
Module 1: Introduction and Asymptotic Analysis

CS 240 – Data Structures and Data Management

A. Hunt and O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science,
University of Waterloo

Winter 2023

Outline

 CS240 overview
 course objectives

 course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Outline

 CS240 overview
 course objectives

 course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Course Objectives

 When first learn to program, emphasize correctness

 does program output the expected results?

 This course is also concerned with efficiency

 does program use computer resources efficiently?

 processor time, memory space

 Strong emphasis on mathematical analysis of efficiency

 Will study efficient methods of storing, accessing, and
performing operations on large collections of data

Course Objectives

 New abstract data types (ADTs)
 how to implement ADT efficiently using appropriate

data structures

 typical operations in data structures

 inserting new data items

 deleting data items

 searching for specific data items

 Algorithms
 presented in pseudocode

 analyzed using order notation (big-Oh, etc.)

Course Topics

 asymptotic (big-Oh) analysis

 priority queues and heaps

 sorting, selection

 binary search trees, AVL trees, B-trees

 skip lists

 hashing

 quadtrees, kd-trees

 range search

 tries

 string matching

 data compression

twists on data
structures and
algorithms you
already know

makes efficient
dictionaries in
practice

searching data in
multiple
dimensions
special dictionary
for strings

useful for
unstructured data

mathematical tool
for efficiency

CS Background

 Topics covered in previous courses with relevant sections [Sedgewick]

 arrays, linked lists (Sec. 3.2–3.4)

 strings (Sec. 3.6)

 stacks, queues (Sec. 4.2–4.6)

 abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)

 recursive algorithms (5.1)

 binary trees (5.4–5.7)

 sorting (6.1–6.4)

 binary search (12.4)

 binary search trees (12.5)

 probability and expectation (Goodrich & Tamassia, Section 1.3.4)

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Algorithm Design Terminology
 Problem: given a problem instance, carry out a particular

computational task

 sort an input array A

 Problem Instance: input for the specified problem

 A = [5, 2, 1, 8, 2]

 Problem Solution: output (correct answer) for the specified
problem instance

 A = [1, 2, 2, 5, 8]

 Size of a Problem Instance size(I)

 a positive integer measuring size of instance I

 size(A) = 5

 often use 𝑛 to denote instance size

 often input is array, and instance size is array size

Algorithm Design Terminology

 Algorithm: step-by-step process (usually described in
pseudocode) for carrying out a series of computations, given an
arbitrary problem instance I

 Algorithm solving a problem: algorithm A solves problem Π if for
every instance I of Π, A computes a valid solution in finite time

 Program: implementation of an algorithm using a
specified computer language

 In this course, the emphasis is on algorithms
 as opposed to programs or programming

Algorithms in Practice

 For a problem Π, can have many algorithms

 Given a problem Π

1. Algorithm Design: design algorithm A that solves Π

2. Algorithm Analysis: assess correctness and
efficiency of A

3. Implementation: if acceptable (correct and
efficient), implement A

 many possible programs implementing A

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Pseudocode
 Pseudocode is a method of communicating algorithm to a human

 whereas program (implementation) is a method of communicating
algorithm to a computer

 Pseudocode
 preferred language for describing algorithms

 omits obvious details, e.g. variable declarations

 sometimes uses English descriptions

 has limited if any error detection

 sometimes uses mathematical notation

Pseudocode Details

 Control flow
if … then … [else …]
while … do …
repeat … until …
for … do …
indentation replaces braces

 Expressions
← assignment
== equality testing
n2 superscripts and other mathematical formatting allowed

 Method declaration
Algorithm method (arg, arg…)
Input …
Output …

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax A[0]

for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

return currentMax

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Efficiency of Algorithms/Programs

 How decide which algorithm or program is the most efficient for
a given problem?

 Efficiency

 time: amount of time program takes to run

 also called time complexity

 space: amount of memory program requires

 also called space complexity

 Efficiency depends on size(I), size of a given problem instance I

 efficiency is a function of input size

 Primarily concerned with time efficiency in this course

Running Time of Algorithms/Programs

 One option: experimental studies

 write program implementing
the algorithm

 run program with inputs of
varying size and composition

 can use clock() from time.h,
to measure running time

 plot/compare results
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size
T

im
e

 (
m

s
)

Running Time of Algorithms/Programs

 Shortcomings of experimental studies
 implementation may be complicated/costly

 timings are affected by many factors

 hardware (processor, memory)

 software environment (OS, compiler, programming language)

 human factors (programmer)

 cannot test all inputs, hard to select good sample inputs

 thus cannot easily compare two algorithms/programs

 Want framework that
 does not require implementing the algorithm

 independent of hardware/software environment

 takes into account all possible input instances

Theoretical Framework For Algorithm Analysis

 To overcome dependency on hardware/software

 write algorithms in pseudo-code
 language independent

 “run” algorithms on idealized computer model
 allows to reason about efficiency

Idealized Computer Model

 Random Access Machine (RAM) Model

 has a set of memory cells, each of which stores one data item
 memory cells are big enough to hold stored items

 any access to a memory location takes constant time

 run primitive operations on this machine
 primitive operation takes constant time

 Simplified model
 most of these assumptions are not valid for a real computer

CPU

unlimited memory

random access (equally fast
access to any memory cell)

Theoretical Framework For Algorithm Analysis

 To overcome dependency on hardware/software

 write algorithms in pseudo-code
 language independent

 “run” algorithms on idealized computer model
 allows to reason about efficiency

 instead of time, count number of primitive operations
 assume all primitive operations take the same time

 measure time efficiency of an algorithm in terms of
growth rate

 avoids complicated functions and isolates the factor that
effects the efficiency the most for large inputs

 This framework makes many simplifying assumptions
 makes analysis of algorithms easier

Theoretical Analysis of Running time
 Pseudocode is a sequence of primitive operations

 A primitive operation is
 independent of input size

 Examples of Primitive Operations
 addition, subtraction, etc.

