
Module 1: Introduction and Asymptotic Analysis

CS 240 – Data Structures and Data Management

A. Hunt and O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science,
University of Waterloo

Winter 2023

Outline

 CS240 overview
 course objectives

 course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Outline

 CS240 overview
 course objectives

 course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Course Objectives

 When first learn to program, emphasize correctness

 does program output the expected results?

 This course is also concerned with efficiency

 does program use computer resources efficiently?

 processor time, memory space

 Strong emphasis on mathematical analysis of efficiency

 Will study efficient methods of storing, accessing, and
performing operations on large collections of data

Course Objectives

 New abstract data types (ADTs)
 how to implement ADT efficiently using appropriate

data structures

 typical operations in data structures

 inserting new data items

 deleting data items

 searching for specific data items

 Algorithms
 presented in pseudocode

 analyzed using order notation (big-Oh, etc.)

Course Topics

 asymptotic (big-Oh) analysis

 priority queues and heaps

 sorting, selection

 binary search trees, AVL trees, B-trees

 skip lists

 hashing

 quadtrees, kd-trees

 range search

 tries

 string matching

 data compression

twists on data
structures and
algorithms you
already know

makes efficient
dictionaries in
practice

searching data in
multiple
dimensions
special dictionary
for strings

useful for
unstructured data

mathematical tool
for efficiency

CS Background

 Topics covered in previous courses with relevant sections [Sedgewick]

 arrays, linked lists (Sec. 3.2–3.4)

 strings (Sec. 3.6)

 stacks, queues (Sec. 4.2–4.6)

 abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)

 recursive algorithms (5.1)

 binary trees (5.4–5.7)

 sorting (6.1–6.4)

 binary search (12.4)

 binary search trees (12.5)

 probability and expectation (Goodrich & Tamassia, Section 1.3.4)

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Algorithm Design Terminology
 Problem: given a problem instance, carry out a particular

computational task

 sort an input array A

 Problem Instance: input for the specified problem

 A = [5, 2, 1, 8, 2]

 Problem Solution: output (correct answer) for the specified
problem instance

 A = [1, 2, 2, 5, 8]

 Size of a Problem Instance size(I)

 a positive integer measuring size of instance I

 size(A) = 5

 often use 𝑛 to denote instance size

 often input is array, and instance size is array size

Algorithm Design Terminology

 Algorithm: step-by-step process (usually described in
pseudocode) for carrying out a series of computations, given an
arbitrary problem instance I

 Algorithm solving a problem: algorithm A solves problem Π if for
every instance I of Π, A computes a valid solution in finite time

 Program: implementation of an algorithm using a
specified computer language

 In this course, the emphasis is on algorithms
 as opposed to programs or programming

Algorithms in Practice

 For a problem Π, can have many algorithms

 Given a problem Π

1. Algorithm Design: design algorithm A that solves Π

2. Algorithm Analysis: assess correctness and
efficiency of A

3. Implementation: if acceptable (correct and
efficient), implement A

 many possible programs implementing A

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Pseudocode
 Pseudocode is a method of communicating algorithm to a human

 whereas program (implementation) is a method of communicating
algorithm to a computer

 Pseudocode
 preferred language for describing algorithms

 omits obvious details, e.g. variable declarations

 sometimes uses English descriptions

 has limited if any error detection

 sometimes uses mathematical notation

Pseudocode Details

 Control flow
if … then … [else …]
while … do …
repeat … until …
for … do …
indentation replaces braces

 Expressions
← assignment
== equality testing
n2 superscripts and other mathematical formatting allowed

 Method declaration
Algorithm method (arg, arg…)
Input …
Output …

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Efficiency of Algorithms/Programs

 How decide which algorithm or program is the most efficient for
a given problem?

 Efficiency

 time: amount of time program takes to run

 also called time complexity

 space: amount of memory program requires

 also called space complexity

 Efficiency depends on size(I), size of a given problem instance I

 efficiency is a function of input size

 Primarily concerned with time efficiency in this course

Running Time of Algorithms/Programs

 One option: experimental studies

 write program implementing
the algorithm

 run program with inputs of
varying size and composition

 can use clock() from time.h,
to measure running time

 plot/compare results
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size
T

im
e

 (
m

s
)

Running Time of Algorithms/Programs

 Shortcomings of experimental studies
 implementation may be complicated/costly

 timings are affected by many factors

 hardware (processor, memory)

 software environment (OS, compiler, programming language)

 human factors (programmer)

 cannot test all inputs, hard to select good sample inputs

 thus cannot easily compare two algorithms/programs

 Want framework that
 does not require implementing the algorithm

 independent of hardware/software environment

 takes into account all possible input instances

Theoretical Framework For Algorithm Analysis

 To overcome dependency on hardware/software

 write algorithms in pseudo-code
 language independent

 “run” algorithms on idealized computer model
 allows to reason about efficiency

Idealized Computer Model

 Random Access Machine (RAM) Model

 has a set of memory cells, each of which stores one data item
 memory cells are big enough to hold stored items

 any access to a memory location takes constant time

 run primitive operations on this machine
 primitive operation takes constant time

 Simplified model
 most of these assumptions are not valid for a real computer

CPU

unlimited memory

random access (equally fast
access to any memory cell)

Theoretical Framework For Algorithm Analysis

 To overcome dependency on hardware/software

 write algorithms in pseudo-code
 language independent

 “run” algorithms on idealized computer model
 allows to reason about efficiency

 instead of time, count number of primitive operations
 assume all primitive operations take the same time

 measure time efficiency of an algorithm in terms of
growth rate

 avoids complicated functions and isolates the factor that
effects the efficiency the most for large inputs

 This framework makes many simplifying assumptions
 makes analysis of algorithms easier

Theoretical Analysis of Running time
 Pseudocode is a sequence of primitive operations

 A primitive operation is
 independent of input size

 Examples of Primitive Operations
 addition, subtraction, etc.

