
CS 240 – Data Structures and Data Management

Module 3: Sorting, Average-case and Randomization

A. Hunt O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

version 2023-02-05 15:18

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 1 / 48

Outline

3 Sorting, Average-case and Randomization
Analyzing average-case run-time
Randomized Algorithms
QuickSelect
QuickSort
Lower Bound for Comparison-Based Sorting
Non-Comparison-Based Sorting

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023

Outline

3 Sorting, Average-case and Randomization
Analyzing average-case run-time
Randomized Algorithms
QuickSelect
QuickSort
Lower Bound for Comparison-Based Sorting
Non-Comparison-Based Sorting

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023

Average-case analysis

We will introduce (and solve) a new problem, and then analyze the
average-case run-time of our algorithm.

Recall definition of average-case run-time:

T avg (n) =
∑

I:size(I)=n T (I)
#instances of size n =

∑
I∈In T (I)
|In|

(Note: We need that In is finite → later)

To learn how to do this, we will do a simpler example first.

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 2 / 48

A simple example

isSorted(A, n)
A: array of size n with distinct items
1. for i ← 1 to n − 1 do
2. if A[i − 1] > A[i] then return false
3. return true

Runtime is proportional to the number of comparisons.

T avg (n) = 1
n!
∑
π∈Πn

T (π) = 1
n!

n−1∑
k=1

k·(# permutations with exactly k comps)

Let πk be the number of permutations with at least k comparisons.

= 1
n!

(n−1∑
k=1

k(πk − πk+1)
)

= 1
n!

(n−1∑
k=1

k · πk −
n−1∑
k=1

k · πk+1

)

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 3 / 48

Sorting Permutations

Need to take average running time over all inputs.
How to characterize input of size n?
(There are infinitely many sets of n numbers.)
Assume: All input numbers are distinct.
(For most problems, this can be forced by using tie-breakers.)

Observe: comparison-based algorithm has the same run-time on
inputs

A = [14, 3, 2, 6, 1, 11, 7] and
A′ = [14, 4, 2, 6, 1, 12, 8]

The actual numbers do not matter, only their relative order .

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 4 / 48

Sorting Permutations
Characterize relative order via sorting permutation:
the permutation π ∈ Πn for which

A[π(0)] ≤ A[π(1)] ≤ · · · ≤ A[π(n−1)].

Example: A = [14, 3, 2, 6, 1, 11, 7]
π = [4, 2, 1, 3, 6, 5, 0]

Observe: π−1 = [6, 2, 1, 3, 0, 5, 4]
has same sorting permutation as A.

Assume all n! sorting permutations are equally likely .

 Average cost is then 1
n!
∑
π∈Πn T (π) where

T (π) = run-time on any instance with sorting-permutation π
= run-time on π−1

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 5 / 48

Average-case runtime of isSorted

The number of permutations with at least k comparisons:
k = 1: at least one comparison ⇒ all n!
k = 2: A[0] < A[1]; index 0 and 1 occur in sorted order in π.
Example: sorting permutation π = [4, 3, 2, 0, 1] or [4, 0, 3, 2, 1] etc. ⇒(n
2
)
(n − 2)!

k = 3: indices 0, 1, 2 occur in sorted order ⇒
(n
3
)
(n − 3)!

k: indices 0, 1, . . . , k occur in sorted order ⇒
(n

k
)
(n − k)! = n!

k!

1
n!

(n−1∑
k=1

k · πk −
n−1∑
k=1

k · πk+1

)
= 1

n!

(n−1∑
k=1

k n!
k! −

n−1∑
k=1

k n!
(k + 1)!

)

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 6 / 48

Average-case runtime of isSorted

T avg (n) = 1
n!

(n−1∑
k=1

k n!
k! −

n−1∑
k=1

k n!
(k + 1)!

)

= 1
n!

(
1!n!
1! +

n−1∑
k=2

k n!
k! −

n−2∑
k=1

k n!
(k + 1)! − (n − 1)n!

n!

)

= 1
n!