 𝑥 ∙ 𝑛 is a primitive operation

 𝑥𝑛 is not a primitive operation, runtime
depends on input size 𝑛

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax A[0]

for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

return currentMax

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax A[0]

for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

return currentMax assigning a value to a variable

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax A[0]

for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

return currentMax
 indexing into an array

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax A[0]

for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

return currentMax

 returning from a method

 exact definition not important

 will see why later

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax A[0]

for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

return currentMax

 To find running time, count the number of primitive operations
 as a function of input size 𝒏

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

Algorithm arrayMax(A, n)

currentMax A[0]
for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

{ increment counter i }

return currentMax

Theoretical Analysis of Running time

operations

2

Theoretical Analysis of Running time

Algorithm arrayMax(A, n)

currentMax A[0]
for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

{ increment counter i }

return currentMax

operations

2

i 1
𝑛 − 1
𝑖 = 1, check 𝑖 < 𝑛 − 1 (enter inside loop)
𝑖 = 2, check 𝑖 < 𝑛 − 1 (enter inside loop)
…
𝑖 = 𝑛 − 1, check 𝑖 < 𝑛 − 1(enter inside loop)
𝑖 = 𝑛, check 𝑖 < 𝑛 − 1(do not enter inside loop)

Total: 2+n

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

Algorithm arrayMax(A, n)

currentMax A[0]
for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

{ increment counter i }

return currentMax

Theoretical Analysis of Running time

operations

2
2 + n

2(n 1)

2(n 1)

2(n 1)

1

Total: 7n - 1

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

 Algorithm arrayMax executes 𝑻(𝒏) = 7𝒏 1 primitive operations

 Let 𝑎 = time taken by fastest primitive operation

𝑏 = time taken by slowest primitive operation

 𝑻(𝒏) is bounded by two linear functions
𝑎 (7𝒏 1) 𝑻(𝒏) 𝑏(7𝒏 1)

 Changing hardware/software environment affects 𝑻(𝒏) by a
multiplicative constant factor

 𝑻 𝒏 = 𝑐𝑜𝑛𝑠𝑡 ∙ 𝑛 [ignoring the subtracted constant]

 𝑐𝑜𝑛𝑠𝑡 will change depending on software/hardware environment

 Want to say 𝑻 𝒏 = 7𝒏 1 is essentially 𝒏

 Want to ignore constant multiplicative factors

Theoretical Analysis of Running time: Multiplicative factors

Theoretical Analysis of Running time: Lower Order Terms

 Running time on small inputs hardly ever matters

 consider behaviour of algorithms for large input sizes

 further simplifies running time analysis

 Consider 𝑻(𝒏) = 𝒏2 + 𝒏

 For large 𝒏, only the fastest growing factor is important

𝑻(100,000) = 10,000,000,000 + 100,000

 Want to ignore slower growing terms

Theoretical Analysis of Running time

 Thus we want to ignore

 multiplicative constant factors

 lower-order (slower growing) terms

 This means focusing on the growth rate of the function
 10𝒏2 + 100𝒏 has growth rate of 𝒏𝟐

 10𝒏 + 10 has growth rate of 𝒏

 Asymptotic analysis (i.e. order notation) gives tools to
formally focus on the growth rate

Outline

 CS240 overview
 Course objectives
 Course topics

 Introduction and Asymptotic Analysis
 algorithm design
 pseudocode
 measuring efficiency
 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms
 helpful formulas

Order Notation: big-Oh

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 Bound from above by function expressing “growth rate”

𝑓 𝑛

𝑛0

do not care what happens here 𝑓 𝑛 ≤ 𝑐𝑔(𝑛)

 Need 𝑐 to “get rid” of multiplicative constant in the growth rate
 cannot say 5𝑛2≤ 𝑛2, but can say 5𝑛2 ≤ 𝑐𝑛2 for some constant 𝑐

 Absolute value signs are not relevant for analysis of run-time or
space, but useful in other applications of asymptotic notation

𝑐𝑔 𝑛a set of
functions

big-Oh Example

O-notation

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 Example:
𝑓 𝑛 = 75𝑛 + 500

𝑔 𝑛 = 5𝑛2

15 205 100

3,000

2,500

2,000

1,500

1,000

500

0
25

 Take 𝑐 = 1, 𝑛0 = 20

 Can also take 𝑐 = 10, 𝑛0 = 30

𝑓 𝑛

𝑔 𝑛

Order Notation: big-Oh

 Big-O gives asymptotic upper bound

 𝑓 𝑛 ∈ Ο 𝑔 𝑛 means function 𝑓(𝑛) is “bounded” above by function 𝑔(𝑛)

1. eventually, for large enough 𝑛

2. ignoring multiplicative constant

 Growth rate of 𝑓(𝑛) is slower or the same as growth rate of 𝑔(𝑛)

 Use big-O to bound the growth rate of algorithm
 𝑓(𝑛) for running time

 𝑔(𝑛) for growth rate

 should choose 𝑔(𝑛) as simple as possible

 Saying 𝑓 𝑛 is Ο 𝑔 𝑛 is equivalent to saying 𝑓 𝑛 ∈ Ο 𝑔 𝑛

𝑓 𝑛 ∈ Ο 𝑔 𝑛

if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

𝑓 𝑛

𝑛0

do not care what happens here
𝑓 𝑛 ≤ 𝑐𝑔(𝑛)

𝑔 𝑛𝑐

Order Notation: big-Oh
𝑓 𝑛 ∈ Ο 𝑔 𝑛

if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

3,000

2,500

2,000

1,500

1,000

500

 Choose 𝑔(𝑛) as simple as possible

𝑓(𝑛)

𝑔(𝑛)

 Previous example: 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 5𝑛2

 Simpler function for growth rate: 𝑔 𝑛 = 𝑛2

 Can show 𝑓 𝑛 ∈ Ο 𝑔 𝑛 as follows

 set 𝑓 𝑛 = 𝑔(𝑛) and solve quadratic equation

 intersection point is 𝑛 = 82

82

 take 𝑐 = 1, 𝑛0 = 82

Order Notation: big-Oh

 Do not have to solve quadratic equation

 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛2

 Show 𝑓 𝑛 ∈ Ο 𝑔 𝑛

 For all 𝑛 ≥ 1

75𝑛 ≤ 75𝑛 ∙ 𝑛

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

75𝑛 > 75𝑛 ∙ 𝑛 = 75𝑛2

= 75𝑛2

 Side note: for 0 < 𝑛 < 1

Order Notation: big-Oh

 Do not have to solve quadratic equation

 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛2

 Show 𝑓 𝑛 ∈ Ο 𝑔 𝑛

75𝑛 + 500 ≤75𝑛2 = 575𝑛2

for all 𝑛 ≥ 1

 So take 𝑐 = 575, 𝑛0 = 1

+500𝑛2

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

Order Notation: big-Oh

 Better (i.e. “tighter”) bound on growth
 can bound 𝑓 𝑛 = 75𝑛 + 500 by slower growth than 𝑛2

 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛

 Show 𝑓 𝑛 ∈ Ο 𝑔 𝑛

75𝑛 + 500 ≤ 75𝑛 + 500𝑛 = 575𝑛

for all 𝑛 ≥ 1

 So take 𝑐 = 575, 𝑛0 = 1

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

More big-O Examples

 Prove that
2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

 Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 + 3𝑛 + 11 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 + 3𝑛 + 11 ≤ 2𝑛2 = 16𝑛2

for all 𝑛 ≥ 1

 So take 𝑐 = 16, 𝑛0 = 1

+3𝑛2 +11𝑛2

More big-O Examples

 Prove that
2𝑛2 − 3𝑛 + 11 ∈ 𝑂 𝑛2

 Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 − 3𝑛 + 11 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 − 3𝑛 + 11 ≤ 2𝑛2 = 13𝑛2

for all 𝑛 ≥ 1

 Take 𝑐 = 13, 𝑛0 = 1

+ 0 +11𝑛2

More big-O Examples

 Have to be careful with logs

 Prove that
2𝑛2 log 𝑛 + 3𝑛 ∈ 𝑂 𝑛2 log 𝑛

 Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.
2𝑛2 log 𝑛 + 3𝑛 ≤ 𝑐𝑛2 log 𝑛 for all 𝑛 ≥ 𝑛0