 𝑥 ∙ 𝑛 is a primitive operation

 𝑥𝑛 is not a primitive operation, runtime
depends on input size 𝑛

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax assigning a value to a variable

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax
 indexing into an array

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

 returning from a method

 exact definition not important

 will see why later

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

 To find running time, count the number of primitive operations
 as a function of input size 𝒏

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

Algorithm arrayMax(A, n)

currentMax  A[0]
for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

{ increment counter i }

return currentMax

Theoretical Analysis of Running time

operations

2

Theoretical Analysis of Running time

Algorithm arrayMax(A, n)

currentMax  A[0]
for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

{ increment counter i }

return currentMax

operations

2

i  1
𝑛 − 1
𝑖 = 1, check 𝑖 < 𝑛 − 1 (enter inside loop)
𝑖 = 2, check 𝑖 < 𝑛 − 1 (enter inside loop)
…
𝑖 = 𝑛 − 1, check 𝑖 < 𝑛 − 1(enter inside loop)
𝑖 = 𝑛, check 𝑖 < 𝑛 − 1(do not enter inside loop)

Total: 2+n

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

Algorithm arrayMax(A, n)

currentMax  A[0]
for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

{ increment counter i }

return currentMax

Theoretical Analysis of Running time

operations

2
2 + n

2(n  1)

2(n  1)

2(n  1)

1

Total: 7n - 1

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

 Algorithm arrayMax executes 𝑻(𝒏) = 7𝒏  1 primitive operations

 Let 𝑎 = time taken by fastest primitive operation

𝑏 = time taken by slowest primitive operation

 𝑻(𝒏) is bounded by two linear functions
𝑎 (7𝒏  1)  𝑻(𝒏)  𝑏(7𝒏  1)

 Changing hardware/software environment affects 𝑻(𝒏) by a
multiplicative constant factor

 𝑻 𝒏 = 𝑐𝑜𝑛𝑠𝑡 ∙ 𝑛 [ignoring the subtracted constant]

 𝑐𝑜𝑛𝑠𝑡 will change depending on software/hardware environment

 Want to say 𝑻 𝒏 = 7𝒏  1 is essentially 𝒏

 Want to ignore constant multiplicative factors

Theoretical Analysis of Running time: Multiplicative factors

Theoretical Analysis of Running time: Lower Order Terms

 Running time on small inputs hardly ever matters

 consider behaviour of algorithms for large input sizes

 further simplifies running time analysis

 Consider 𝑻(𝒏) = 𝒏2 + 𝒏

 For large 𝒏, only the fastest growing factor is important

𝑻(100,000) = 10,000,000,000 + 100,000

 Want to ignore slower growing terms

Theoretical Analysis of Running time

 Thus we want to ignore

 multiplicative constant factors

 lower-order (slower growing) terms

 This means focusing on the growth rate of the function
 10𝒏2 + 100𝒏 has growth rate of 𝒏𝟐

 10𝒏 + 10 has growth rate of 𝒏

 Asymptotic analysis (i.e. order notation) gives tools to
formally focus on the growth rate

Outline

 CS240 overview
 Course objectives
 Course topics

 Introduction and Asymptotic Analysis
 algorithm design
 pseudocode
 measuring efficiency
 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms
 helpful formulas

Order Notation: big-Oh

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 Bound from above by function expressing “growth rate”

𝑓 𝑛

𝑛0

do not care what happens here 𝑓 𝑛 ≤ 𝑐𝑔(𝑛)

 Need 𝑐 to “get rid” of multiplicative constant in the growth rate
 cannot say 5𝑛2≤ 𝑛2, but can say 5𝑛2 ≤ 𝑐𝑛2 for some constant 𝑐

 Absolute value signs are not relevant for analysis of run-time or
space, but useful in other applications of asymptotic notation

𝑐𝑔 𝑛a set of
functions

big-Oh Example

O-notation

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 Example:
𝑓 𝑛 = 75𝑛 + 500

𝑔 𝑛 = 5𝑛2

15 205 100

3,000

2,500

2,000

1,500

1,000

500

0
25

 Take 𝑐 = 1, 𝑛0 = 20

 Can also take 𝑐 = 10, 𝑛0 = 30

𝑓 𝑛

𝑔 𝑛

Order Notation: big-Oh 3,000

2,500

2,000

1,500

1,000

500

 Big-O gives asymptotic upper bound

 𝑓 𝑛 ∈ Ο 𝑔 𝑛 means function 𝑓(𝑛) is “bounded” above by function 𝑔(𝑛)

1. eventually, for large enough 𝑛

2. ignoring multiplicative constant

 Growth rate of 𝑓(𝑛) is slower or the same as growth rate of 𝑔(𝑛)

 Use big-O to bound the growth rate of algorithm
 𝑓(𝑛) for running time

 𝑔(𝑛) for growth rate

 should choose 𝑔(𝑛) as simple as possible

 Saying 𝑓 𝑛 is Ο 𝑔 𝑛 is equivalent to saying 𝑓 𝑛 ∈ Ο 𝑔 𝑛

𝑓(𝑛)

𝑔(𝑛)

𝑓 𝑛 ∈ Ο 𝑔 𝑛

if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

Order Notation: big-Oh
𝑓 𝑛 ∈ Ο 𝑔 𝑛

if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

3,000

2,500

2,000

1,500

1,000

500

 Choose 𝑔(𝑛) as simple as possible

𝑓(𝑛)

𝑔(𝑛)

 Previous example: 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 5𝑛2

 Simpler function for growth rate: 𝑔 𝑛 = 𝑛2

 Can show 𝑓 𝑛 ∈ Ο 𝑔 𝑛 as follows

 set 𝑓 𝑛 = 𝑔(𝑛) and solve the resulting quadratic equation

 intersection point is 𝑛 = 82

82

 take 𝑐 = 1, 𝑛0 = 82

Order Notation: big-Oh

 Do not have to solve quadratic equation

 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛2

 Show 𝑓 𝑛 ∈ Ο 𝑔 𝑛

75𝑛 + 500 ≤ 75𝑛2 = 575𝑛2

for all 𝑛 ≥ 1

 take 𝑐 = 575, 𝑛0 = 1

+500𝑛2

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

Order Notation: big-Oh

 Better (i.e. “tighter”) bound on growth

 can bound 𝑓 𝑛 = 75𝑛 + 500 by a function growing slower than 𝑔 𝑛 = 𝑛2

 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛

 Show 𝑓 𝑛 ∈ Ο 𝑔 𝑛

75𝑛 + 500 ≤ 75𝑛 + 500𝑛 = 575𝑛
for all 𝑛 ≥ 1

 take 𝑐 = 575, 𝑛0 = 1

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

More big-O Examples

 Prove that
2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

 Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 + 3𝑛 + 11 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 + 3𝑛 + 11 ≤ 2𝑛2 = 16𝑛2

for all 𝑛 ≥ 1

 Take 𝑐 = 16, 𝑛0 = 1

+3𝑛2 +11𝑛2

More big-O Examples

 Prove that
2𝑛2 − 3𝑛 + 11 ∈ 𝑂 𝑛2

 Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 − 3𝑛 + 11 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 − 3𝑛 + 11 ≤ 2𝑛2 = 13𝑛2

for all 𝑛 ≥ 1

 Take 𝑐 = 13, 𝑛0 = 1

+ 0 +11𝑛2

More big-O Examples

 Have to be careful with logs

 Prove that
2𝑛2 log 𝑛 + 3𝑛 ∈ 𝑂 𝑛2 log 𝑛

 Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 log 𝑛 + 3𝑛 ≤ 𝑐𝑛2 log 𝑛 for all 𝑛 ≥ 𝑛0

