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Average-case analysis

We will introduce (and solve) a new problem, and then analyze the
average-case run-time of our algorithm.

Recall definition of average-case run-time:

T avg (n) =
∑

I:size(I)=n T (I)
#instances of size n =

∑
I∈In T (I)
|In|

(Note: We need that In is finite → later)

To learn how to do this, we will do a simpler example first.
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A simple example

isSorted(A, n)
A: array of size n with distinct items
1. for i ← 1 to n − 1 do
2. if A[i − 1] > A[i ] then return false
3. return true

Runtime is proportional to the number of comparisons.

T avg (n) = 1
n!
∑
π∈Πn

T (π) = 1
n!

n−1∑
k=1

k·(# permutations with exactly k comps)

Let πk be the number of permutations with at least k comparisons.

= 1
n!

(n−1∑
k=1

k(πk − πk+1)
)

= 1
n!

(n−1∑
k=1

k · πk −
n−1∑
k=1

k · πk+1

)
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Sorting Permutations

Need to take average running time over all inputs.
How to characterize input of size n?
(There are infinitely many sets of n numbers.)
Assume: All input numbers are distinct.
(For most problems, this can be forced by using tie-breakers.)

Observe: comparison-based algorithm has the same run-time on
inputs

A = [ 14, 3, 2, 6, 1, 11, 7 ] and
A′ = [ 14, 4, 2, 6, 1, 12, 8 ]

The actual numbers do not matter, only their relative order .
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Sorting Permutations
Characterize relative order via sorting permutation:
the permutation π ∈ Πn for which

A[π(0)] ≤ A[π(1)] ≤ · · · ≤ A[π(n−1)].

Example: A = [ 14, 3, 2, 6, 1, 11, 7 ]
π = [ 4, 2, 1, 3, 6, 5, 0 ]

Observe: π−1 = [ 6, 2, 1, 3, 0, 5, 4 ]
has same sorting permutation as A.

Assume all n! sorting permutations are equally likely .

 Average cost is then 1
n!
∑
π∈Πn T (π) where

T (π) = run-time on any instance with sorting-permutation π
= run-time on π−1
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Average-case runtime of isSorted

The number of permutations with at least k comparisons:
k = 1: at least one comparison ⇒ all n!
k = 2: A[0] < A[1]; index 0 and 1 occur in sorted order in π.
Example: sorting permutation π = [4, 3, 2, 0, 1] or [4, 0, 3, 2, 1] etc. ⇒(n
2
)
(n − 2)!

k = 3: indices 0, 1, 2 occur in sorted order ⇒
(n
3
)
(n − 3)!

k: indices 0, 1, . . . , k occur in sorted order ⇒
(n

k
)
(n − k)! = n!

k!

1
n!

(n−1∑
k=1

k · πk −
n−1∑
k=1

k · πk+1

)
= 1

n!

(n−1∑
k=1

k n!
k! −

n−1∑
k=1

k n!
(k + 1)!

)
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Average-case runtime of isSorted

T avg (n) = 1
n!

(n−1∑
k=1

k n!
k! −

n−1∑
k=1

k n!
(k + 1)!

)

= 1
n!

(
1!n!
1! +

n−1∑
k=2

k n!
k! −

n−2∑
k=1

k n!
(k + 1)! − (n − 1)n!

n!

)

= 1
n!

(
n!
1! +

n−1∑
k=2

k n!
k! −

n−1∑
k=2

(k − 1)n!
k! − (n − 1)

)

= 1
n!

(n−1∑
k=1

n!
k! − (n − 1)

)

=
n−1∑
k=1

1
k! −

n − 1
n! <

∞∑
k=1

1
n! = e by Taylor expansion of e

Average runtime of isSorted is O(1). Also, clearly Ω(1), so Θ(1).
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A contrived example

avgCaseDemo(A, n)
A: array of size n with distinct items
1. if n ≤ 2 return
2. if A[n−2] < A[n−1]
3. avgCaseDemo(A[0..n/2−1], n/2) // Good case
4. else avgCaseDemo(A[0..n−3], n−2) // Bad case

Let T (n) be the number of recursions.
(This is asymptotically the same as the run-time.)