2𝑛2 log 𝑛 + 3𝑛 ≤ 2𝑛2 log 𝑛 ≤ 5𝑛2 log 𝑛
for all 𝑛 ≥ 1

 Take 𝑐 = 5, 𝑛0 = 2

+3𝑛2 log 𝑛

for all 𝑛 ≥ 2

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

 Last step: express the running time using asymptotic notation

Algorithm arrayMax(A, n)

currentMax A[0]
for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

{ increment counter i }

return currentMax

Theoretical Analysis of Running time

operations

𝑐1

𝑐2𝑛

𝑐3

Total: 𝑐1+𝑐3 + 𝑐2𝑛 which is 𝑂(𝑛)

Algorithm arrayMax(A, n)

currentMax A[0]
for i 1 to n 1 do

if A[i] currentMax then

currentMax A[i]

{ increment counter i }

return currentMax

Theoretical Analysis of Running time

operations

𝑐𝑛

Total: 𝑐 + 𝑐𝑛 which is 𝑂(𝑛)

𝑐

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

 Last step: express the running time using asymptotic notation

Need for Asymptotic Tight bound

 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

 But also 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛10

 this is a true but hardly a useful statement

 if I say I have less than a million $ in my pocket, it is a true, but useless
statement

 i.e. this statement does not give a tight upper bound

 a bound is tight if it uses the slowest growing function possible

 Want an asymptotic notation that guarantees a tight bound

 For tight bound, also need asymptotic lower bound

Aymptotic Lower Bound

 Ω-notation (asymptotic lower bound)

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 𝑓 𝑛 ∈ Ω 𝑔 𝑛 means function 𝑓(𝑛) is asymptotically bounded

below by function 𝑔(𝑛)

1. eventually, for large enough 𝑛

2. ignoring multiplicative constant

 Growth rate of 𝑓(𝑛) is larger or the same as growth rate of 𝑔(𝑛)

𝑐𝑔 𝑛

𝑛0

do not care what happens here
𝑓 𝑛 ≥ 𝑐𝑔(𝑛)

𝑓 𝑛

Asymptotic Lower Bound

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

 Prove that 2𝑛2 + 3𝑛 + 11 ∈ Ω 𝑛2

 Find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 + 3𝑛 + 11 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 + 3𝑛 + 11

 Take 𝑐 = 2, 𝑛0 = 0

≥ 2𝑛2 for all 𝑛 ≥ 0

Asymptotic Lower Bound

 Prove that
1

2
𝑛2 − 5𝑛 ∈ Ω 𝑛2

1

2
𝑛2 − 5𝑛 < 0 for 0 < 𝑛 < 10

 since we ignore absolute value in the derivation, we need to
ensure 𝑓 𝑛 is actually positive

 for positivity of 𝑓 𝑛 , make sure to take 𝑛0 ≥ 10

 Need to find 𝑐 and 𝑛0 s.t.
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

 Unlike before, cannot ‘drop’ lower growing term, as
1

2
𝑛2 − 5𝑛 ≤

1

2
𝑛2

 Need
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

𝑎𝑛2 𝑏𝑛2 positive for large
enough 𝑛

1

2
𝑛2 − 5𝑛 ≥ 𝑎𝑛2 + (𝑏𝑛2 − 5𝑛) ≥ 𝑎𝑛2

for large enough 𝑛

Asymptotic Lower Bound

 For positivity of 𝑓 𝑛 , make sure to take 𝑛0 ≥ 10

 Need to find 𝑐 and 𝑛0 s.t.
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

1

2
𝑛2 − 5𝑛 =

1

4
𝑛2 +

1

4
𝑛2 − 5𝑛

 Take 𝑐 =
1

4
, 𝑛0 = 20

 𝑛0 happened to be bigger than 10, as needed, automatically

=
1

4
𝑛2 +

1

4
𝑛2 − 5𝑛

≥ 0, if 𝑛 ≥ 20

≥
1

4
𝑛2

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

so take 𝑛0 ≥ 20

 Rewrite

Tight Asymptotic Bound
 Θ-notation

𝑓(𝑛) ∈ Θ 𝑔(𝑛) if there exist constants 𝑐1, 𝑐2 > 0, 𝑛0 ≥ 0 s.t.
𝑐1 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 Easy to prove that

𝑓(𝑛) ∈ Θ 𝑔(𝑛) ⇔ 𝑓(𝑛) ∈ Ο 𝑔(𝑛) and 𝑓(𝑛) ∈ Ω 𝑔(𝑛)

 Therefore, to show that 𝑓(𝑛) ∈ Θ 𝑔(𝑛) , it is enough to show

1. 𝑓(𝑛) ∈ Ο 𝑔(𝑛)

2. 𝑓(𝑛) ∈ Ω 𝑔(𝑛)

 that′s why we said that for tight bound, we also need lower bound

 𝑓 𝑛 ∈ Θ 𝑔 𝑛 means 𝑓 𝑛 , 𝑔(𝑛) have equal growth rates

Tight Asymptotic Bound

 Proved previously that

 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

 2𝑛2 + 3𝑛 + 11 ∈ Ω 𝑛2

 Thus 2𝑛2+3𝑛 + 11 ∈ Θ 𝑛2

 Ideally, should use Θ to determine growth rate of algorithm

 𝑓 𝑛 for running time

 𝑔 𝑛 for growth rate

 Sometimes determining tight bound is hard, so big-O is used

Tight Asymptotic Bound

Prove that log𝑏 𝑛 ∈ Θ log 𝑛 for 𝑏 > 1

 Find 𝑐1, 𝑐2 > 0, 𝑛0 ≥ 0 s.t. 𝑐1log 𝑛 ≤ log𝑏 𝑛 ≤ 𝑐2log 𝑛 for all 𝑛 ≥ 𝑛0

 log𝑏 𝑛 =
1

log 𝑏
log 𝑛

1

log 𝑏
log 𝑛 ≤ log𝑏 𝑛 ≤

1

log 𝑏
log 𝑛

 Since 𝑏 > 1, log 𝑏 > 0

 Take 𝑐1 = 𝑐2 =
1

log 𝑏
and 𝑛0 = 1

Strictly Smaller Asymptotic Bound

 𝑓 𝑛 = 2𝑛2+3𝑛 + 11 ∈ Θ 𝑛2

 How to say 𝑓 𝑛 is asymptotically strictly smaller than 𝑔 𝑛 = 𝑛3?

 o-notation

𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 Meaning: 𝑓 grows much slower than 𝑔