2𝑛2 log 𝑛 + 3𝑛 ≤ 2𝑛2 log 𝑛 ≤ 5𝑛2 log 𝑛

for all 𝑛 ≥ 1

 Take 𝑐 = 5, 𝑛0 = 2

+3𝑛2 log 𝑛

for all 𝑛 ≥ 2

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

 Last step: express the running time using asymptotic notation

Algorithm arrayMax(A, n)

currentMax  A[0]
for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

{ increment counter i }

return currentMax

Theoretical Analysis of Running time

operations

𝑐1

𝑐2𝑛

𝑐3

Total: 𝑐1+𝑐3 + 𝑐2𝑛 which is 𝑂(𝑛)

Algorithm arrayMax(A, n)

currentMax  A[0]
for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

{ increment counter i }

return currentMax

Theoretical Analysis of Running time

operations

𝑐𝑛

Total: 𝑐 + 𝑐𝑛 which is 𝑂(𝑛)

𝑐

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

 Last step: express the running time using asymptotic notation

Need for Asymptotic Tight bound

 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

 But also 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛10

 this is a true but hardly a useful statement

 analogy: if I say I have less than a million $ in my pocket, it is true, but
useless statement

 i.e. this statement does not give a tight upper bound

 a bound is tight if it uses the slowest grown function possible

 Want an asymptotic notation that guarantees a tight bound

 On our way to tight bound, we first need

an asymptotic lower bound

Aymptotic Lower Bound

 Ω-notation (asymptotic lower bound)

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 𝑓 𝑛 ∈ Ω 𝑔 𝑛 means function 𝑓(𝑛) is asymptotically bounded

below by function 𝑔(𝑛)

1. eventually, for large enough 𝑛

2. ignoring multiplicative constant

 Growth rate of 𝑓(𝑛) is larger or the same as growth rate of 𝑔(𝑛)

𝑐𝑔 𝑛

𝑛0

do not care what happens here
𝑓 𝑛 ≥ 𝑐𝑔(𝑛)

𝑓 𝑛

Asymptotic Lower Bound

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

 Prove that 2𝑛2 + 3𝑛 + 11 ∈ Ω 𝑛2

 Find 𝑐 > 0 and 𝑛0 ≥ 0 s.t. 2𝑛2 + 3𝑛 + 11 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 +3𝑛 + 11

 Take 𝑐 = 2, 𝑛0 = 1

≥ 2𝑛2 for all 𝑛 ≥ 1

Asymptotic Lower Bound

 Prove that
1

2
𝑛2 − 5𝑛 ∈ Ω 𝑛2


1

2
𝑛2 − 5𝑛 < 0 for 0 < 𝑛 < 10

 since we ignore absolute value in the derivation, we need to
ensure 𝑓 𝑛 is actually positive

 for positivity of 𝑓 𝑛 , make sure to take 𝑛0 ≥ 10

 Need to find 𝑐 and 𝑛0 s.t.
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

 Unlike before, cannot ‘drop’ lower growing term, as
1

2
𝑛2 − 5𝑛 ≤

1

2
𝑛2

 Need
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

𝑎𝑛2 𝑏𝑛2 positive for large
enough 𝑛

1

2
𝑛2 − 5𝑛 ≥ 𝑎𝑛2 + (𝑏𝑛2 − 5𝑛) ≥ 𝑎𝑛2

for large enough 𝑛

Asymptotic Lower Bound

 For positivity of 𝑓 𝑛 , make sure to take 𝑛0 ≥ 10

 Need to find 𝑐 and 𝑛0 s.t.
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

1

2
𝑛2 − 5𝑛 =

1

4
𝑛2 +

1

4
𝑛2 − 5𝑛

 Take 𝑐 =
1

4
, 𝑛0 = 20

 𝑛0 happened to be bigger than 10, as needed, automatically

=
1

4
𝑛2 +

1

4
𝑛2 − 5𝑛

≥ 0, if 𝑛 ≥ 20

≥
1

4
𝑛2

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

so take 𝑛0 ≥ 20

 Rewrite

Tight Asymptotic Bound
 Θ-notation

𝑓(𝑛) ∈ Θ 𝑔(𝑛) if there exist constants 𝑐1, 𝑐2 > 0, 𝑛0 ≥ 0 s.t.
𝑐1 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 Easy to prove that

𝑓(𝑛) ∈ Θ 𝑔(𝑛) ⇔ 𝑓(𝑛) ∈ Ο 𝑔(𝑛) and 𝑓(𝑛) ∈ Ω 𝑔(𝑛)

 Therefore, to show that 𝑓(𝑛) ∈ Θ 𝑔(𝑛) , it is enough to show

1. 𝑓(𝑛) ∈ Ο 𝑔(𝑛)

2. 𝑓(𝑛) ∈ Ω 𝑔(𝑛)

 that′s why we said that for tight bound, we also need lower bound

 𝑓 𝑛 ∈ Θ 𝑔 𝑛 means 𝑓 𝑛 , 𝑔(𝑛) have equal growth rates

Tight Asymptotic Bound

 Proved previously that

 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

 2𝑛2 + 3𝑛 + 11 ∈ Ω 𝑛2

 Thus 2𝑛2+3𝑛 + 11 ∈ Θ 𝑛2

 Ideally, should use Θ to determine growth rate of algorithm

 𝑓 𝑛 for running time

 𝑔 𝑛 for growth rate

 Sometimes determining tight bound is hard, so big-O is used

Tight Asymptotic Bound

Prove that log𝑏 𝑛 ∈ Θ log 𝑛 for 𝑏 > 1

 Find 𝑐1, 𝑐2 > 0, 𝑛0 ≥ 0 s.t. 𝑐1log 𝑛 ≤ log𝑏 𝑛 ≤ 𝑐2log 𝑛 for all 𝑛 ≥ 𝑛0

 log𝑏 𝑛 =
1

log 𝑏
log 𝑛


1

log 𝑏
log 𝑛 ≤ log𝑏 𝑛 ≤

1

log 𝑏
log 𝑛

 Since 𝑏 > 1, log 𝑏 > 0

 Take 𝑐1 = 𝑐2 =
1

log 𝑏
and 𝑛0 = 1

Strictly Smaller Asymptotic Bound

 𝑓 𝑛 = 2𝑛2+3𝑛 + 11 ∈ Θ 𝑛2

 How to say 𝑓 𝑛 is asymptotically strictly smaller than 𝑔 𝑛 = 𝑛3?