(
n!
1! +

n−1∑
k=2

k n!
k! −

n−1∑
k=2

(k − 1)n!
k! − (n − 1)

)

= 1
n!

(n−1∑
k=1

n!
k! − (n − 1)

)

=
n−1∑
k=1

1
k! −

n − 1
n! <

∞∑
k=1

1
n! = e by Taylor expansion of e

Average runtime of isSorted is O(1). Also, clearly Ω(1), so Θ(1).

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 7 / 48

A contrived example

avgCaseDemo(A, n)
A: array of size n with distinct items
1. if n ≤ 2 return
2. if A[n−2] < A[n−1]
3. avgCaseDemo(A[0..n/2−1], n/2) // Good case
4. else avgCaseDemo(A[0..n−3], n−2) // Bad case

Let T (n) be the number of recursions.
(This is asymptotically the same as the run-time.)

Worst-case analysis: Recursive call could always have size n−2.
T (n) = 1 + T (n−2) = 1 + 1 + · · ·+ T (2) = n/2− 1 ∈ Θ(n)

Best-case analysis: Recursive call could always have size n/2.
T (n) = 1 + T (n/2) = 1 + 1 + T (n/4) = · · · = log n − 1 ∈ Θ(log n)

Average-case analysis?
Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 8 / 48

Average-case run-time of avgCaseDemo

T avg (n) = 1
n!
∑
π∈Πn

T (π) = 1
|Πn|

(∑
π∈Πn:π good

T (π) +
∑

π∈Πn:π bad
T (π)

)
Recursive formula for one instance π:

T (π) =
{

1 + T (first n/2 items) if π is good
1 + T (first n−2 items) if π is bad(

You may be tempted to write 1 + T avg (n/2) and
1+T avg (n−2) instead, but this is not correct. Why?

)
Recursive formula for all instances π together:

∑
π∈Πn

T (π) =
∑

π∈Πn:π good
(1 + T avg (n/2)) +

∑
π∈Πn:π bad

(1 + T avg (n−2))

(This is not at all trivial.)

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 9 / 48

Average-case run-time of avgCaseDemo

T avg (n) = 1
|Πn|

(∑
π∈Πn:π good

T (π) +
∑

π∈Πn:π bad
T (π)

)
= 1
|Πn|

(∑
π∈Πn:π good

(1 + T avg (n/2)) +
∑

π∈Πn:π bad
(1 + T avg (n−2))

)
= 1 + 1

|Πn|

(
|{π ∈ Πn : π good}| · T avg (n/2)

+ |{π ∈ Πn : π bad}| · T avg (n−2))
)

Observe: Exactly half of the permutations are good (why?)

Therefore: T avg (n) = 1 + 1
2T

avg (n/2) + 1
2T

avg (n−2)

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 10 / 48

Average-case run-time of avgCaseDemo

Claim: T avg (n) ≤ 2 log n.
Proof:

⇒ avgCaseDemo has avg-case run-time O(log n)
(compared to Θ(n) worst-case time).

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 11 / 48

Outline

3 Sorting, Average-case and Randomization
Analyzing average-case run-time
Randomized Algorithms
QuickSelect
QuickSort
Lower Bound for Comparison-Based Sorting
Non-Comparison-Based Sorting

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023

Randomized algorithms

If an algorithm has better average-case time than worst-case time,
then randomization is often a good idea.
A randomized algorithm is one which relies on some random
numbers in addition to the input.

 Computers cannot generate randomness. We assume that there exists a
pseudo-random number generator (PRNG), a deterministic program that uses
an initial value or seed to generate a sequence of seemingly random numbers.
The quality of randomized algorithms depends on the quality of the PRNG!


The run-time will depend on the input and the random numbers used.
Goal: Shift the dependency of run-time from what we can’t control
(the input) to what we can control (the random numbers).

No more bad instances, just unlucky numbers.

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 12 / 48

Expected running time

Define T (I,R) to be the running time of a randomized algorithm A for an
instance I and the sequence of random numbers R.