𝑓 𝑛

𝑔 𝑛 0.1𝑔 𝑛 0.01𝑔 𝑛 0.00000001𝑔 𝑛

Strictly Larger Asymptotic Bound

 ω-notation

𝑓 𝑛 ∈ ω(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 Meaning: 𝑓 grows much faster than 𝑔

Strictly Smaller Proof Example
𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any 𝑐 > 0, there exists 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

Prove that 5𝑛 ∈ 𝑜 𝑛2

 Given 𝑐 > 0 need to find 𝑛0 s.t. 5𝑛 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

 Dividing both sides by 𝑛 , this is equivalent to the statement below

 Given 𝑐 > 0 need to find 𝑛0 s.t. 5 ≤ 𝑐𝑛 for all 𝑛 ≥ 𝑛0

 holds for 𝑛 ≥
5

𝑐

 Therefore, 5𝑛 ≤ 𝑐𝑛2 for 𝑛 ≥
5

𝑐

 Take 𝑛0 =
5

𝑐

 Note that for 𝑜-proofs, 𝑛0 will usually depend on 𝑐

Strictly Smaller Proof Example
𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any 𝑐 > 0, there exists 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

Prove that 5𝑛 ∈ 𝑜 𝑛2

 Given 𝑐 > 0 need to find 𝑛0 s.t. 5𝑛 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

 Dividing both sides by 𝑛 , this is equivalent to the statement below

 Given 𝑐 > 0 need to find 𝑛0 s.t. 5 ≤ 𝑐𝑛 for all 𝑛 ≥ 𝑛0

 holds for for 𝑛 ≥
5

𝑐

 Therefore, 5𝑛 ≤ 𝑐𝑛2 for 𝑛 ≥
5

𝑐

 Take 𝑛0 =
5

𝑐

 Note that for 𝑜-proofs, 𝑛0 will usually depend on 𝑐

𝑓 𝑛

𝑔 𝑛 0.1𝑔 𝑛 0.01𝑔 𝑛 0.00000001𝑔 𝑛

Limit Theorem for Order Notation

 So far had proofs for order notation from the first principles

 i.e. from the definition

 There is a useful limit theorem for order notation

 Suppose that 𝑓(𝑛) > 0 and 𝑔(𝑛) > 0 for all 𝑛 ≥ 𝑛0

 Suppose that L = lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛

 Then 𝑓 𝑛 ∈

𝑜 𝑔 𝑛 𝑖𝑓 𝐿 = 0

Θ 𝑔 𝑛 𝑖𝑓 0 < 𝐿 < ∞

𝜔 𝑔 𝑛 𝑖𝑓 𝐿 = ∞

 The required limit can often be computed using l’Hopital’s rule

 Theorem gives sufficient but not necessary conditions

Example 1

Let 𝑓 𝑛 be a polynomial of degree 𝑑 ≥ 0 with𝑐𝑑 > 0

𝑓 𝑛 = 𝑐𝑑𝑛𝑑 +𝑐𝑑−1 𝑛𝑑−1 + ⋯ + 𝑐1 𝑛 + 𝑐0

Then 𝑓 𝑛 ∈ Θ 𝑛𝑑

Proof:

lim
𝑛→∞

𝑓(𝑛)

𝑛𝑑
= lim
𝑛→∞

𝑐𝑑𝑛𝑑

𝑛𝑑
+

𝑐𝑑−1𝑛𝑑−1

𝑛𝑑
+ ⋯ +

𝑐0

𝑛𝑑

= lim
𝑛→∞

𝑐𝑑𝑛𝑑

𝑛𝑑 + lim
𝑛→∞

𝑐𝑑−1𝑛𝑑−1

𝑛𝑑
lim

𝑛→∞

𝑐0

𝑛𝑑+ ⋯ +

= 0 = 0

= 𝑐𝑑 > 0

= 𝑐d

Example 2

 Compare growth rates of log 𝑛 and 𝑛

lim
𝑛→∞

log 𝑛

𝑛
= lim

𝑛→∞

ln 𝑛
ln 2

𝑛
= lim

𝑛→∞

1
ln 2 ⋅ n

1

L’Hopital rule

= 0= lim
𝑛→∞

1

n ⋅ ln 2

 log 𝑛 ∈ 𝑜(𝑛)

Example 3
 Prove log 𝑛 𝑎 ∈ o(𝑛𝑑), for any (big) 𝑎 > 0, (small) 𝑑 > 0

1) Prove (by induction):

lim
𝑛→∞

lnk 𝑛

𝑛
= 0 for any integer 𝑘

 Base case 𝑘 = 1 is proven on previous slide

 Inductive step: suppose true for 𝑘 − 1

 lim
𝑛→∞

lnk 𝑛

𝑛
= = 𝑘 lim

𝑛→∞

𝑙𝑛𝑘−1𝑛

𝑛
= 0

L’Hopital rule

lim
𝑛→∞

1
𝑛

𝑘 𝑙𝑛𝑘−1𝑛

1

2) Prove lim
𝑛→∞

lna 𝑛

𝑛𝑑 = 0

 lim
𝑛→∞

lna 𝑛

𝑛𝑑 = lim
𝑛→∞

ln𝑎/𝑑 𝑛

𝑛

𝑑

≤ lim
𝑛→∞

ln 𝑎/𝑑 𝑛

𝑛

𝑑

= 0

3) Finally lim
𝑛→∞

log 𝑛 𝑎

𝑛𝑑 = lim
𝑛→∞

ln 𝑛
𝑙𝑛2

𝑎

𝑛𝑑 =
1

𝑙𝑛2

𝑎

lim
𝑛→∞

ln 𝑛 𝑎

𝑛𝑑
= 0

Example 4

60

2520

0

151050

40

20

 Sometimes limit does not exist, but can prove from first principles

 Let 𝑓(𝑛) = 𝑛(2 + sin 𝑛𝜋/2)

 Prove that 𝑓(𝑛) is Θ(𝑛)

Example 4

 Let 𝑓(𝑛) = 𝑛(2 + sin 𝑛𝜋/2), prove that 𝑓(𝑛) is Θ(𝑛)

 Proof:

−1 ≤ 𝑠𝑖𝑛(any number) ≤ 1

𝑓(𝑛) ≤ 𝑛(2 + 1) = 3𝑛 for all 𝑛 ≥ 1

𝑛= 𝑛(2−1) ≤ 𝑓 𝑛 for all 𝑛 ≥ 1

𝑛 ≤ 𝑓 𝑛 ≤ 3𝑛 for all 𝑛 ≥ 1

Use 𝑐1 = 1, 𝑐2 = 3, 𝑛0 = 1

Order notation Summary

 𝑓(𝑛) ∈ Θ 𝑔(𝑛) : growth rates of 𝑓 and 𝑔 are the same

 𝑓(𝑛) ∈ o(𝑔 𝑛): growth rate of 𝑓 is less than growth rate of 𝑔

 𝑓(𝑛) ∈ ω 𝑔 𝑛 : growth rate of 𝑓 is greater than growth rate of 𝑔

 𝑓(𝑛) ∈ O 𝑔 𝑛 : growth rate of 𝑓 is the same or less than growth rate of 𝑔

 𝑓(𝑛) ∈ Ω(𝑔 𝑛): growth rate of 𝑓 is the same or greater than growth rate of 𝑔

Relationship between OrderNotations

One can prove the following relationships

 𝑓 𝑛 ∈ Θ 𝑔 𝑛 ⇔𝑔 𝑛 ∈ Θ 𝑓 𝑛

 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ Ω 𝑓 𝑛

 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ 𝜔 𝑓 𝑛

 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇒ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇒ 𝑓 𝑛 ∉ Ω 𝑔 𝑛

 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑓 𝑛 ∈ Ω 𝑔 𝑛

 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑓 𝑛 ∉ 𝑂 𝑔 𝑛

Algebra of Order Notations
 The following rules are easy to prove

1. Identity rule: 𝑓 𝑛 ∈ Θ 𝑓 𝑛

2. Transitivity

 if 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 then 𝑓 𝑛 ∈ 𝑂 ℎ 𝑛

 if 𝑓 𝑛 ∈ Ω 𝑔 𝑛 and 𝑔 𝑛 ∈ Ω ℎ 𝑛 then 𝑓 𝑛 ∈ Ω ℎ 𝑛

3. Maximum rules

Suppose that 𝑓 𝑛 > 0 and 𝑔 𝑛 > 0 for all 𝑛 ≥ 𝑛0, then

a) 𝑓 𝑛 + 𝑔 𝑛 ∈ Ω 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

b) 𝑓 𝑛 + 𝑔 𝑛 ∈ 𝑂 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

Proof:
𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 = either 𝑓 𝑛 or 𝑔(𝑛)

𝑓 𝑛 + 𝑔 𝑛 =

≤ 𝑓 𝑛 + 𝑔 𝑛a)

𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 + 𝑚𝑖𝑛 𝑓 𝑛 , 𝑔 𝑛

≤ 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 + 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

= 2𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

b)

Abuse of Notation

 Normally, say 𝑓 𝑛 ∈ Θ 𝑔 𝑛 because Θ 𝑔 𝑛 is a set

 Sometimes convenient to abuse of notation, i.e.

 𝑓 𝑛 = 𝑛2 + Θ 𝑛
 𝑓 𝑛 is a quadratic function plus a linear term

 𝑓 𝑛 = 𝑛2 + 𝑂 𝑛
 𝑓 𝑛 is a quadratic function plus a term that grows

slower or at the same rate as a linear function

 𝑓 𝑛 = 𝑛2 + 𝑂 1
 𝑓 𝑛 is a quadratic function plus a constant

 𝑓 𝑛 = 𝑛2 + 𝑜 1
 𝑓 𝑛 is a quadratic function plus a term that goes to 0

 example: 𝑓 𝑛 = 𝑛2 + 1/𝑛

Common Growth Rates

 Commonly encountered growth rates in increasing order of growth

 Θ 1 constant complexity

 Θ log 𝑛 logarithmic complexity

 Θ 𝑛 linear complexity

 Θ 𝑛log 𝑛 linearithmic

 Θ 𝑛log𝑘 𝑛 quasi-linear (𝑘 is constant, i.e. independent of the problem size)

 Θ 𝑛2 quadratic complexity

 Θ 𝑛3 cubic complexity

 Θ 2𝑛 exponential complexity

How Growth Rates Affect Running Time

 How running time affected when problem size doubles (𝑛 → 2𝑛)

 constant complexity: 𝑇 𝑛 = 𝑐

 logarithmic complexity: 𝑇 𝑛 = 𝑐 log 𝑛

 linear complexity: 𝑇 𝑛 = 𝑐𝑛

 linearithmic: 𝑇 𝑛 = 𝑐𝑛 log 𝑛

 quadratic complexity: 𝑇 𝑛 = 𝑐𝑛2

 cubic complexity: 𝑇 𝑛 = 𝑐𝑛3

 exponential complexity: 𝑇 𝑛 = 𝑐2𝑛

𝑇 2𝑛 = 𝑐

𝑇 2𝑛 = 𝑇 𝑛 + 𝑐

𝑇 2𝑛 = 2𝑇 𝑛

𝑇 2𝑛 = 2𝑇 𝑛 + 2𝑐n

𝑇 2𝑛 = 4𝑇 𝑛

𝑇 2𝑛 = 8𝑇 𝑛

𝑇 2𝑛 =
1

𝑐
𝑇2 𝑛

Comparison of Growth Rates

n log(n) n nlog(n) n2 n3 2n

8 3 8 24 64 512 256

16 4 16 64 256 4096 65536

32 5 32 160 1024 32768 4.3x109

64 6 64 384 4096 262144 1.8x1019

128 7 128 896 16384 2097152 3.4x1038

256 8 256 2048 65536 16777218 1.2x1077

Outline

 CS240 overview
 Course objectives
 Course topics

 Introduction and Asymptotic Analysis
 algorithm design
 pseudocode
 measuring efficiency

 analysis of algorithms

 analysis of recursive algorithms
 helpful formulas

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations that require Θ 1 (i.e. constant) time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations that require Θ 1 (i.e. constant) time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

𝑐

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations that require constant, i.e. Θ 1 time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

𝑗=𝑖

𝑛

𝑐

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations that require Θ 1 time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

𝑗=𝑖

𝑛

𝑐
𝑖=1

𝑛

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations that require Θ 1 time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

𝑗=𝑖

𝑛

𝑐 + 𝑐
𝑖=1

𝑛

Techniques for Algorithm Analysis

 Derived complexity as

𝑐1 +
𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐2 Some textbooks will write this as

𝑐 +
𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

 Or as 1 +
𝑖=1

𝑛

𝑗=𝑖

𝑛

1

 Now need to work out the sum

Sums: Review

𝑗=1

𝑛

1 = 1

𝑗 = 1 𝑗 = 2

+1

𝑗 = 3

+1

… 𝑗 = 𝑛

+1… = 𝑛

𝑘 = 𝑖 − 𝑖 + 1 = 1 𝑘 = 𝑖 + 1 − 𝑖 + 1 = 2 𝑘 = 𝑛 − 𝑖 + 1 = 𝑛 − 𝑖 + 1

𝑗=𝑖

𝑛

1 = 1

𝑗 = 𝑖 𝑗 = 𝑖 + 1

+1

… 𝑗 = 𝑛

+1… = 𝑛 − 𝑖 + 1

summand

index of
summation

Sums: Review

𝑗=𝑖

𝑛

(𝑛 − 𝑒𝑥) =𝑛 − 𝑒𝑥

𝑗 = 𝑖 𝑗 = 𝑖 + 1

+𝑛 − 𝑒𝑥

… 𝑗 = 𝑛

+𝑛 − 𝑒𝑥… = (𝑛 − 𝑖 + 1)(𝑛 − 𝑒𝑥)