 o-notation

𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 Meaning: 𝑓 grows much slower than 𝑔

𝑓 𝑛

𝑔 𝑛 0.1𝑔 𝑛 0.01𝑔 𝑛 0.00000001𝑔 𝑛

Strictly Larger Asymptotic Bound

 ω-notation

𝑓 𝑛 ∈ ω(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 Meaning: 𝑓 grows much faster than 𝑔

Strictly Smaller Proof Example
𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any 𝑐 > 0, there exists 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

Prove that 5𝑛 ∈ 𝑜 𝑛2

 Given 𝑐 > 0 need to find 𝑛0 s.t. 5𝑛 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

 Dividing both sides by 𝑛 , this is equivalent to the statement below

 Given 𝑐 > 0 need to find 𝑛0 s.t. 5 ≤ 𝑐𝑛 for all 𝑛 ≥ 𝑛0

 holds for for 𝑛 ≥
5

𝑐

 Therefore, 5𝑛 ≤ 𝑐𝑛2 for 𝑛 ≥
5

𝑐

 Take 𝑛0 =
5

𝑐

Limit Theorem for Order Notation

 So far had proofs for order notation from the first principles

 i.e. from the definition

 There is a useful limit theorem for order notation

 Suppose that 𝑓(𝑛) > 0 and 𝑔(𝑛) > 0 for all 𝑛 ≥ 𝑛0

 Suppose that L = lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛

 Then 𝑓 𝑛 ∈

𝑜 𝑔 𝑛 𝑖𝑓 𝐿 = 0

Θ 𝑔 𝑛 𝑖𝑓 0 < 𝐿 < ∞

𝜔 𝑔 𝑛 𝑖𝑓 𝐿 = ∞

 The required limit can often be computed using l’Hopital’s rule

 Theorem gives sufficient but not necessary conditions

Example 1

Let 𝑓 𝑛 be a polynomial of degree 𝑑 ≥ 0 with 𝑐𝑑 > 0

𝑓 𝑛 = 𝑐𝑑𝑛𝑑 +𝑐𝑑−1 𝑛𝑑−1 + ⋯ + 𝑐1 𝑛 + 𝑐0

Then 𝑓 𝑛 ∈ Θ 𝑛𝑑

Proof:

lim
𝑛→∞

𝑓(𝑛)

𝑛𝑑
= lim
𝑛→∞

𝑐𝑑𝑛𝑑

𝑛𝑑
+

𝑐𝑑−1𝑛𝑑−1

𝑛𝑑
+ ⋯ +

𝑐0

𝑛𝑑

= lim
𝑛→∞

𝑐𝑑𝑛𝑑

𝑛𝑑 + lim
𝑛→∞

𝑐𝑑−1𝑛𝑑−1

𝑛𝑑
lim

𝑛→∞

𝑐0

𝑛𝑑+ ⋯ +

= 0 = 0

= 𝑐𝑑 > 0

= 𝑐d

Example 2

 Compare growth rates of log 𝑛 and 𝑛

lim
𝑛→∞

log 𝑛

𝑛
= lim

𝑛→∞

ln 𝑛
ln 2

𝑛
= lim

𝑛→∞

1
ln 2 ⋅ n

1

L’Hopital rule

= 0= lim
𝑛→∞

1

n ⋅ ln 2

 log 𝑛 ∈ 𝑜(𝑛)

Example 3
 Prove log 𝑛 𝑎 ∈ o(𝑛𝑑), for any (big) 𝑎 > 0, (small) 𝑑 > 0

1) Prove (by induction):

lim
𝑛→∞

lnk 𝑛

𝑛
= 0 for any integer 𝑘

 Base case 𝑘 = 1 is proven on previous slide

 Inductive step: suppose true for 𝑘 − 1

 lim
𝑛→∞

lnk 𝑛

𝑛
= = 𝑘 lim

𝑛→∞

𝑙𝑛𝑘−1𝑛

𝑛
= 0

L’Hopital rule

lim
𝑛→∞

1
𝑛

𝑘 𝑙𝑛𝑘−1𝑛

1

2) Prove lim
𝑛→∞

lna 𝑛

𝑛𝑑 = 0

 lim
𝑛→∞

lna 𝑛

𝑛𝑑 = lim
𝑛→∞

ln𝑎/𝑑 𝑛

𝑛

𝑑

≤ lim
𝑛→∞

ln 𝑎/𝑑 𝑛

𝑛

𝑑

= 0

3) Finally lim
𝑛→∞

log 𝑛 𝑎

𝑛𝑑 = lim
𝑛→∞

ln 𝑛
𝑙𝑛2

𝑎

𝑛𝑑 =
1

𝑙𝑛2

𝑎

lim
𝑛→∞

ln 𝑛 𝑎

𝑛𝑑
= 0

Example 4

60

2520

0

151050

40

20

 Sometimes limit does not exist, but can prove from first principles

 Let 𝑓(𝑛) = 𝑛(2 + sin 𝑛𝜋/2)

 Prove that 𝑓(𝑛) is Θ(𝑛)

Example 4

 Let 𝑓(𝑛) = 𝑛(2 + sin 𝑛𝜋/2), prove that 𝑓(𝑛) is Θ(𝑛)

 Proof:

−1 ≤ 𝑠𝑖𝑛(any number) ≤ 1

𝑓(𝑛) ≤ 𝑛(2 + 1) = 3𝑛 for all 𝑛 ≥ 1

𝑛= 𝑛(2−1) ≤ 𝑓 𝑛 for all 𝑛 ≥ 1

𝑛 ≤ 𝑓 𝑛 ≤ 3𝑛 for all 𝑛 ≥ 1

Use 𝑐1 = 1, 𝑐2 = 3, 𝑛0 = 1

Order notation Summary

 𝑓(𝑛) ∈ Θ 𝑔(𝑛) : growth rates of 𝑓 and 𝑔 are the same

 𝑓(𝑛) ∈ o(𝑔 𝑛): growth rate of 𝑓 is less than growth rate of 𝑔

 𝑓(𝑛) ∈ ω 𝑔 𝑛 : growth rate of 𝑓 is greater than growth rate of 𝑔

 𝑓(𝑛) ∈ O 𝑔 𝑛 : growth rate of 𝑓 is the same or less than growth rate of 𝑔

 𝑓(𝑛) ∈ Ω(𝑔 𝑛): growth rate of 𝑓 is the same or greater than growth rate of 𝑔

Relationship between OrderNotations

One can prove the following relationships

 𝑓 𝑛 ∈ Θ 𝑔 𝑛 ⇔𝑔 𝑛 ∈ Θ 𝑓 𝑛

 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ Ω 𝑓 𝑛

 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ 𝜔 𝑓 𝑛

 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇒ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇒ 𝑓 𝑛 ∉ Ω 𝑔 𝑛