Worst-case analysis: Recursive call could always have size n−2.
T (n) = 1 + T (n−2) = 1 + 1 + · · ·+ T (2) = n/2− 1 ∈ Θ(n)

Best-case analysis: Recursive call could always have size n/2.
T (n) = 1 + T (n/2) = 1 + 1 + T (n/4) = · · · = log n − 1 ∈ Θ(log n)

Average-case analysis?
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Average-case run-time of avgCaseDemo

T avg (n) = 1
n!
∑
π∈Πn

T (π) = 1
|Πn|

( ∑
π∈Πn:π good

T (π) +
∑

π∈Πn:π bad
T (π)

)
Recursive formula for one instance π:

T (π) =
{

1 + T (first n/2 items) if π is good
1 + T (first n−2 items) if π is bad(

You may be tempted to write 1 + T avg (n/2) and
1+T avg (n−2) instead, but this is not correct. Why?

)
Recursive formula for all instances π together:

∑
π∈Πn

T (π) =
∑

π∈Πn:π good
(1 + T avg (n/2)) +

∑
π∈Πn:π bad

(1 + T avg (n−2))

(This is not at all trivial.)
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Average-case run-time of avgCaseDemo

T avg (n) = 1
|Πn|

( ∑
π∈Πn:π good

T (π) +
∑

π∈Πn:π bad
T (π)

)
= 1
|Πn|

( ∑
π∈Πn:π good

(1 + T avg (n/2)) +
∑

π∈Πn:π bad
(1 + T avg (n−2))

)
= 1 + 1

|Πn|

(
|{π ∈ Πn : π good}| · T avg (n/2)

+ |{π ∈ Πn : π bad}| · T avg (n−2))
)

Observe: Exactly half of the permutations are good (why?)

Therefore: T avg (n) = 1 + 1
2T

avg (n/2) + 1
2T

avg (n−2)
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Average-case run-time of avgCaseDemo

Claim: T avg (n) ≤ 2 log n.
Proof:

⇒ avgCaseDemo has avg-case run-time O(log n)
(compared to Θ(n) worst-case time).
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Randomized algorithms

If an algorithm has better average-case time than worst-case time,
then randomization is often a good idea.
A randomized algorithm is one which relies on some random
numbers in addition to the input.

 Computers cannot generate randomness. We assume that there exists a
pseudo-random number generator (PRNG), a deterministic program that uses
an initial value or seed to generate a sequence of seemingly random numbers.
The quality of randomized algorithms depends on the quality of the PRNG!


The run-time will depend on the input and the random numbers used.
Goal: Shift the dependency of run-time from what we can’t control
(the input) to what we can control (the random numbers).

No more bad instances, just unlucky numbers.
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Expected running time

Define T (I,R) to be the running time of a randomized algorithm A for an
instance I and the sequence of random numbers R.

The expected running time T exp(I) for instance I is the expected value:

T exp(I) = E[T (I,R)] =
∑
R

T (I,R) · Pr[R]

Now take the maximum over all instances of size n to define the expected
running time of A.

T exp(n) := max
I∈In

T exp(I)

We can still have good luck or bad luck, so occasionally we also discuss
the very worst that could happen, i.e., maxI maxR T (I,R).
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Another contrived example

expectedDemo(A, n)
A: array of size n with distinct items
1. if n ≤ 2 return
2. if random(2) swap A[n−1] and A[n−2]
3. if A[n−2] ≤ A[n−1]
4. expectedDemo(A[0..n/2−1], n/2) // Good case
5. else expectedDemo(A[0..n−3], n−2) // Bad case

We assume the existence of a function random(n) that returns an integer
uniformly from {0, 1, 2, . . . , n−1}.

Observe: Pr(good case) = 1
2 = Pr(bad case).
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Expected run-time of expectedDemo
Run-time on array A if random outcomes are R = 〈x ,R ′〉:

T (A,R) =
{

1 + T (A[0 . . . n
2−1],R ′) if x = good

1 + T (A[0..n−3],R ′) if x = bad

Summing up over all sequences of random outcomes:∑
R

Pr(R)T (A,R) = Pr(X good)
∑
R′

Pr(R ′)
(
1 + T (A[0 . . . n

2−1] ,R ′)
)

+ Pr(X bad)
∑
R′

Pr(R ′)
(
1 + T (A[0 . . . n−3] ,R ′)

)
= 1 + 1

2

∑
R′

Pr(R ′) · T (A[0 . . . n
2−1] ,R ′) + 1

2

∑
R′

Pr(R ′) · T (A[0 . . . n−3] ,R ′)

≤ 1 + 1
2 max

A′∈In/2

∑
R′

Pr(R ′) · T (A′,R ′)︸ ︷︷ ︸
T exp(bn/2c)

+ 1
2 max

A′∈In−2

∑
R′

Pr(R ′) · T (A′,R ′)︸ ︷︷ ︸
T exp(n−2)

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 15 / 48



Expected run-time of expectedDemo

∑
R

Pr(R)T (A,R) ≤ 1 + 1
2T

exp(n/2) + 1
2T

exp(n−2) holds for all A.