Sums: Review

1

𝑖 = 1 𝑖 = 2

+ 2

𝑖 = 3

+ 3

… 𝑖 = 𝑛

+ 𝑛…𝑆 =
𝑖=1

𝑛

𝑖 =

1 + 2 + 3 + 𝑛𝑆 = …

𝑛 +(𝑛 − 1) +(𝑛 − 2) + 1𝑆 = …

𝑛 + 1 𝑛 + 1 𝑛 + 1 𝑛 + 1

2𝑆 = 𝑛 + 1 𝑛

𝑆 =
𝑖=1

𝑛

𝑖 =
1

2
𝑛 + 1 𝑛

+

Sums: Review

𝑎

𝑖 = 𝑎 𝑖 = 𝑎 + 1

+ (𝑎 + 1)

… 𝑖 = 𝑏

+ 𝑏…𝑆 =
𝑖=𝑎

𝑏

𝑖 =

𝑎 + (𝑎 + 1) + 𝑏𝑆 = …

𝑏 +(𝑏 − 1) + 𝑎𝑆 = …

𝑎 + 𝑏 𝑎 + 𝑏 𝑎 + 𝑏

2𝑆 = 𝑎 + 𝑏 (𝑏 − 𝑎 + 1)

𝑆 =
𝑖=𝑎

𝑏

𝑖 =
1

2
𝑎 + 𝑏 (𝑏 − 𝑎 + 1)

+

Techniques for Algorithm Analysis

𝑐 +
𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

 Complexity of algorithm Test1 is Θ 𝑛2

+𝑐
𝑖=1

𝑛

𝑛= 𝑐 −𝑐
𝑖=1

𝑛

𝑖 +𝑐
𝑖=1

𝑛

1

= 𝑐 +𝑐𝑛2−𝑐
𝑛 + 1 𝑛

2
+𝑐𝑛 = 𝑐

𝑛2

2
+ 𝑐

𝑛

2
+ 𝑐

= 𝑐 +
𝑖=1

𝑛

𝑐(𝑛 − 𝑖 + 1)
𝑖=1

𝑛

𝑐(𝑛 − 𝑖 + 1)

Techniques for Algorithm Analysis

 Two general strategies

1. Use Θ-bounds throughout the analysis and obtain Θ-
bound for the complexity of the algorithm

2. Prove a O-bound and a matching Ω-bound separately
 use upper bounds (for O-bounds) and lower bounds (for Ω-bound)

early and frequently

 easier because upper/lower bounds are easier to sum

Techniques for Algorithm Analysis
 First strategy

𝑐

Techniques for Algorithm Analysis
 First strategy

𝑘=𝑖

𝑗

𝑐𝑐

Techniques for Algorithm Analysis
 First strategy

𝑘=𝑖

𝑗

𝑐𝑐 +

Techniques for Algorithm Analysis
 First strategy

𝑘=𝑖

𝑗

𝑐
𝑗=𝑖

𝑛

𝑐 +

 Will write instead

𝑘=𝑖

𝑗

𝑐
𝑗=𝑖

𝑛

 This omits lower order term that does not effect Θ-bound

()

Techniques for Algorithm Analysis
 First strategy

𝑘=𝑖

𝑗

𝑐
𝑗=𝑖

𝑛

𝑖=1

𝑛

Techniques for Algorithm Analysis
 First strategy

 Will write instead

𝑐 +
𝑘=𝑖

𝑗

𝑐
𝑗=𝑖

𝑛

𝑖=1

𝑛

𝑘=𝑖

𝑗

𝑐
𝑗=𝑖

𝑛

𝑖=1

𝑛

 This omits lower order term that does not effect Θ-bound

Techniques for Algorithm Analysis

 First strategy

𝑘=𝑖

𝑗

𝑐
𝑗=𝑖

𝑛

𝑖=1

𝑛

= 𝑐
𝑖=1

𝑛

𝑗=𝑖

𝑛

= 𝑐
𝑖=1

𝑛 (𝑛 − 𝑖 + 1)(𝑛 − 𝑖 + 2)

2
=

𝑐

2

𝑖=1

𝑛

(𝑛2 − (2𝑛 + 3)𝑖 + 𝑖2 + 3𝑛 + 2)

=
𝑐

2
𝑛3 − 2𝑛 + 3

𝑛 + 1 𝑛

2
+

2𝑛 + 1 𝑛 + 1 𝑛

6
+ 3𝑛2 + 2𝑛

 Test2 is Θ 𝑛3

1

(𝑗 − 𝑖 + 1)
𝑘=𝑖

𝑗

1
𝑗=𝑖

𝑛

𝑐
𝑖=1

𝑛

=

+(𝑛 − 𝑖 + 1)+2 + ⋯

Techniques for Algorithm Analysis

 Second strategy, part 1: upper bound

 Add more iterations to make the number of summands in each
sum larger and summand independent of summation index

𝑐
𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐
𝑖=1

𝑛

𝑘=𝑖

𝑗

1 ≤

= 𝑐𝑛3

 Test2 is 𝑂(𝑛3)

 Essence of upper bound: made the number of summands in
each sum equal to 𝑛

= 𝑐
𝑖=1

𝑛

𝑗=1

𝑛

𝑛

= 𝑐
𝑖=1

𝑛

𝑛2

𝒌=𝟏

𝒏

1
𝒋=𝟏

𝑛

Techniques for Algorithm Analysis

 Cannot make number of summands in each sum equal to 𝑛

 To get cubic bound, it is sufficient to make the number of
summands equal to a fraction of 𝑛

𝑗=𝑖

𝑛

𝑐
𝑖=1

𝑛

𝑘=𝑖

𝑗

1 ≥ ?

 Second strategy, part 2: lower bound

𝑗=𝑛/4

2𝑛/4

𝑖=1

𝑛/5

𝑘=1

𝑛/2

1
𝑗=𝑛/4

2𝑛/4

=
𝑖=1

𝑛/5 𝑛

2

=
𝑛3

60

𝑗=𝑛/4

2𝑛/4

1=
𝑛

2

𝑖=1

𝑛/5

=
𝑛

3
∙

𝑛

4

𝑖=1

𝑛/5

1=
𝑛

2

𝑖=1

𝑛/5 𝑛

4
=

𝑛

3
∙

𝑛

4
∙

𝑛

5

Techniques for Algorithm Analysis

 To decrease number of iterations, increase the lower or increase the upper
range bounds, or both

≥
𝑘=𝟐𝟎

𝟖𝟎

1
𝑘=10

100

1

𝑘=𝑖

𝑗

1
𝑘=𝒊 + 𝟏

𝒋−𝟏

1≥

Techniques for Algorithm Analysis

 Let 0 < 𝑎 < 1

𝑗=𝑖

𝑛

𝑖=1

𝑛

𝑘=𝑖

𝑗

1 ≥
𝑖=1

𝑎𝑛

𝑗=𝑖

𝑛

𝑘=𝑖

𝑗

1

≥
𝑖=1

𝑎𝑛

𝑗=𝑎𝑛

𝑛

𝑘=𝑖

𝑗

1

≥
𝑖=1

𝑎𝑛

𝑗=𝑎𝑛

𝑛

𝑘=𝑎𝑛

𝑎𝑛

1

 Not enough iterations for the innermost loop!