The expected running time T exp(I) for instance I is the expected value:

T exp(I) = E[T (I,R)] =
∑
R

T (I,R) · Pr[R]

Now take the maximum over all instances of size n to define the expected
running time of A.

T exp(n) := max
I∈In

T exp(I)

We can still have good luck or bad luck, so occasionally we also discuss
the very worst that could happen, i.e., maxI maxR T (I,R).

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 13 / 48

Another contrived example

expectedDemo(A, n)
A: array of size n with distinct items
1. if n ≤ 2 return
2. if random(2) swap A[n−1] and A[n−2]
3. if A[n−2] ≤ A[n−1]
4. expectedDemo(A[0..n/2−1], n/2) // Good case
5. else expectedDemo(A[0..n−3], n−2) // Bad case

We assume the existence of a function random(n) that returns an integer
uniformly from {0, 1, 2, . . . , n−1}.

Observe: Pr(good case) = 1
2 = Pr(bad case).

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 14 / 48

Expected run-time of expectedDemo
Run-time on array A if random outcomes are R = 〈x ,R ′〉:

T (A,R) =
{

1 + T (A[0 . . . n
2−1],R ′) if x = good

1 + T (A[0..n−3],R ′) if x = bad

Summing up over all sequences of random outcomes:∑
R

Pr(R)T (A,R) = Pr(X good)
∑
R′

Pr(R ′)
(
1 + T (A[0 . . . n

2−1] ,R ′)
)

+ Pr(X bad)
∑
R′

Pr(R ′)
(
1 + T (A[0 . . . n−3] ,R ′)

)
= 1 + 1

2

∑
R′

Pr(R ′) · T (A[0 . . . n
2−1] ,R ′) + 1

2

∑
R′

Pr(R ′) · T (A[0 . . . n−3] ,R ′)

≤ 1 + 1
2 max

A′∈In/2

∑
R′

Pr(R ′) · T (A′,R ′)︸ ︷︷ ︸
T exp(bn/2c)

+ 1
2 max

A′∈In−2

∑
R′

Pr(R ′) · T (A′,R ′)︸ ︷︷ ︸
T exp(n−2)

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 15 / 48

Expected run-time of expectedDemo

∑
R

Pr(R)T (A,R) ≤ 1 + 1
2T

exp(n/2) + 1
2T

exp(n−2) holds for all A.

⇒ T exp(n) = max
A∈In

∑
R

Pr(R)T (A,R) ≤ 1 + 1
2T

exp(n/2) + 1
2T

exp(n−2)

Same recursion as for T avg
avgCaseDemo(n)

Same analysis T exp
expectedDemo(n) ∈ O(log n)

Is this a coincidence? Or does the expected time of a randomized
version always have something to do with the average-case time?
Not in general! (But we will see examples where it does.)

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 16 / 48

Outline

3 Sorting, Average-case and Randomization
Analyzing average-case run-time
Randomized Algorithms
QuickSelect
QuickSort
Lower Bound for Comparison-Based Sorting
Non-Comparison-Based Sorting

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023

The Selection Problem
The selection problem: Given an array A of n numbers, and 0 ≤ k < n,
find the element that would be at position k of the sorted array.

30
0

60
1

10
2

0
3

50
4

80
5

90
6

10
7

40
8

70
9

select(3) should return 30.

Special case: median finding = selection with k =
⌊n
2
⌋
.

Selection can be done with heaps in time Θ(n + k log n).
Median-finding with this takes time Θ(n log n).

This is the same cost as our best sorting algorithms.

Question: Can we do selection in linear time?
The QuickSelect algorithm answers this question in the affirmative.

The encountered sub-routines will also be useful otherwise.
Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 17 / 48

Crucial Subroutines
QuickSelect and the related algorithm QuickSort rely on two subroutines:

choose-pivot(A): Return an index p in A. We will use the
pivot-value v ← A[p] to rearrange the array.