 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑓 𝑛 ∈ Ω 𝑔 𝑛

 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑓 𝑛 ∉ 𝑂 𝑔 𝑛

Algebra of Order Notations
 The following rules are easy to prove

1. Identity rule: 𝑓 𝑛 ∈ Θ 𝑓 𝑛

2. Transitivity

 if 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 then 𝑓 𝑛 ∈ 𝑂 ℎ 𝑛

 if 𝑓 𝑛 ∈ Ω 𝑔 𝑛 and 𝑔 𝑛 ∈ Ω ℎ 𝑛 then 𝑓 𝑛 ∈ Ω ℎ 𝑛

3. Maximum rules

Suppose that 𝑓 𝑛 > 0 and 𝑔 𝑛 > 0 for all 𝑛 ≥ 𝑛0, then

a) 𝑓 𝑛 + 𝑔 𝑛 ∈ Ω 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

b) 𝑓 𝑛 + 𝑔 𝑛 ∈ 𝑂 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

Proof:
𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 = either 𝑓 𝑛 or 𝑔(𝑛)

𝑓 𝑛 + 𝑔 𝑛 =

≤ 𝑓 𝑛 + 𝑔 𝑛a)

𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 + 𝑚𝑖𝑛 𝑓 𝑛 , 𝑔 𝑛

≤ 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 + 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

= 2𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

b)

Abuse of Notation

 Normally, we say 𝑓 𝑛 ∈ Θ 𝑔 𝑛 because Θ 𝑔 𝑛 is a

set

 Sometimes convenient to abuse of notation, i.e.

 𝑓 𝑛 = 𝑛2 + Θ 𝑛
 𝑓 𝑛 is a quadratic function plus a linear term

 𝑓 𝑛 = 𝑛2 + 𝑂 𝑛
 𝑓 𝑛 is a quadratic function plus a term that grows

slower or at the same rate as a linear function

 𝑓 𝑛 = 𝑛2 + 𝑂 1
 𝑓 𝑛 is a quadratic function plus a constant

 𝑓 𝑛 = 𝑛2 + 𝑜 1
 𝑓 𝑛 is a quadratic function plus a term that goes to 0

Common Growth Rates

 Commonly encountered growth rates in increasing order of growth

 Θ 1 constant complexity

 Θ log 𝑛 logarithmic complexity

 Θ 𝑛 linear complexity

 Θ 𝑛log 𝑛 linearithmic

 Θ 𝑛log𝑘 𝑛 quasi-linear (𝑘 is constant, i.e. independent of the problem size)

 Θ 𝑛2 quadratic complexity

 Θ 𝑛3 cubic complexity

 Θ 2𝑛 exponential complexity

How Growth Rates Affect Running Time

 How running time affected when problem size doubles (𝑛 → 2𝑛)

 constant complexity: 𝑇 𝑛 = 𝑐

 logarithmic complexity: 𝑇 𝑛 = 𝑐 log 𝑛

 linear complexity: 𝑇 𝑛 = 𝑐𝑛

 linearithmic: 𝑇 𝑛 = 𝑐𝑛 log 𝑛

 quadratic complexity: 𝑇 𝑛 = 𝑐𝑛2

 cubic complexity: 𝑇 𝑛 = 𝑐𝑛3

 exponential complexity: 𝑇 𝑛 = 𝑐2𝑛

𝑇 2𝑛 = 𝑐

𝑇 2𝑛 = 𝑇 𝑛 + 𝑐

𝑇 2𝑛 = 2𝑇 𝑛

𝑇 2𝑛 = 2𝑇 𝑛 + 2𝑐n

𝑇 2𝑛 = 4𝑇 𝑛

𝑇 2𝑛 = 8𝑇 𝑛

𝑇 2𝑛 =
1

𝑐
𝑇2 𝑛

Comparison of Growth Rates

n log(n) n nlog(n) n2 n3 2n

8 3 8 24 64 512 256

16 4 16 64 256 4096 65536

32 5 32 160 1024 32768 4.3x109

64 6 64 384 4096 262144 1.8x1019

128 7 128 896 16384 2097152 3.4x1038

256 8 256 2048 65536 16777218 1.2x1077

Outline

 CS240 overview
 Course objectives
 Course topics

 Introduction and Asymptotic Analysis
 algorithm design
 pseudocode
 measuring efficiency

 analysis of algorithms

 analysis of recursive algorithms
 helpful formulas

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations that require Θ 1 time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations that require Θ 1 time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

𝑐

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations that require constant, i.e. Θ 1 time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

෍
𝑗=𝑖

𝑛

𝑐

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations that require Θ 1 time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

෍
𝑗=𝑖

𝑛

𝑐෍
𝑖=1

𝑛

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations that require Θ 1 time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

෍
𝑗=𝑖

𝑛

𝑐 + 𝑐෍
𝑖=1

𝑛

Techniques for Algorithm Analysis

 Derived complexity as

𝑐1 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐2 Some textbooks will write this as

𝑐 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Or as 1 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

1

 Now need to work out the sum

Sums: Review

1

𝑖 = 1 𝑖 = 2

+ 2

𝑖 = 3

+ 3

… 𝑖 = 𝑛

+ 𝑛…𝑆 = ෍
𝑖=1

𝑛

𝑖 =

1 + 2 + 3 + 𝑛𝑆 = …

𝑛 +(𝑛 − 1) +(𝑛 − 2) + 1𝑆 = …

𝑛 + 1 𝑛 + 1 𝑛 + 1 𝑛 + 1

2𝑆 = 𝑛 + 1 𝑛

𝑆 = ෍
𝑖=1

𝑛

𝑖 =
1

2
𝑛 + 1 𝑛

+

Sums: Review

𝑎

𝑖 = 1 𝑖 = 2

+ (𝑎 + 1)