 Solution: 𝑗 should start at a larger value than 𝑎𝑛

∈ Θ(𝑛2)

Techniques for Algorithm Analysis

 Let 0 < 𝑎, 𝑏 < 1, and 𝑎 + 𝑏 = 𝑐 < 1

𝑗=𝑖

𝑛

𝑖=1

𝑛

𝑘=𝑖

𝑗

1 ≥
𝑖=1

𝑎𝑛

𝑗=𝑖

𝑛

𝑘=𝑖

𝑗

1

≥
𝑖=1

𝑎𝑛

𝑗=𝑎𝑛+𝑏𝑛

𝑛

𝑘=𝑖

𝑗

1

≥
𝑖=1

𝑎𝑛

𝑗=𝑎𝑛+𝑏𝑛

𝑛

𝑘=𝑎𝑛

𝑏𝑛

1

𝑎𝑛 + 𝑏𝑛

 Plug in 𝑎 = 1/3, 𝑏 = 1/3 (but any 0 < 𝑎, 𝑏 < 1 with 𝑎 + 𝑏 = 𝑐 < 1 works)

𝑗=𝑖

𝑛

𝑖=1

𝑛

𝑘=𝑖

𝑗

1 ≥
𝑖=1

𝒏/𝟑

𝑗=𝟐𝒏/𝟑

𝑛

𝑘=𝒏/𝟑

𝟐𝒏/𝟑

1 =
𝑛3

27
=

𝑖=1

𝒏/𝟑

𝑗=𝟐𝒏/𝟑

𝑛 𝑛

3

 Test2 is Ω(𝑛3)

 Combined with upper bound, Test2 is Θ 𝑛3

Worst Case Time Complexity
 Can have different running times on two instances of equal size

 Let TA(I) be running time of an algorithm A on instance I

 Worst-case complexity of an algorithm: take the worst I

 Formal definition: the worst-case running time of algorithm A is a
function f : Z+ → R mapping 𝑛 (the input size) to the longest
running time for any input instance of size 𝑛

𝑇𝐴 𝑛 = 𝑚𝑎𝑥 𝑇𝐴 𝐼 : 𝑆𝑖𝑧𝑒 𝐼 = 𝑛

Worst Case Time Complexity
 Can have different running times on two instances of equal size

 Worst-case complexity of an algorithm: take worst instance I

𝑗=1

𝑖

𝑐
𝑖=1

𝑛−1

=
𝑖=0

𝑛−1

𝑐𝑖

= 𝑐 𝑛 − 1 𝑛/2

 𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 = 𝑐 𝑛 − 1 𝑛/2

 this is primitive operation count as a function of input size 𝑛

 after primitive operation count, apply asymptotic analysis

 Θ 𝑛2 or 𝑂 𝑛2 or Ω 𝑛2 are all valid statements
about the worst case running time

Best Case Time Complexity

 Best-case complexity of an algorithm: take the best instance I
 Formal definition: the best-case running time of an algorithm A is

a function f : Z+ → R mapping 𝑛 (the input size) to the smallest
running time for any input instance of size 𝑛

𝑖=1

𝑛−1

𝑐 = 𝑐(𝑛 − 1)

𝑇𝐴 𝑛 = 𝑚𝑖𝑛 𝑇𝐴 𝐼 : 𝑆𝑖𝑧𝑒 𝐼 = 𝑛

 𝑇𝑏𝑒𝑠𝑡 𝑛 = 𝑐 𝑛 − 1

 this is primitive operation count as a function of input size 𝑛

 after primitive operation count, apply asymptotic analysis
 Θ 𝑛 or 𝑂 𝑛 or Ω 𝑛 are all valid about best case running time

Best Case Time Complexity

Algorithm hasNegative(A, n)

Input: array A of n integers

found false

𝑖0

while 𝑖 < 𝑛 1 and found == false

if 𝐴[𝑖] < 0 then

found true

𝑖 𝑖 + 1

return found

 For hasNegative, best instance is
array A of size 𝑛 where 𝐴[0] < 0

 Best-case complexity is Θ(1)

 Note that best-case complexity is
a function of input size 𝑛

 Have to think of the best instance
of size 𝑛

 for Test3, best instance is sorted
(decreasing) array A of size 𝑛

 best instance is not an array of size 1

Average Case Time Complexity

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is function f : Z+ → R mapping 𝑛 (input size) to
the average running time of A over all instances of size 𝑛

𝑇𝐴
𝑎𝑣𝑔

𝑛 =
1

𝐼: 𝑆𝑖𝑧𝑒 𝐼 = 𝑛

𝐼:𝑆𝑖𝑧𝑒 𝐼 =𝑛

𝑇𝐴 𝐼

Average vs. Worst vs. Best Case Time Complexity

 Sometimes, best, worst, average time complexities are the same

 If there is a difference, then best time complexity could be overly
optimistic, worst time complexity could be overly pessimistic, and
average time complexity is most useful

 However, average case time complexity is usually hard to compute

 Therefore, most often, use worst time complexity
 worst time complexity is useful as it gives bound on the maximum

amount of time one will have to wait for the algorithm to complete

 default in this course

 unless stated otherwise, whenever we mention time complexity,
assume we mean worst case time complexity

 Suppose 𝐴 has worst and best case complexities Θ 𝑛2 and Θ 𝑛
 can say complexity of 𝐴 is 𝑂 𝑛2 , implying that 𝐴 takes at most 𝑂 𝑛2

time, but can have better time, depending on input

O-notation and Running Time of Algorithms

 It is important not to try make comparisons between algorithms
using 𝑂-notation

 Suppose algorithm A and B both solve the same problem
 A has worst-case runtime 𝑂(𝑛3)
 B has worst-case runtime 𝑂(𝑛2)

 Cannot conclude that B is more efficient that A for all inputs
1. the worst case runtime may only be achieved on some

instances
2. more importantly, 𝑂-notation is only an upper bound, A

could have worst case runtime 𝑂(𝑛)
 To compare algorithms, should use Θ notation

Running Time: Theory and Practice, Multiplicative
Constants

 Algorithm A has runtime 𝑇 𝑛 = 10000𝑛2

 Algorithm B has runtime 𝑇 𝑛 = 10𝑛2

 Theoretical efficiency of A and B is the same, Θ 𝑛2

 In practice, algorithm B will run faster (for most implementations)

 multiplicative constants matter in practice, given two
algorithms with the same growth rate

 but we will not talk about this issue more in this course

Running Time: Theory and Practice, Small Inputs

 Algorithm A running time 𝑇 𝑛 = 75𝑛 + 500

 Algorithm B running time 𝑇 𝑛 = 5𝑛2

 Then B is faster for 𝑛 ≤ 20
 will use this fact when talking about practical implementation of

recursive sorting algorithms

15 205 100

3,000

2,500

2,000

1,500

1,000

500

0
25

Outline

 CS240 overview
 Course objectives
 Course topics

 Introduction and Asymptotic Analysis
 algorithm design
 pseudocode
 measuring efficiency
 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms
 helpful formulas