Simplest idea: Always select rightmost element in array
choose-pivot(A)
1. return A.size−1

We will consider more sophisticated ideas later on.

partition(A, p): Rearrange A and return pivot-index i so that
I the pivot-value v is in A[i],
I all items in A[0, . . . , i−1] are ≤ v , and
I all items in A[i+1, . . . , n−1] are ≥ v .

A ≤ v ≥ vv
i

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 18 / 48

Partition Algorithm
Conceptually easy linear-time implementation:

partition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n
1. Create empty lists smaller, equal and larger.
2. v ← A[p]
3. for each element x in A
4. if x < v then smaller.append(x)
5. else if x > v then larger.append(x)
6. else equal.append(x).
7. i ← smaller .size
8. j ← equal .size
9. Overwrite A[0 . . . i−1] by elements in smaller
10. Overwrite A[i . . . i+j−1] by elements in equal
11. Overwrite A[i+j . . . n−1] by elements in larger
12. return i

More challenging: partition in place (with O(1) auxiliary space).
Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 19 / 48

Efficient In-Place partition (Hoare)

i=-1

30
0

60
1

10
2

0
3

50
4

80
5

90
6

20
7

40
8

v=70
j=9

30
0

60
1

10
2

0
3

50
4

80
i=5

90
6

20
7

40
j=8

v=70
9

30
0

60
1

10
2

0
3

50
4

40
i=5

90
6

20
7

80
j=8

v=70
9

30
0

60
1

10
2

0
3

50
4

40
5

90
i=6

20
j=7

80
8

v=70
9

30
0

60
1

10
2

0
3

50
4

40
5

20
i=6

90
j=7

80
8

v=70
9

30
0

60
1

10
2

0
3

50
4

40
5

20
j=6

90
i=7

80
8

v=70
9

30
0

60
1

10
2

0
3

50
4

40
5

20
j=6

70
i=7

80
8

90
9

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 20 / 48

Efficient In-Place partition (Hoare)
Idea: Keep swapping the outer-most wrongly-positioned pairs.

Loop invariant: A ≤ v ≥ v v?
i j n−1

partition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n
1. swap(A[n−1],A[p])
2. i ← −1, j ← n−1, v ← A[n−1]
3. loop
4. do i ← i+1 while A[i] < v
5. do j ← j−1 while j ≥ i and A[j] > v
6. if i ≥ j then break (goto 9)
7. else swap(A[i],A[j])
8. end loop
9. swap(A[n−1],A[i])
10. return i

Running time: Θ(n).
Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 21 / 48

QuickSelect Algorithm

QuickSelect(A, k)
A: array of size n, k: integer s.t. 0 ≤ k < n
1. p ← choose-pivot(A)
2. i ← partition(A, p)
3. if i = k then
4. return A[i]
5. else if i > k then
6. return QuickSelect(A[0, 1, . . . , i−1], k)
7. else if i < k then
8. return QuickSelect(A[i+1, i+2, . . . , n−1], k − (i+1))

Idea: After partition have

Where is the desired value if k < i? If k = i? If k > i?

≤ v ≥ vv
i

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 22 / 48

Analysis of QuickSelect

Let T (n, k) be the number of key-comparisons in a size-n array with
parameter k. (This is asymptotically the same as the run-time.)

partition uses n key-comparisons.

Worst-case analysis: Pivot-index is last, k = 0
T (n, 0) ≥ n + (n−1) + (n−2) + · · ·+ 1 ∈ Ω(n2) (and this is tight)

Best-case analysis: First chosen pivot could be the kth element
No recursive calls; T (n, k) = n ∈ Θ(n)

Average case analysis?

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 23 / 48

Average-Case Analysis of QuickSelect
Use again sorting permutations: T avg (n) = 1

n!
∑
π∈Πn

T (π)

(We ignore parameter k here; it turns out not to matter)

Assume that sorting permutation π gives pivot-index is i :
If new array (after partition) is A′, then

T (π) ≤ n + max
{
T (A′[0..i−1]︸ ︷︷ ︸

size i

),T (A′[i+1..n−1]]︸ ︷︷ ︸
size n−i−1

)
}

Option 1: Prove that this implies the following:∑
π ∈ Πn:
pivot-idx i

T (π) ≤
∑

π ∈ Πn:
pivot-idx i

(
n + max{T avg (i),T avg (n−i−1)}

)
(Very complicated proof.)