… 𝑖 = 𝑛

+ 𝑏…𝑆 = ෍
𝑖=𝑎

𝑏

𝑖 =

𝑎 + (𝑎 + 1) + 𝑏𝑆 = …

𝑏 +(𝑏 − 1) + 𝑎𝑆 = …

𝑎 + 𝑏 𝑎 + 𝑏 𝑎 + 𝑏

2𝑆 = 𝑎 + 𝑏 (𝑏 − 𝑎 + 1)

𝑆 = ෍
𝑖=𝑎

𝑏

𝑖 =
1

2
𝑎 + 𝑏 (𝑏 − 𝑎 + 1)

+

Sums: Review

෍
𝑗=𝑖

𝑛

1 = 1

𝑗 = 𝑖 𝑗 = 𝑖 + 1

+1

𝑗 = 𝑖 + 2

+1

… 𝑗 = 𝑛

+1… = 𝑛 − 𝑖 + 1

෍
𝑗=𝑖

𝑛

(𝑛 − 𝑒𝑥) =𝑛 − 𝑒𝑥

𝑗 = 𝑖 𝑗 = 𝑖 + 1

+𝑛 − 𝑒𝑥

… 𝑗 = 𝑛

+𝑛 − 𝑒𝑥… = (𝑛 − 𝑖 + 1)(𝑛 − 𝑒𝑥)

𝑗 = 𝑖 + (𝑛 − 𝑖)

Techniques for Algorithm Analysis

𝑐 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Complexity of algorithm Test1 is Θ 𝑛2

+𝑐 ෍
𝑖=1

𝑛

𝑛= 𝑐 −𝑐 ෍
𝑖=1

𝑛

𝑖 +𝑐 ෍
𝑖=1

𝑛

1

= 𝑐 +𝑐𝑛2−𝑐
𝑛 + 1 𝑛

2
+𝑐𝑛 = 𝑐

𝑛2

2
+ 𝑐

𝑛

2
+ 𝑐

= 𝑐 + ෍
𝑖=1

𝑛

𝑐(𝑛 − 𝑖 + 1)෍
𝑖=1

𝑛

𝑐(𝑛 − 𝑖 + 1)

Techniques for Algorithm Analysis

 Two general strategies

1. Use Θ-bounds throughout the analysis and obtain Θ-
bound for the complexity of the algorithm

2. Prove a O-bound and a matching Ω-bound separately
 use upper bounds (for O-bounds) and lower bounds (for Ω-bound)

early and frequently

 easier because upper/lower bounds are easier to sum

Techniques for Algorithm Analysis
 First strategy

෍
𝑘=𝑖

𝑗

𝑐෍
𝑗=𝑖

𝑛

(𝑐+)

 Will write instead

෍
𝑘=𝑖

𝑗

𝑐෍
𝑗=𝑖

𝑛

 This omits lower order term that does not effect Θ-bound

Techniques for Algorithm Analysis

 First strategy

෍
𝑘=𝑖

𝑗

𝑐෍
𝑗=𝑖

𝑛

෍
𝑖=1

𝑛

= 𝑐 ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

= 𝑐 ෍
𝑖=1

𝑛 (𝑛 − 𝑖 + 1)(𝑛 − 𝑖 + 2)

2
=

𝑐

2
෍

𝑖=1

𝑛

(𝑛2 − (2𝑛 + 3)𝑖 + 𝑖2 + 3𝑛 + 2)

=
𝑐

2
𝑛3 − 2𝑛 + 3

𝑛 + 1 𝑛

2
+

2𝑛 + 1 𝑛 + 1 𝑛

6
+ 3𝑛2 + 2𝑛

 Test2 is Θ 𝑛3

1 + 2 + ⋯ + (𝑛 − 𝑖 + 1)

(𝑗 − 𝑖 + 1)෍
𝑘=𝑖

𝑗

1෍
𝑗=𝑖

𝑛

𝑐 ෍
𝑖=1

𝑛

=

Techniques for Algorithm Analysis

 Second strategy: upper bound

 Make the number of summands in each sum equal to 𝑛

 more iterations of both inner loops

𝑐 ෍
𝑖=1

𝑛

෍
𝒋=𝟏

𝑛

෍
𝒌=𝟏

𝒏

1෍
𝑗=𝑖

𝑛

𝑐 ෍
𝑖=1

𝑛

෍
𝑘=𝑖

𝑗

1 ≤

= 𝑐𝑛3

 Test2 is 𝑂(𝑛3)

= 𝑐 ෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑛

= 𝑐 ෍
𝑖=1

𝑛

𝑛2

Techniques for Algorithm Analysis

 Cannot make number of summands in each sum equal to 𝑛

 Can we make number of summands in each sum equal to 𝑓𝑟𝑎𝑐 ∙ 𝑛?

 for any 0 < 𝑓𝑟𝑎𝑐 < 1

 sufficient for a cubic bound

෍
𝑗=𝑖

𝑛

𝑐 ෍
𝑖=1

𝑛

෍
𝑘=𝑖

𝑗

1 ≥ ?

 Second strategy: lower bound

Techniques for Algorithm Analysis

 Let innermost bound loop start with 𝑎𝑛 and end with 𝑏𝑛, where 0 < 𝑎 < 𝑏 < 1

෍
𝑗=𝑖

𝑛

෍
𝑖=1

𝑛

෍
𝑘=𝑖

𝑗

1 ≥ ෍ ෍ ෍
𝑘=𝒂𝒏

𝒃𝒏

1

 Inequality valid if the inner loop makes less than from 𝑘 = 𝑖 to 𝑗 summations

 𝑖 ≤ 𝑎𝑛

 𝑗 ≥ 𝑏𝑛

 in concrete numbers

= ෍ ෍ 𝑏 − 𝑎 𝑛

≥ ෍
𝑘=𝟐𝟎

𝟖𝟎

1෍
𝑘=10

100

1

Techniques for Algorithm Analysis

 Let innermost bound loop start with 𝑎𝑛 and end with 𝑏𝑛, where 0 < 𝑎 < 𝑏 < 1

෍
𝑗=𝑖

𝑛

෍
𝑖=1

𝑛

෍
𝑘=𝑖

𝑗

1 ≥ ෍ ෍ ෍
𝑘=𝒂𝒏

𝒃𝒏

1

 Inequality valid if the inner loop makes less than from 𝑘 = 𝑖 to 𝑗 summations

 𝑖 ≤ 𝑎𝑛

 𝑗 ≥ 𝑏𝑛

 Therefore
෍

𝑗=𝑖

𝑛

෍
𝑖=1

𝑛

෍
𝑘=𝑖

𝑗

1 ≥ ෍
𝑖=1

෍
𝑗=

𝑛

෍
𝑘=𝒂𝒏

𝒃𝒏

1

 Lets plug in 𝑎 = 1/3, 𝑏 = 2/3 (but any 0 < 𝑎 < 𝑏 < 1 works)