⇒ T exp(n) = max
A∈In

∑
R

Pr(R)T (A,R) ≤ 1 + 1
2T

exp(n/2) + 1
2T

exp(n−2)

Same recursion as for T avg
avgCaseDemo(n)

Same analysis  T exp
expectedDemo(n) ∈ O(log n)

Is this a coincidence? Or does the expected time of a randomized
version always have something to do with the average-case time?
Not in general! (But we will see examples where it does.)
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The Selection Problem
The selection problem: Given an array A of n numbers, and 0 ≤ k < n,
find the element that would be at position k of the sorted array.

30
0

60
1

10
2

0
3

50
4

80
5

90
6

10
7

40
8

70
9

select(3) should return 30.

Special case: median finding = selection with k =
⌊n
2
⌋
.

Selection can be done with heaps in time Θ(n + k log n).
Median-finding with this takes time Θ(n log n).

This is the same cost as our best sorting algorithms.

Question: Can we do selection in linear time?
The QuickSelect algorithm answers this question in the affirmative.

The encountered sub-routines will also be useful otherwise.
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Crucial Subroutines
QuickSelect and the related algorithm QuickSort rely on two subroutines:

choose-pivot(A): Return an index p in A. We will use the
pivot-value v ← A[p] to rearrange the array.

Simplest idea: Always select rightmost element in array
choose-pivot(A)
1. return A.size−1

We will consider more sophisticated ideas later on.

partition(A, p): Rearrange A and return pivot-index i so that
I the pivot-value v is in A[i ],
I all items in A[0, . . . , i−1] are ≤ v , and
I all items in A[i+1, . . . , n−1] are ≥ v .

A ≤ v ≥ vv
i
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Partition Algorithm
Conceptually easy linear-time implementation:

partition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n
1. Create empty lists smaller, equal and larger.
2. v ← A[p]
3. for each element x in A
4. if x < v then smaller.append(x)
5. else if x > v then larger.append(x)
6. else equal.append(x).
7. i ← smaller .size
8. j ← equal .size
9. Overwrite A[0 . . . i−1] by elements in smaller
10. Overwrite A[i . . . i+j−1] by elements in equal
11. Overwrite A[i+j . . . n−1] by elements in larger
12. return i

More challenging: partition in place (with O(1) auxiliary space).
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Efficient In-Place partition (Hoare)

i=-1
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Efficient In-Place partition (Hoare)
Idea: Keep swapping the outer-most wrongly-positioned pairs.

Loop invariant: A ≤ v ≥ v v?
i j n−1

partition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n
1. swap(A[n−1],A[p])
2. i ← −1, j ← n−1, v ← A[n−1]
3. loop
4. do i ← i+1 while A[i ] < v
5. do j ← j−1 while j ≥ i and A[j] > v
6. if i ≥ j then break (goto 9)
7. else swap(A[i ],A[j])
8. end loop
9. swap(A[n−1],A[i ])
10. return i

Running time: Θ(n).
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QuickSelect Algorithm

QuickSelect(A, k)
A: array of size n, k: integer s.t. 0 ≤ k < n
1. p ← choose-pivot(A)
2. i ← partition(A, p)
3. if i = k then
4. return A[i ]
5. else if i > k then
6. return QuickSelect(A[0, 1, . . . , i−1], k)
7. else if i < k then
8. return QuickSelect(A[i+1, i+2, . . . , n−1], k − (i+1))

Idea: After partition have

Where is the desired value if k < i? If k = i? If k > i?

≤ v ≥ vv
i
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Analysis of QuickSelect

Let T (n, k) be the number of key-comparisons in a size-n array with
parameter k. (This is asymptotically the same as the run-time.)

partition uses n key-comparisons.