(And then analyze the recursion, which is not too difficult.)
Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 24 / 48

Average-Case Analysis of QuickSelect

Option 2: Prove avg-case run-time via randomization

Simpler to do, and randomization is useful in practice.

Need to discuss:
1 How to randomize QuickSelect? (RandomizedQuickSelect)
2 What is the expected run-time of RandomizedQuickSelect?
3 What does this imply for avg-case run-time of QuickSelect?

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 25 / 48

Randomizing QuickSelect: Shuffle

Goal: Create a randomized version of QuickSelect.

First idea: Randomly permute the input first using shuffle:

shuffle(A)
A: array of size n
1. for i ← 1 to n−1 do
2. swap(A[i],A[random(i+1)])

This works well, but we can do it directly within the routine.

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 26 / 48

Randomizing QuickSelect: Random Pivot
Second idea: Change the pivot selection.

RandomizedQuickSelect(A, k)
1. . . .
2. p ← random(A.size)
3. i ← partition(A, p)
4. . . .

Observe: Pr(pivot has index i) = 1
n

Assume we know that first random gave pivot-index i :
We recurse in an array of size i or n−i−1 (or not at all)
If new array (after partition) is A′, and R = 〈i ,R ′〉 then

T (π, k, 〈i ,R ′〉) ≤ n +


T (A′[0..i−1], k,R ′) if i > k
T (A′[i+1..n−1]], k−i−1,R ′) if i < k
0 otherwise

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 27 / 48

Analysis of RandomizedQuickSelect

So T (π, k, 〈i ,R ′〉) ≤ n + T (some array of size i or n−i−1, some k ′,R ′)

Claim: Over all choices of i and R ′, this hits the expected values.

∑
R

T (π, k,R) ≤ n + 1
n

n−1∑
i=0

max{T exp(i),T exp(n−i−1)}

(Proof similar to expectedDemo. Crucial: T exp(·) uses the maximum over all instances.)

Note: we get the same bound for all π, k.

T exp(n) = max
π

max
k

∑
R

T (π, k,R) ≤ n+1
n

n−1∑
i=0

max{T exp(i),T exp(n−i−1)}

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 28 / 48

Analysis of RandomizedQuickSelect

T exp(n) ≤ n + 1
n

n−1∑
i=0

max{T exp(i),T exp(n−i−1)}

Claim: This recursion resolves to O(n).
Proof:

⇒ RandomizedQuickSelect has expected run-time O(n).

This is generally the fastest QuickSelect implementation.

There exists a variation that has worst-case running time O(n), but it uses
double recursion and is slower in practice. (cs341)

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 29 / 48

Expected running time vs. average-case running time

Assume we have an algorithm A that solves Selection or Sorting.
Create a randomized algorithm B as follows:

1 Let I be the given instance (an array)
2 Randomly (and uniformly) permute I to get I ′

(We can do this with shuffle. For QuickSelect, choosing the pivot
randomly has the same effect.)

3 Call algorithm A on input I ′

Claim: T exp
B (n) = T avg

A (n)
Proof:

Since RandomizedQuickSelect has expected run-time O(n), therefore
QuickSelect has average-case run-time O(n).

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 30 / 48

Outline

3 Sorting, Average-case and Randomization
Analyzing average-case run-time
Randomized Algorithms
QuickSelect
QuickSort
Lower Bound for Comparison-Based Sorting
Non-Comparison-Based Sorting

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023

QuickSort

Hoare developed partition and QuickSelect in 1960.
He also used them to sort based on partitioning:

QuickSort(A)
A: array of size n
1. if n ≤ 1 then return
2. p ← choose-pivot(A)
3. i ← partition(A, p)
4. QuickSort(A[0, 1, . . . , i−1])
5. QuickSort(A[i+1, . . . , n−1])

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 31 / 48

QuickSort analysis

Now set T (n) := # of key-comparison for QuickSort in a size-n array.