෍
𝑗=𝑖

𝑛

෍
𝑖=1

𝑛

෍
𝑘=𝑖

𝑗

1 ≥ ෍
𝑖=1

𝒏/𝟑

෍
𝑗=𝟐𝒏/𝟑

𝑛

෍
𝑘=𝒏/𝟑

𝟐𝒏/𝟑

1 =
𝑛3

27

 Test2 is Ω(𝑛3)

 Combined with upper bound, Test2 is Θ 𝑛3

= ෍ ෍ 𝑏 − 𝑎 𝑛

= ෍
𝑖=1

𝒏/𝟑

෍
𝑗=𝟐𝒏/𝟑

𝑛 𝑛

3

𝒂𝒏

𝒃𝒏

Worst Case Time Complexity
 Can have different running times on two instances of equal size

 Let TA(I) be running time of an algorithm A on instance I

 Worst-case complexity of an algorithm: take the worst I

 Formal definition: the worst-case running time of algorithm A is a
function f : Z+ → R mapping 𝑛 (the input size) to the longest
running time for any input instance of size 𝑛

𝑇𝐴 𝑛 = 𝑚𝑎𝑥 𝑇𝐴 𝐼 : 𝑆𝑖𝑧𝑒 𝐼 = 𝑛

Worst Case Time Complexity
 Can have different running times on two instances of equal size

 Worst-case complexity of an algorithm: take worst instance I

෍
𝑗=1

𝑖

𝑐෍
𝑖=0

𝑛−1

= 𝑐 ෍
𝑖=0

𝑛−1

𝑖

= 𝑐 𝑛 − 1 𝑛/2

 𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 = 𝑐 𝑛 − 1 𝑛/2
 this is primitive operation count as a function of input size 𝑛

 once we know primitive operation count, apply asymptotic analysis

 Θ 𝑛2 or 𝑂 𝑛2 or Ω 𝑛2 are all valid statements about the
worst case time complexity

 For any instance 𝐼 of size 𝑛, it holds 𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 ≥ 𝑇(𝐼) ∈ Ω 𝑇(𝐼)

Best Case Time Complexity

 Best-case complexity of an algorithm: take the best instance I
 Formal definition: the best-case running time of an algorithm A is

a function f : Z+ → R mapping 𝑛 (the input size) to the smallest
running time for any input instance of size 𝑛

෍
𝑖=1

𝑛−1

𝑐 = 𝑐(𝑛 − 1)

𝑇𝐴 𝑛 = 𝑚𝑖𝑛 𝑇𝐴 𝐼 : 𝑆𝑖𝑧𝑒 𝐼 = 𝑛

 𝑇𝑏𝑒𝑠𝑡 𝑛 = 𝑐 𝑛 − 1
 this is primitive operation count as a function of input size 𝑛

 once we know primitive operation count, apply asymptotic analysis

 Θ 𝑛 or 𝑂 𝑛 or Ω 𝑛 are all valid about best case time complexity

 For any instance 𝐼 of size 𝑛, it holds 𝑇𝑏𝑒𝑠𝑡 𝑛 ≤ 𝑇(𝐼) ∈ 𝑂 𝑇(𝐼)

Best Case Time Complexity

Algorithm hasNegative(A, n)

Input: array A of n integers

found  false

𝑖0

while 𝑖 < 𝑛  1 and found == false

if 𝐴[𝑖] < 0 then

found  true

𝑖  𝑖 + 1

return found

 For hasNegative, best instance is
array A of size 𝑛 where 𝐴[0] < 0

 Best-case complexity is Θ(1)

 Note that best-case complexity is
a function of input size 𝑛

 Have to think of the best instance
of size 𝑛

 for Test3, best instance is sorted
(non-increasing) array A of size 𝑛

 best instance is not an array of size 1

Average Case Time Complexity

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is function f : Z+ → R mapping 𝑛 (input size) to
the average running time of A over all instances of size 𝑛

𝑇𝐴
𝑎𝑣𝑔

𝑛 =
1

𝐼: 𝑆𝑖𝑧𝑒 𝐼 = 𝑛
෍

𝐼:𝑆𝑖𝑧𝑒 𝐼 =𝑛

𝑇𝐴 𝐼

Average vs. Worst vs. Best Case Time Complexity

 Sometimes, best, worst, average time complexities are the same

 If there is a difference, then best time complexity could be overly
pessimistic, worst time complexity could be overly pessimistic, and
average time complexity is most useful

 However, average case time complexity is usually hard to compute

 Therefore, most often, use worst time complexity
 worst time complexity is useful as it gives bound on the maximum

amount of time one will have to wait for the algorithm to complete

 default in this course

 unless stated otherwise, whenever we mention time complexity,
assume we mean worst case time complexity

 Suppose 𝐴 has worst and best case complexities Θ 𝑛2 and Θ 𝑛
 can say complexity of 𝐴 is 𝑂 𝑛2 , implying that 𝐴 takes at most 𝑂 𝑛2

time, but can have better time, depending on input

O-notation and Running Time of Algorithms

 It is important not to try make comparisons between algorithms
using 𝑂-notation

 Suppose algorithm A and B both solve the same problem
 A has worst-case runtime 𝑂(𝑛3)
 B has worst-case runtime 𝑂(𝑛2)

 Cannot conclude that B is more efficient that A for all inputs
1. the worst case runtime may only be achieved on some

instances
2. more importantly, 𝑂-notation is only an upper bound, A

could have worst case runtime 𝑂(𝑛)
 To compare algorithms, should use Θ notation

Running Time: Theory and Practice, Multiplicative
Constants

 Algorithm A has runtime 𝑇 𝑛 = 10000𝑛2

 Algorithm B has runtime 𝑇 𝑛 = 10𝑛2

 Theoretical efficiency of A and B is the same, Θ 𝑛2

 In practice, algorithm B will run faster (for most implementations)

 multiplicative constants matter in practice, given two
algorithms with the same growth rate

 but we will not talk about this issue more in this course

Running Time: Theory and Practice, Small Inputs

 Algorithm A running time 𝑇 𝑛 = 75𝑛 + 500

 Algorithm B running time 𝑇 𝑛 = 5𝑛2

 Then B is faster for 𝑛 ≤ 20
 will use this fact when talking about practical implementation of

recursive sorting algorithms

15 205 100

3,000

2,500

2,000

1,500

1,000

500

0
25

Outline

 CS240 overview
 Course objectives
 Course topics

 Introduction and Asymptotic Analysis
 algorithm design
 pseudocode
 measuring efficiency
 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms
 helpful formulas

