CS 240 — Data Structures and Data Management
Module 2: Priority Queues
A. Hunt and O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

= Priority Queues
= Review: Abstract Data Types
= ADT Priority Queue
= Binary Heaps
= Operations in Binary Heaps
= PQ-Sort and Heapsort
" Intro for the Selection Problem

Outline

= Priority Queues
= Abstract Data Types

Abstract Data Type (ADT)

= A description of information and a collection of operations on
that information

* The information accessed only through the operations

= ADT describes what is stored and what can be done with it,
but not how it is implemented

= Can have various realizations of an ADT, which specify
= how the information is stored (data structure)
= how the operations are performed (algorithms)

Stack ADT \ K

= ADT consisting of a collection of items removed in LIFO
(last in first out order)

= (QOperations
= push inserts an item

= pop removes and typically returns the most recently inserted
item
" [tems enter at the top and are removed from the top

= Extra operations
" size, isEmpty, and top
= Applications
= addresses of recently visited sites in a Web browser, procedure calls

= Realizations of Stack ADT
= arrays
= |inked lists

Queue ADT .

= ADT consisting of a collection of items removed in FIFO (first-in first-
out) order

= (QOperations
" enqueue inserts an item
= dequeue removes and typically returns the least recently inserted

" [tems enter queue at the rear and are removed from front
= Extra operations
" size, isEmpty, and front

= Realizations of Queue ADT
= (circular) arrays
= |inked lists

Outline
= Priority Queues

= ADT Priority Queue

Priority Queue ADT

Collection of items each having a priority
= priority is also called key
Operations
= jnsert: insert an item tagged with a priority
= deleteMax: remove and return the item of highest priority

= also called extractMax
Definition is for a maximum-oriented priority queue

To define minimum-oriented priority queue, replace deleteMax
by deleteMin

Applications
= typical “todo” list
" simulation systems
= sorting

Using Priority Queue to Sort

PQ-Sort(A[0 ..n — 1])
1 initialize PQ to an empty priority queue
2 fori <0 ton —1do

4. PQ.insert(A[i])

5

6

fori « n — 1 downtoOdo
Ali] < PQ.deleteMax ()

= Ali] is item with priority A[i]
" Run-time depends on priority queue implementation

* Can write as O(initialization + n - insert + n - deleteMax)

Realizations of Priority Queues

= Attempt 1: unsorted arrays 51712

= assume dynamic arrays
= expand by doubling when needed
* happens rarely, so amortized time over all insertions is O(1)

= insert: (1)
= deleteMax: O@(n)
= PQ sort becomes O(n?)

" Attempt 2: unsorted linked lists Dlet—)| e

= efficiency identical to Attempt 1
= this realization used for sorting yields selection sort

Realizations of Priority Queues

= Attempt 3: sorted arrays 2158
= Store items in order of increasing priority
= deleteMax: ©(1)
= insert: O(n)
= PQ-sort similar to InsertionSort and is ®(n?)worst case

= Attempt 4: sorted linked-lists p)

= similar to Attempt 3

Outline

= Priority Queues

= Binary Heaps

Binary Tree Review .

" A binary tree is either t_:‘_‘::_::'_’_’f_i ________________
= empty, or level 1 /
= consists of three parts ________________________________ /"
= anode level R
= |eft subtree ~ANS

I\éaf Iea‘ic
= right subtree

" Terminology
= root, leaf, parent, child, level, sibling, ancestor, descendant
= height of the tree is the maximum level in the tree

Binary Tree Review
= Consider tree with n nodes of smallest possible height h
= all levels must be as full as possible O

= except possibly the last level h
level 0 has 2° nodes
level 1 has 2! nodes

level i has 2¢ nodes

level h has between 1 and 2"* nodes
= Can bound

n < 20 421 -|—22 + ... _|_2h—1_|_2h

= Therefore n < 2"*t1 —1

“
®
O
-

= Simplifying, h = log(n +1) — 1
= Binary tree height is (L(logn)
= heightis betweenn — 1 andlog(n + 1) — 1, which is Q(logn)
= note use of asymptotics for function other than time complexity

Third Realization of Priority Queue: Heaps

* A max-oriented binary heap is a binary @
tree with the following two properties @
1. Structural Property / \

= all levels of a heap are completely
filled, except (possibly) the last

level ; ;
= jtems in the last level are @
left-justified

2. Heap-order Property
= for any node i, key|[parent of i] > key][i]

= A min-heap is the same, but with opposite order property

= More accurate picture of nodes (5(Q) >[Priority = 50, <other info>]

Heap Height
Lemma: Height of a heap with n nodes is ©(logn)
= Since heap is a binary tree, height h is Q(logn)
= Need to show that height h is O(logn)
= Heap has all levels full except possibly level h

= 2l nodesatlevel 0 <i<h-—1
" Thus

at least last
node at level h

n =20 421422 4... 42071 41
n>2"-1 +1
n > 2"
h <logn
= Thus h € O(logn)

Storing Heaps in Arrays

= Using linked structure for heaps wastes space

= Let H be a heap of nitems and let A be an array of size n

= store rootin A[O]
= continue storing level-by-level from top to bottom, in each level left-to-right

Al1] @ @ Al2]
A3] \@ A4] A[S] o Q Al6]

= Fits compactlyintoarray |50 | 29| 34| 27 | 15| 8 | 10 | 23 | 26

* Last heapnodeisin A[n — 1]

Heaps in Arrays: Navigation

root node is A[0O]
left child of A[i], if exists, is A[2i + 1]
right child of A[i], if exists, is A[2i + 2] A[i]