Worst-case analysis: Recursive call could always have size n−1.
T (n) ≥ n + T (n−1) ∈ Ω(n2) exactly as for QuickSelect
(This is tight since the recursion depth is at most n.)

Best-case analysis: If pivot-index is always in the middle, then we recurse
in two sub-arrays of size ≤ n/2.
T (n) ≤ n + 2T (n/2) ∈ O(n log n) exactly as for MergeSort
(This can be shown to be tight.)

Average-case analysis? We again prove this via randomization.

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 32 / 48

Randomizing QuickSort

RandomizedQuickSort(A)
1. . . .
2. p ← random(A.size)
3. i ← partition(A, p)
4. . . .

Observe: Pr(pivot has index i) = 1
n

Assume we know that pivot-index is i :
We recurse in two arrays, of size i and n−i−1
Can use this to show T exp(n) ≤ n + 2

n
∑n−1

i=0 T exp(i) (and then show
that this is in O(n log n)) but there is an even easier analysis!

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 33 / 48

Expected recursion-depth for QuickSort

n

i n−i−1

Goal: Analyze expected height of re-
cursion tree.

Define H(π,R) := its height for in-
stance π and outcomes R.

Hexp(n) = maxπ
∑

R Pr(R)H(π,R).

If R lead to pivot-index i (i.e., R = 〈i ,R ′〉) then

H(π,R) ≤ 1 + max{H(size-i-instance,R ′),H(size-(n−i−1)-instance,R ′)}

Summing up over all R, we can show (similar as for expectedDemo):

Hexp(n) = max
π

∑
R

Pr(R)H(π,R) ≤ 1+ 1
n

n−1∑
i=0

max{Hexp(i),Hexp(n−i−1)}

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 34 / 48

Expected recursion-depth for QuickSort
Formula: Hexp(n) ≤ 1 + 1

n
∑n−1

i=0 max{Hexp(i),Hexp(n−i−1)}

Claim: Hexp(n) ≤ O(log n).
Proof:

So expected height of recursion tree is H(n) ∈ O(log n).
We do Θ(n) work on each level of the recursion tree.
⇒ Expected run-time of RandomizedQuickSelect is O(n log n).
⇒ Avg-case run-time QuickSelect is O(n log n).

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 35 / 48

Improvement ideas for QuickSort

The auxiliary space is Ω(recursion depth).
I This is Θ(n) in the worst-case, Θ(log n) in avg-case
I It can be reduced to Θ(log n) worst-case by recursing in smaller

sub-array first and replacing the other recursion by a while-loop.

One should stop recursing when n ≤ 10.
Run InsertionSort at the end; this sorts everything in O(n) time since
all items are within 10 units of their required position.

Arrays with many duplicates can be sorted faster by changing
partition to produce three subsets ≤ v = v ≥ v

Two programming tricks that apply in many situations:
I Instead of passing full arrays, pass only the range of indices.
I Avoid recursion altogether by keeping an explicit stack.

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 36 / 48

QuickSort with tricks

QuickSortImproved(A, n)
1. Initialize a stack S of index-pairs with { (0, n−1) }
2. while S is not empty
3. (`, r)← S.pop()
4. while (r−`+1 > 10) do
5. p ← choose-pivot-improved(A, `, r)
6. i ← partition-improved(A, `, r , p)
7. if (i−` > r−i) do
8. S.push((`, i−1))
9. `← i+1
10. else
11. S.push((i+1, r))
12. r ← i−1
13. InsertionSort(A)

This is often the most efficient sorting algorithm in practice (but
worst-case time is still Θ(n2)).