Worst-case analysis: Pivot-index is last, k = 0
T (n, 0) ≥ n + (n−1) + (n−2) + · · ·+ 1 ∈ Ω(n2) (and this is tight)

Best-case analysis: First chosen pivot could be the kth element
No recursive calls; T (n, k) = n ∈ Θ(n)

Average case analysis?
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Average-Case Analysis of QuickSelect
Use again sorting permutations: T avg (n) = 1

n!
∑
π∈Πn

T (π)

(We ignore parameter k here; it turns out not to matter)

Assume that sorting permutation π gives pivot-index is i :
If new array (after partition) is A′, then

T (π) ≤ n + max
{
T (A′[0..i−1]︸ ︷︷ ︸

size i

),T (A′[i+1..n−1]]︸ ︷︷ ︸
size n−i−1

)
}

Option 1: Prove that this implies the following:∑
π ∈ Πn:
pivot-idx i

T (π) ≤
∑

π ∈ Πn:
pivot-idx i

(
n + max{T avg (i),T avg (n−i−1)}

)
(Very complicated proof.)

(And then analyze the recursion, which is not too difficult.)
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Average-Case Analysis of QuickSelect

Option 2: Prove avg-case run-time via randomization

Simpler to do, and randomization is useful in practice.

Need to discuss:
1 How to randomize QuickSelect? ( RandomizedQuickSelect)
2 What is the expected run-time of RandomizedQuickSelect?
3 What does this imply for avg-case run-time of QuickSelect?
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Randomizing QuickSelect: Shuffle

Goal: Create a randomized version of QuickSelect.

First idea: Randomly permute the input first using shuffle:

shuffle(A)
A: array of size n
1. for i ← 1 to n−1 do
2. swap(A[i ],A[random(i+1)] )

This works well, but we can do it directly within the routine.
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Randomizing QuickSelect: Random Pivot
Second idea: Change the pivot selection.

RandomizedQuickSelect(A, k)
1. . . .
2. p ← random(A.size)
3. i ← partition(A, p)
4. . . .

Observe: Pr(pivot has index i) = 1
n

Assume we know that first random gave pivot-index i :
We recurse in an array of size i or n−i−1 (or not at all)
If new array (after partition) is A′, and R = 〈i ,R ′〉 then

T (π, k, 〈i ,R ′〉) ≤ n +


T (A′[0..i−1], k,R ′) if i > k
T (A′[i+1..n−1]], k−i−1,R ′) if i < k
0 otherwise
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Analysis of RandomizedQuickSelect

So T (π, k, 〈i ,R ′〉) ≤ n + T (some array of size i or n−i−1, some k ′,R ′)

Claim: Over all choices of i and R ′, this hits the expected values.

∑
R

T (π, k,R) ≤ n + 1
n

n−1∑
i=0

max{T exp(i),T exp(n−i−1)}

(Proof similar to expectedDemo. Crucial: T exp(·) uses the maximum over all instances.)

Note: we get the same bound for all π, k.

T exp(n) = max
π

max
k

∑
R

T (π, k,R) ≤ n+1
n

n−1∑
i=0

max{T exp(i),T exp(n−i−1)}
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Analysis of RandomizedQuickSelect

T exp(n) ≤ n + 1
n

n−1∑
i=0

max{T exp(i),T exp(n−i−1)}

Claim: This recursion resolves to O(n).
Proof:

⇒ RandomizedQuickSelect has expected run-time O(n).

This is generally the fastest QuickSelect implementation.

There exists a variation that has worst-case running time O(n), but it uses
double recursion and is slower in practice. ( cs341)
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Expected running time vs. average-case running time

Assume we have an algorithm A that solves Selection or Sorting.
Create a randomized algorithm B as follows:

1 Let I be the given instance (an array)
2 Randomly (and uniformly) permute I to get I ′

(We can do this with shuffle. For QuickSelect, choosing the pivot
randomly has the same effect.)

3 Call algorithm A on input I ′

Claim: T exp
B (n) = T avg

A (n)
Proof:

Since RandomizedQuickSelect has expected run-time O(n), therefore
QuickSelect has average-case run-time O(n).
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QuickSort

Hoare developed partition and QuickSelect in 1960.
He also used them to sort based on partitioning:

QuickSort(A)
A: array of size n
1. if n ≤ 1 then return
2. p ← choose-pivot(A)
3. i ← partition(A, p)
4. QuickSort(A[0, 1, . . . , i−1])
5. QuickSort(A[i+1, . . . , n−1])
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QuickSort analysis

Now set T (n) := # of key-comparison for QuickSort in a size-n array.

Worst-case analysis: Recursive call could always have size n−1.
T (n) ≥ n + T (n−1) ∈ Ω(n2) exactly as for QuickSelect
(This is tight since the recursion depth is at most n.)

Best-case analysis: If pivot-index is always in the middle, then we recurse
in two sub-arrays of size ≤ n/2.
T (n) ≤ n + 2T (n/2) ∈ O(n log n) exactly as for MergeSort
(This can be shown to be tight.)

