps
Recall: Any priority queue can be used to sort in time

O(initialization + n · insert + n · deleteMax)

Using the binary-heaps implementation of PQs, we obtain:
PQsortWithHeaps(A)
1. initialize H to an empty heap
2. for i ← 0 to n − 1 do
3. H.insert(A[i])
4. for i ← n − 1 down to 0 do
5. A[i]← H.deleteMax()

both operations run in O(log n) time for heaps
 PQ-Sort using heaps takes O(n log n) time.

Can improve this with two simple tricks → Heapsort
1 Heaps can be built faster if we know all input in advance.
2 Can use the same array for input and heap. O(1) auxiliary space!

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 18 / 25

Building Heaps with Fix-up
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simpleHeapBuilding(A)
A: an array
1. initialize H as an empty heap
2. for i ← 0 to A.size()− 1 do
3. H.insert(A[i])

This corresponds to doing fix-ups
Worst-case running time: Θ(n log n).

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 19 / 25

Building Heaps with Fix-down
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n← A.size()
2. for i ← parent(last()) downto root() do
3. fix-down(A, i , n)

A careful analysis yields a worst-case complexity of Θ(n).
A heap can be built in linear time.

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 20 / 25

heapify example

10

80

30

40 70

20

50

60 10

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 21 / 25

Efficient sorting with heaps

Idea: PQ-sort with heaps.
O(1) auxiliary space: Use same input-array A for storing heap.

HeapSort(A, n)
1. // heapify
2. n← A.size()
3. for i ← parent(last()) downto 0 do
4. fix-down(A, i , n)

5. // repeatedly find maximum
6. while n > 1
7. // ‘delete’ maximum by moving to end and decreasing n
8. swap items at A[root()] and A[last()]
9. decrease n
10. fix-down(A, root(), n)

The for-loop takes Θ(n) time and the while-loop takes O(n log n) time.

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 22 / 25

Heapsort example

Continue with the example from heapify:

80

70

40

10 30

20

60

50 10

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 23 / 25

Heap summary

Binary heap: A binary tree that satisfies structural property and
heap-order property.
Heaps are one possible realization of ADT PriorityQueue:

I insert takes time O(log n)
I deleteMax takes time O(log n)
I Also supports findMax in time O(1)

A binary heap can be built in linear time.
PQ-sort with binary heaps leads to a sorting algorithm with O(n log n)
worst-case run-time (HeapSort)
We have seen here the max-oriented version of heaps (the maximum
priority is at the root).
There exists a symmetric min-oriented version that supports insert
and deleteMin with the same run-times.

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 24 / 25

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023

Finding the smallest items

Problem: Find the kth smallest item in an array A of n distinct numbers.

Solution 1: Make k passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Scan the array and maintain the k smallest numbers seen so
far in a max-heap
Complexity: Θ(n log k).

Solution 4: Create a min-heap with heapify(A). Call deleteMin(A) k
times.
Complexity: Θ(n + k log n).

Hunt, Veksler (CS-UW) CS240 – Module 2 Winter 2023 25 / 25

	Priority Queues
	Abstract Data Types
	Abstract Data Types
	Stack ADT
	Queue ADT

	ADT Priority Queue
	Priority Queue ADT
	Using a Priority Queue to Sort
	Realizations of Priority Queues

	Binary Heaps
	Realization 3: Heaps
	Example Heap
	Heaps – Definition
	Storing Heaps in Arrays
	Heaps in Arrays – Navigation

	Operations in Binary Heaps
	Insert in Heaps
	fix-up example
	deleteMax in Heaps
	deleteMax example
	Priority Queue Realization Using Heaps

	PQ-sort and Heapsort
	Sorting using heaps
	Building Heaps with Fix-up
	Building Heaps with Fix-down
	heapify example
	Efficient sorting with heaps
	Heapsort example
	Heap summary

	Towards the Selection Problem
	Finding the smallest items