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 37 / 48

Outline

3 Sorting, Average-case and Randomization
Analyzing average-case run-time
Randomized Algorithms
QuickSelect
QuickSort
Lower Bound for Comparison-Based Sorting
Non-Comparison-Based Sorting

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023

Lower bounds for sorting

We have seen many sorting algorithms:

Sort Running time Analysis
Selection Sort Θ(n2) worst-case
Insertion Sort Θ(n2) worst-case
Merge Sort Θ(n log n) worst-case
Heap Sort Θ(n log n) worst-case
QuickSort Θ(n log n) average-case
RandomizedQuickSort Θ(n log n) expected

Question: Can one do better than Θ(n log n) running time?
Answer: Yes and no! It depends on what we allow .

No: Comparison-based sorting lower bound is Ω(n log n).
Yes: Non-comparison-based sorting can achieve O(n) (under
restrictions!). → see below

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 38 / 48

The Comparison Model

In the comparison model data can only be accessed in two ways:
comparing two elements
moving elements around (e.g. copying, swapping)

This makes very few assumptions on the kind of things we are sorting.
We count the number of above operations.

All sorting algorithms seen so far are in the comparison model.

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 39 / 48

Decision trees

Comparison-based algorithms can be expressed as decision tree.

x0 : x1

x1 : x2 x1 : x2

x0 : x2 x0 : x20,1,2 2,1,0

0,2,1 2,0,1 1,0,2 1,2,0

To sort {x0, x1, x2}: Example: {x0=4, x1=2, x2=7}

{4, 2, 7}

{4, 2, 7}

{4, 2, 7}
Output: {4, 2, 7} has sorting permutation 〈1, 0, 2〉

(i.e., x1=2 ≤ x0=4 ≤ x2=7)

< ≥

< ≥

< ≥

≥<

< ≥

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 40 / 48

Lower bound for sorting in the comparison model

Theorem. Any correct comparison-based sorting algorithm requires at
least Ω(n log n) comparison operations to sort n distinct items.

Proof.

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 41 / 48

Outline

3 Sorting, Average-case and Randomization
Analyzing average-case run-time
Randomized Algorithms
QuickSelect
QuickSort
Lower Bound for Comparison-Based Sorting
Non-Comparison-Based Sorting

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023

Non-Comparison-Based Sorting

Assume keys are numbers in base R (R: radix)
I R = 2, 10, 128, 256 are the most common.

Example (R = 4): 123 230 21 320 210 232 101

Assume all keys have the same number m of digits.
I Can achieve after padding with leading 0s.

Example (R = 4): 123 230 021 320 210 232 101

Can sort based on individual digits.
I How to sort 1-digit numbers?
I How to sort multi-digit numbers based on this?

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 42 / 48

(Single-digit) Bucket Sort

Sort array A by last digit:

A B A
12 3© B[0] → 230 → 320 → 210 230
23 0© B[1] → 021 → 101 320
02 1© B[2] → 232 210
32 0© =⇒ B[3] → 123 =⇒ 021
21 0© 101
23 2© 232
10 1© 123

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 43 / 48

(Single-digit) Bucket Sort

Bucket-sort(A, d)
A: array of size n, contains numbers with digits in {0, . . . ,R − 1}
d : index of digit by which we wish to sort
1. Initialize an array B[0...R − 1] of empty lists (buckets)
2. for i ← 0 to n−1 do
3. Append A[i] at end of B[d th digit of A[i]]
4. i ← 0
5. for j ← 0 to R − 1 do
6. while B[j] is non-empty do
7. move first element of B[j] to A[i++]

Sorts numbers by single digit (specified by user).
This is stable: equal items stay in original order.
Run-time Θ(n + R), auxiliary space Θ(n + R)
It is possible to replace the lists by two auxiliary arrays of size R and
n count-sort (no details).

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 44 / 48

MSD-Radix-Sort

Sorts array of m-digit radix-R numbers recursively:
sort by leading digit, then each group by next digit, etc.