Design of MergeSort

Input: Array A of 𝑛 integers

Step 1: split A into two subarrays

 AL consists of the first
𝑛

2
elements

 AR consists of the last
𝑛

2
elements

Step 2: Recursively run MergeSort on AL and AR

Step 3: Use function Merge to merge now sorted AL and

AR into a single sorted array

AL AR

MergeSort

 Two tricks to avoid copying/initializing too many arrays
 recursion uses parameters that indicate the range of the array that needs

to be sorted

 array 𝑆 used for merging is passed along as parameter

Merging Two Sorted Subarrays: Initialization

3 4 5 7 1 1 2 8 9A
l m r

l

3 4 5 7 1 1 2 8 9S
m r

iL iR

Merging Two Sorted Subarrays: Merging Starts

3 4 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 4 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

m r

1 1 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

Merging Two Sorted Subarrays: Merging Cont.
m r

1 1 2 3 4 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

iL > m, done with the first subarray

Merge

 Merge takes Θ(𝑙 – 𝑟 + 1) time

 this is Θ(𝑛) time for merging 𝑛 elements

Analysis of MergeSort
 Let 𝑇 𝑛 be time to run MergeSort

on an array of length 𝑛

 Steps 5 takes 𝑇
𝑛

2

 Steps 6 takes 𝑇
𝑛

2

 Step 7 takes Θ 𝑛

 The recurrence relation for MergeSort

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 𝑖 𝑓 𝑛 > 1

𝑐 𝑖 𝑓 𝑛 = 1

Analysis of MergeSort

 Sloppy recurrence with floors and ceilings removed

 Exact and sloppy recurrences are identical when n is a power of 2

 Recurrence easily solved when n = 2j

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 𝑐𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

Visual proof via Recursion Tree 𝑻 𝒏 = ቐ
𝟐𝑻

𝒏

𝟐
+ 𝒄 𝒏 𝐢 𝐟 𝒏 > 𝟏

𝒄 𝐢 𝐟 𝒏 = 𝟏

𝑛𝑛

𝑛
𝑛

2
𝑛
𝑛

2

𝑐 𝑛

𝑛
𝑛

22
𝑛
𝑛

22

𝑐
𝑛

2
𝑐

𝑛

2

𝑛
𝑛

22
𝑛
𝑛

22

𝑛
𝑛

2𝑙𝑜𝑔𝑛 𝑛
𝑛

2𝑙𝑜𝑔𝑛 𝑛
𝑛

2𝑙𝑜𝑔𝑛……………….

𝑐 𝑐 𝑐

𝑛
 𝑐𝑛 operations on each tree level, log 𝑛 levels, total work is 𝑐𝑛 log 𝑛 ∈ Θ 𝑛 log 𝑛

𝑐
𝑛

22
𝑐

𝑛

22
𝑐

𝑛

22 𝑐
𝑛

22

tree levels

0

1

2

log 𝑛

total work per level

𝑐 𝑛

𝑐 𝑛

𝑐 𝑛

𝑐 𝑛

…
…

…
…

…
…

.

#nodes

20

21

22

2𝑙𝑜𝑔𝑛

Analysis of MergeSort

 Can show 𝑇 𝑛 ∈ Θ 𝑛 log 𝑛 for all 𝑛 by analyzing exact
recurrence

 for smallest 𝑚 s.t. 2𝑚−1 ≤ 𝑛

 𝑇 2𝑚−1 ≤ 𝑇 𝑛 ≤ 𝑇 2𝑚

 𝑇 2𝑚−1 , 𝑇 2𝑚 ∈ Θ 𝑛 log 𝑛

Some Recurrence Relations

 Once you know the result, it is (usually) easy to prove by induction

 You can use these facts without a proof, unless asked otherwise

 Many more recursions, and some methods to solve, in cs341

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Order Notation Summary
 𝑂-notation 𝑓(𝑛) ∈ 𝑂 𝑔 𝑛 if there exist constants 𝑐 > 0 and

𝑛0 ≥ 0 s.t. |𝑓 (𝑛)| ≤ 𝑐 |𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 Ω-notation 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) if there exist constants 𝑐 > 0 and
𝑛0 ≥ 0 s.t. 𝑐 |𝑔 (𝑛)| ≤ |𝑓 (𝑛)| for all 𝑛 ≥ 𝑛0

 Θ-notation 𝑓(𝑛) ∈ Θ(𝑔 (𝑛)) if there exist constants 𝑐1, 𝑐2 > 0 and
𝑛0 ≥ 0 s.t. 𝑐1|𝑔(𝑛)| ≤ |𝑓 (𝑛)| ≤ 𝑐2 |𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 ω-notation

𝑓(𝑛) ∈ 𝜔(𝑔(𝑛)) if for all constants 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 0 ≤ 𝑐 |𝑔 (𝑛)| ≤ |𝑓(𝑛)| for all 𝑛 ≥ 𝑛0

 o-notation

𝑓(𝑛) ∈ 𝑜(𝑔(𝑛)) if for all constants 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. |𝑓(𝑛)| ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

Useful Sums

 Arithmetic σ𝑖=0
𝑛−1 𝑎 + 𝑑𝑖 = 𝑛𝑎 +

𝑑𝑛(𝑛−1)

2
∈ Θ 𝑛2

 Geometric σ𝑖=0
𝑛−1 𝑎𝑟𝑖 =

𝑎
𝑟𝑛−1

𝑟−1
∈ Θ 𝑟𝑛−1 if 𝑟 > 1

𝑛𝑎 ∈ Θ 𝑛 if 𝑟 = 1

𝑎
1−𝑟𝑛

1−𝑟
∈ Θ 1 if 0 < 𝑟 < 1

 Harmonic σ𝑖=1
𝑛 1

𝑖
= ln 𝑛 + γ + 𝑜(1) ∈ Θ log 𝑛

 A few more ෍
𝑖=1

𝑛 1

𝑖2
∈ Θ 1 ෍

𝑖=1

𝑛

𝑖𝑘 ∈ Θ 𝑛𝑘+1 for 𝑘 ≥ 0

෍
𝑖=0

∞

𝑖𝑝(1 − 𝑝)𝑖−1 =
1

𝑝
for 0 < 𝑝 < 1

 You can use these facts without a proof, unless asked otherwise

Useful Math Facts