Design of MergeSort

Input: Array A of 𝑛 integers

Step 1: split A into two subarrays

 AL consists of the first
𝑛

2
elements

 AR consists of the last
𝑛

2
elements

Step 2: Recursively run MergeSort on AL and AR

Step 3: Use function Merge to merge now sorted AL and

AR into a single sorted array

AL AR

MergeSort

 Two tricks to avoid copying/initializing too many arrays
 recursion uses parameters that indicate the range of the array that needs

to be sorted

 array 𝑆 used for merging is passed along as parameter

Merging Two Sorted Subarrays: Initialization

3 4 5 7 1 1 2 8 9A
l m r

l

3 4 5 7 1 1 2 8 9S
m r

iL iR

Merging Two Sorted Subarrays: Merging Starts

3 4 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 4 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

m r

1 1 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

Merging Two Sorted Subarrays: Merging Cont.
m r

1 1 2 3 4 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

iL > m, done with the first subarray

Merge

 Merge takes Θ(𝑙 – 𝑟 + 1) time

 this is Θ(𝑛) time for merging 𝑛 elements

Analysis of MergeSort
 Let 𝑇 𝑛 be time to run MergeSort

on an array of length 𝑛

 Steps 5 takes 𝑇
𝑛

2

 Steps 6 takes 𝑇
𝑛

2

 Step 7 takes Θ 𝑛

 The recurrence relation for MergeSort

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 𝑖 𝑓 𝑛 > 1

𝑐 𝑖 𝑓 𝑛 = 1

Analysis of MergeSort

 Sloppy recurrence with floors and ceilings removed

 Exact and sloppy recurrences are identical when n is a power of 2

 Recurrence easily solved when n = 2j

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 𝑐𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

Visual proof via Recursion Tree 𝑻 𝒏 = ቐ
𝟐𝑻

𝒏

𝟐
+ 𝒄 𝒏 𝐢 𝐟 𝒏 > 𝟏

𝒄 𝐢 𝐟 𝒏 = 𝟏

𝑛𝑛

𝑛
𝑛

2
𝑛
𝑛

2

𝑐 𝑛

𝑛
𝑛

22
𝑛
𝑛

22

𝑐
𝑛

2
𝑐

𝑛

2

𝑛
𝑛

22
𝑛
𝑛

22

𝑛
𝑛

2𝑙𝑜𝑔𝑛 𝑛
𝑛

2𝑙𝑜𝑔𝑛 𝑛
𝑛

2𝑙𝑜𝑔𝑛……………….

𝑐 𝑐 𝑐

𝑛
 𝑐𝑛 operations on each tree level, log 𝑛 levels, total work is 𝑐𝑛 log 𝑛 ∈ Θ 𝑛 log 𝑛

𝑐
𝑛

22
𝑐

𝑛

22
𝑐

𝑛

22 𝑐
𝑛

22

tree levels

0

1

2

log 𝑛

total work per level

𝑐 𝑛

𝑐 𝑛

𝑐 𝑛

𝑐 𝑛

…
…

…
…

…
…

.

#nodes

20

21

22

2𝑙𝑜𝑔𝑛

Analysis of MergeSort

 Can show 𝑇 𝑛 ∈ Θ 𝑛 log 𝑛 for all 𝑛 by analyzing exact
recurrence

 for smallest 𝑚 s.t. 2𝑚−1 ≤ 𝑛

 𝑇 2𝑚−1 ≤ 𝑇 𝑛 ≤ 𝑇 2𝑚

 𝑇 2𝑚−1 , 𝑇 2𝑚 ∈ Θ 𝑛 log 𝑛

Some Recurrence Relations

 Once you know the result, it is (usually) easy to prove by induction

 You can use these facts without a proof, unless asked otherwise

 Many more recursions, and some methods to solve, in cs341

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Order Notation Summary
 𝑂-notation 𝑓(𝑛) ∈ 𝑂 𝑔 𝑛 if there exist constants 𝑐 > 0 and

𝑛0 ≥ 0 s.t. |𝑓 (𝑛)| ≤ 𝑐 |𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 Ω-notation 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) if there exist constants 𝑐 > 0 and
𝑛0 ≥ 0 s.t. 𝑐 |𝑔 (𝑛)| ≤ |𝑓 (𝑛)| for all 𝑛 ≥ 𝑛0

 Θ-notation 𝑓(𝑛) ∈ Θ(𝑔 (𝑛)) if there exist constants 𝑐1, 𝑐2 > 0 and
𝑛0 ≥ 0 s.t. 𝑐1|𝑔(𝑛)| ≤ |𝑓 (𝑛)| ≤ 𝑐2 |𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 ω-notation

𝑓(𝑛) ∈ 𝜔(𝑔(𝑛)) if for all constants 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 0 ≤ 𝑐 |𝑔 (𝑛)| ≤ |𝑓(𝑛)| for all 𝑛 ≥ 𝑛0

 o-notation

𝑓(𝑛) ∈ 𝑜(𝑔(𝑛)) if for all constants 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. |𝑓(𝑛)| ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

Useful Sums

 Arithmetic σ𝑖=0
𝑛−1 𝑎 + 𝑑𝑖 = 𝑛𝑎 +

𝑑𝑛(𝑛−1)

2
∈ Θ 𝑛2

 Geometric σ𝑖=0
𝑛−1 𝑎𝑟𝑖 =

𝑎
𝑟𝑛−1

𝑟−1
∈ Θ 𝑟𝑛−1 if 𝑟 > 1

𝑛𝑎 ∈ Θ 𝑛 if 𝑟 = 1

𝑎
1−𝑟𝑛

1−𝑟
∈ Θ 1 if 0 < 𝑟 < 1

 Harmonic σ𝑖=1
𝑛 1

𝑖
= ln 𝑛 + γ + 𝑜(1) ∈ Θ log 𝑛

 A few more
𝑖=1

𝑛 1

𝑖2
∈ Θ 1

𝑖=1

𝑛

𝑖𝑘 ∈ Θ 𝑛𝑘+1 for 𝑘 ≥ 0

𝑖=0

∞

𝑖𝑝(1 − 𝑝)𝑖−1 =
1

𝑝
for 0 < 𝑝 < 1

 You can use these facts without a proof, unless asked otherwise

Useful Math Facts