MSD-Radix-sort(A, `← 0, r ← n−1, d ← index of leading digit)
`, r : range of what we sort, 0 ≤ `, r ≤ n−1
1. if ` < r
2. bucket-sort(A[`..r], d)
3. if there are digits left // recurse in sub-arrays
4. `′ ← `
5. while (`′ < r) do
6. Let r ′ ≥ `′ be maximal s.t. A[`′..r ′] all have same dth digit
7. MSD-Radix-sort(A, `′, r ′, d+1)
8. `′ ← r ′ + 1

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 45 / 48

MSD-Radix-Sort Example

1©23
2©32
0©21
3©20
2©10
2©30
1©01

021

1 2©3
1 0©1

101

123
2 3©2
2 1©0
2 3©0

210
23 2©
23 0©

230

232320

(d = 1) (d = 2) (d = 3)

Drawback of MSD-Radix-Sort: many recursions
Auxiliary space: Θ(n + R + m) (for bucket-sort and recursion stack)
Run-time: Θ(mnR) since we may have Θ(mn) subproblems.

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 46 / 48

LSD-Radix-Sort

LSD-radix-sort(A)
A: array of size n, contains m-digit radix-R numbers
1. for d ← least significant to most significant digit do
2. Bucket-sort(A, d)

12 3© 2 3©0 1©01 021
23 0© 3 2©0 2©10 101
02 1© (d = 3) 2 1©0 (d = 2) 3©20 (d = 1) 123
32 0© =⇒ 0 2©1 =⇒ 0©21 =⇒ 210
21 0© 1 0©1 1©23 230
23 2© 2 3©2 2©30 232
10 1© 1 2©3 2©32 320

Loop-invariant: A is sorted w.r.t. digits d , . . . ,m of each entry.
Time cost: Θ(m(n + R)) Auxiliary space: Θ(n + R)

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 47 / 48

Summary

Sorting is an important and very well-studied problem
Can be done in Θ(n log n) time; faster is not possible for general input
HeapSort is the only Θ(n log n)-time algorithm we have seen with
O(1) auxiliary space.
MergeSort is also Θ(n log n), selection & insertion sorts are Θ(n2).
QuickSort is worst-case Θ(n2), but often the fastest in practice
CountSort and RadixSort achieve o(n log n) if the input is special

Randomized algorithms can eliminate “bad cases”
Best-case, worst-case, average-case, expected running time can all
differ, but for well-design randomizations of algorithms, the expected
running time is the same as the average-case of the non-randomized
algorithm.

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 48 / 48

	Sorting, Average-case and Randomization
	Analyzing average-case run-time
	Average-case analysis
	A simple example
	Sorting Permutations
	Sorting Permutations
	Average-case runtime of isSorted
	Average-case runtime of isSorted
	A contrived example
	Average-case run-time of avgCaseDemo
	Average-case run-time of avgCaseDemo
	Average-case run-time of avgCaseDemo

	Randomized Algorithms
	Randomized algorithms
	Expected running time
	Another contrived example
	Expected run-time of expectedDemo
	Expected run-time of expectedDemo

	QuickSelect
	The Selection Problem
	Crucial Subroutines
	Partition Algorithm
	Efficient In-Place partition (Hoare)
	Efficient In-Place partition (Hoare)
	QuickSelect Algorithm
	Analysis of QuickSelect
	Average-Case Analysis of QuickSelect
	Average-Case Analysis of QuickSelect
	Randomizing QuickSelect: Shuffle
	Randomizing QuickSelect: Random Pivot
	Analysis of RandomizedQuickSelect
	Analysis of RandomizedQuickSelect
	Expected running time vs. average-case running time

	QuickSort
	QuickSort
	QuickSort analysis
	Randomizing QuickSort
	Expected recursion-depth for QuickSort
	Expected recursion-depth for QuickSort
	Improvement ideas for QuickSort
	QuickSort with tricks

	Lower Bound for Comparison-Based Sorting
	Lower bounds for sorting
	The Comparison Model
	Decision trees
	Lower bound for sorting in the comparison model

	Non-Comparison-Based Sorting
	Non-Comparison-Based Sorting
	(Single-digit) Bucket Sort
	(Single-digit) Bucket Sort
	MSD-Radix-Sort
	MSD-Radix-Sort Example
	LSD-Radix-Sort
	Summary