Average-case analysis? We again prove this via randomization.
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Randomizing QuickSort

RandomizedQuickSort(A)
1. . . .
2. p ← random(A.size)
3. i ← partition(A, p)
4. . . .

Observe: Pr(pivot has index i) = 1
n

Assume we know that pivot-index is i :
We recurse in two arrays, of size i and n−i−1
Can use this to show T exp(n) ≤ n + 2

n
∑n−1

i=0 T exp(i) (and then show
that this is in O(n log n)) but there is an even easier analysis!

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 33 / 48



Expected recursion-depth for QuickSort

n

i n−i−1

Goal: Analyze expected height of re-
cursion tree.

Define H(π,R) := its height for in-
stance π and outcomes R.

Hexp(n) = maxπ
∑

R Pr(R)H(π,R).

If R lead to pivot-index i (i.e., R = 〈i ,R ′〉) then

H(π,R) ≤ 1 + max{H(size-i-instance,R ′),H(size-(n−i−1)-instance,R ′)}

Summing up over all R, we can show (similar as for expectedDemo):

Hexp(n) = max
π

∑
R

Pr(R)H(π,R) ≤ 1+ 1
n

n−1∑
i=0

max{Hexp(i),Hexp(n−i−1)}
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Expected recursion-depth for QuickSort
Formula: Hexp(n) ≤ 1 + 1

n
∑n−1

i=0 max{Hexp(i),Hexp(n−i−1)}

Claim: Hexp(n) ≤ O(log n).
Proof:

So expected height of recursion tree is H(n) ∈ O(log n).
We do Θ(n) work on each level of the recursion tree.
⇒ Expected run-time of RandomizedQuickSelect is O(n log n).
⇒ Avg-case run-time QuickSelect is O(n log n).
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Improvement ideas for QuickSort

The auxiliary space is Ω(recursion depth).
I This is Θ(n) in the worst-case, Θ(log n) in avg-case
I It can be reduced to Θ(log n) worst-case by recursing in smaller

sub-array first and replacing the other recursion by a while-loop.

One should stop recursing when n ≤ 10.
Run InsertionSort at the end; this sorts everything in O(n) time since
all items are within 10 units of their required position.

Arrays with many duplicates can be sorted faster by changing
partition to produce three subsets ≤ v = v ≥ v

Two programming tricks that apply in many situations:
I Instead of passing full arrays, pass only the range of indices.
I Avoid recursion altogether by keeping an explicit stack.
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QuickSort with tricks

QuickSortImproved(A, n)
1. Initialize a stack S of index-pairs with { (0, n−1) }
2. while S is not empty
3. (`, r)← S.pop()
4. while (r−`+1 > 10) do
5. p ← choose-pivot-improved(A, `, r)
6. i ← partition-improved(A, `, r , p)
7. if (i−` > r−i) do
8. S.push( (`, i−1) )
9. `← i+1
10. else
11. S.push( (i+1, r) )
12. r ← i−1
13. InsertionSort(A)

This is often the most efficient sorting algorithm in practice (but
worst-case time is still Θ(n2)).
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Lower bounds for sorting

We have seen many sorting algorithms:

Sort Running time Analysis
Selection Sort Θ(n2) worst-case
Insertion Sort Θ(n2) worst-case
Merge Sort Θ(n log n) worst-case
Heap Sort Θ(n log n) worst-case
QuickSort Θ(n log n) average-case
RandomizedQuickSort Θ(n log n) expected

Question: Can one do better than Θ(n log n) running time?
Answer: Yes and no! It depends on what we allow .

No: Comparison-based sorting lower bound is Ω(n log n).
Yes: Non-comparison-based sorting can achieve O(n) (under
restrictions!). → see below
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The Comparison Model

In the comparison model data can only be accessed in two ways:
comparing two elements
moving elements around (e.g. copying, swapping)

This makes very few assumptions on the kind of things we are sorting.
We count the number of above operations.

All sorting algorithms seen so far are in the comparison model.
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Decision trees

Comparison-based algorithms can be expressed as decision tree.

x0 : x1

x1 : x2 x1 : x2

x0 : x2 x0 : x20,1,2 2,1,0

0,2,1 2,0,1 1,0,2 1,2,0

To sort {x0, x1, x2}: Example: {x0=4, x1=2, x2=7}

{4, 2, 7}

{4, 2, 7}

{4, 2, 7}
Output: {4, 2, 7} has sorting permutation 〈1, 0, 2〉

(i.e., x1=2 ≤ x0=4 ≤ x2=7)

< ≥

< ≥

< ≥

≥<

< ≥
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Lower bound for sorting in the comparison model

Theorem. Any correct comparison-based sorting algorithm requires at
least Ω(n log n) comparison operations to sort n distinct items.

Proof.
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Non-Comparison-Based Sorting

Assume keys are numbers in base R (R: radix)
I R = 2, 10, 128, 256 are the most common.

Example (R = 4): 123 230 21 320 210 232 101

Assume all keys have the same number m of digits.
I Can achieve after padding with leading 0s.

Example (R = 4): 123 230 021 320 210 232 101

Can sort based on individual digits.
I How to sort 1-digit numbers?
I How to sort multi-digit numbers based on this?
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(Single-digit) Bucket Sort

Sort array A by last digit:

A B A
12 3© B[0] → 230 → 320 → 210 230
23 0© B[1] → 021 → 101 320
02 1© B[2] → 232 210
32 0© =⇒ B[3] → 123 =⇒ 021
21 0© 101
23 2© 232
10 1© 123

Hunt, Veksler (CS-UW) CS240 – Module 3 Winter 2023 43 / 48



(Single-digit) Bucket Sort

Bucket-sort(A, d)
A: array of size n, contains numbers with digits in {0, . . . ,R − 1}
d : index of digit by which we wish to sort
1. Initialize an array B[0...R − 1] of empty lists (buckets)
2. for i ← 0 to n−1 do
3. Append A[i ] at end of B[d th digit of A[i ]]
4. i ← 0
5. for j ← 0 to R − 1 do
6. while B[j] is non-empty do
7. move first element of B[j] to A[i++]

Sorts numbers by single digit (specified by user).
This is stable: equal items stay in original order.
Run-time Θ(n + R), auxiliary space Θ(n + R)
It is possible to replace the lists by two auxiliary arrays of size R and
n  count-sort (no details).
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MSD-Radix-Sort

Sorts array of m-digit radix-R numbers recursively:
sort by leading digit, then each group by next digit, etc.

MSD-Radix-sort(A, `← 0, r ← n−1, d ← index of leading digit)
`, r : range of what we sort, 0 ≤ `, r ≤ n−1
1. if ` < r
2. bucket-sort(A[`..r ], d)
3. if there are digits left // recurse in sub-arrays
4. `′ ← `
5. while (`′ < r) do
6. Let r ′ ≥ `′ be maximal s.t. A[`′..r ′] all have same dth digit
7. MSD-Radix-sort(A, `′, r ′, d+1)
8. `′ ← r ′ + 1
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MSD-Radix-Sort Example

1©23
2©32
0©21
3©20
2©10
2©30
1©01

021

1 2©3
1 0©1

101

123
2 3©2
2 1©0
2 3©0

210
23 2©
23 0©

230

232320

(d = 1) (d = 2) (d = 3)

Drawback of MSD-Radix-Sort: many recursions
Auxiliary space: Θ(n + R + m) (for bucket-sort and recursion stack)
Run-time: Θ(mnR) since we may have Θ(mn) subproblems.
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LSD-Radix-Sort

LSD-radix-sort(A)
A: array of size n, contains m-digit radix-R numbers
1. for d ← least significant to most significant digit do
2. Bucket-sort(A, d)

12 3© 2 3©0 1©01 021
23 0© 3 2©0 2©10 101
02 1© (d = 3) 2 1©0 (d = 2) 3©20 (d = 1) 123
32 0© =⇒ 0 2©1 =⇒ 0©21 =⇒ 210
21 0© 1 0©1 1©23 230
23 2© 2 3©2 2©30 232
10 1© 1 2©3 2©32 320

Loop-invariant: A is sorted w.r.t. digits d , . . . ,m of each entry.
Time cost: Θ(m(n + R)) Auxiliary space: Θ(n + R)
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Summary

Sorting is an important and very well-studied problem
Can be done in Θ(n log n) time; faster is not possible for general input
HeapSort is the only Θ(n log n)-time algorithm we have seen with
O(1) auxiliary space.
MergeSort is also Θ(n log n), selection & insertion sorts are Θ(n2).
QuickSort is worst-case Θ(n2), but often the fastest in practice
CountSort and RadixSort achieve o(n log n) if the input is special

Randomized algorithms can eliminate “bad cases”
Best-case, worst-case, average-case, expected running time can all
differ, but for well-design randomizations of algorithms, the expected
running time is the same as the average-case of the non-randomized
algorithm.
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