= Hide implementation details using helper-function
= functions root(), parent(i), left(i), right(i)

- last() returns index of the last node in the heap

parent of A[i], if exists, is A n%]

= Some of these helper functions need to know n,

= omitit from pseudocode for simplicity

Outline

= Priority Queues

= Operations in Binary Heaps

Insertion in Heaps

= Place new key at the first free leaf

= Heap-order property might be violated

50
/\

Sode

= Perform a fix-up

fix-up example

fix-up example

fix-up example

fix-up pseudocode

fix-up(A4, i)
L. an index corresponding to heap node
while parent(i) exists and A|parent(i)]. key < Ali]. key do
swap Ali] and A[parent(i)]
[« parent(i) // move to one level up

» Worst case time complexity: O(heap height) = 0(logn)

deleteMax in Heaps

= The root has the maximum item
= Replace root by the last leaf

/\

B \

2

deleteMax in Heaps

= The root has the maximum item
= Replace root by the last leaf

deleteMax in Heaps

= The root has the maximum item
= Replace root by the last leaf

NN
@\a

®" The heap-order property might be violated
= perform fix-down

fix-down example

fix-down example

fix-down example

fix-down guarantees

" Letibeanynodes.t.its left and right subtrees satisfy heap-order

= fix-down(i) restores the order in the subtree rooted at i
= proof by induction on height

@\ Fix-down (i)>

heap
order

ap order

Fix-Down

fix-down(A, 1)
L: index corresponding to a heap node, A: heap array
while i is not a leaf do
J < left child of i
if j # last() and A[j + 1]. key > A[j]. key then
Jej+1 // right child is larger
// at this point, j indexes the child with the larger key
ifA[i].key = Al j] . key //orderis fixed, done
break
swap A[i] and A[j]

R // move to one level down

= Time: O(heap height) = 0(logn)

Priority Queue Realization Using Heaps

0 1 2 3 [=14 5 6
54 32 15 17 a4

V / size
heap

= Store items in priority queue in array A and keep track of size

insert(x)
increase size
[< last()
All] « x
fix-up (4, 1)

= jnsertis O(logn)

Priority Queue Realization Using Heaps

deleteMax ()
| < last()
swap A[root()] and A[l]
decrease size
fix-down (A, root())
return (A[l])

= deleteMaxis O(logn)

0 1 2 =3 4
54 | 32 | 15 | 17
] Size
heap
0 1 2 3 4
17 | 32 | 15
V size
heap

returned

Outline

= Priority Queues

= PQ-Sort and Heapsort

Sorting using Heaps

= Can sort with priority queue in O(init + n - insert + n - deleteMax)

PQsortWithteaps(A) = simple heap building
H < empty heap = uses additional array of size n for storing
fori <« 0 ton—1do heap H
H.insert(A[i]) " insert uses fix-up
fork «n —1 downto O0do | * Worst-casetimeis O(nlogn)
Ali] « H.deleteMax() 20
n=2"+2" 44201 420
Y 1
all levels except last 2

n=2"M—142n
n+1_

. _ oh Q Othg

" |Inthe worst case, for n/2 nodes do log n work, total work glog

Sorting using Heaps

= Can sort with priority queue in O(init + n - insert + n - deleteMax)
PQ-SortWithHeaps(A)
H < empty heap

= simple heap building

= yses additional array of size n for storing
fork <0 to n—1do heap H

H.insert(Alk]) = insert uses fix-up
fork «n —1 downto Odo | * Worst-casetimeis @(nlogn)
Alk] « H.deleteMax()

= PQ-Sort with heap is O(nlogn) and not in place
* need 0(n) additional space for heap array H

= Heapsort: improvement to PQ-Sort with two added tricks
1. usethe inputarray A to store the heap!
2. heap can be built in linear time if know all items in advance
= heapsortis in-place, needs 0(1) additional (or auxiliary) space

Building Heap Directly In Input Array

Al17 (132 |15|54| 2 | 25| 3

4

Alsa| 253217 2 |15] 3

Problem statement: build a heap from n items in 4]0, ..., n — 1]
without using additional space

= j.e. putitemsinA[O,...,n — 1] in heap-order

Building Heap Directly In Input Array

Al17 (3215 |54| 2 | 25| 3 /

{ 8 @ @

Problem statement: build a heap from n items in 4]0, ..., n — 1]
without using additional space

= j.e. putitemsinA[O,...,n — 1] in heap-order
= Treat array as a binary tree
= Heap order does not hold

= can use either fix-down or fix-up for each node
= both work, but fix-down is more efficient

Building Heap Directly In Input Array: Fix-Up vs. Fix-Down

= Worst case scenario O 20
= deepest nodes are most
numerous, there are = of them o @/
2 = 71
= For each deep node = i /

= fix-up takes O(logn) time

= fix-down takes O(1) time ‘l

fix down
N
>
U
N S

= Fix-up called for all % deepest nodes takes O(nlogn) time

= Fix-down for all %deepest nodes takes O(n) time

Heapify Example

= Arbitrary array A = {10, 80, 50,30, 20, 60, 10,40, 70}
= View it as binary tree using our normal indexing for heaps

" |n general, do not get a heap
= Putitin heap order by repeatedly calling fix-down
= resulting algorithm is called heapify

Heapify Example

= No need to call fix-down on the leaves
= No harm, but fix-down will do nothing for the leaves

= Start calling fix-down with the parent of last node
= thisis the deepest and leftmost non-leaf node

/\

(o)
Q’\ & @

o

)

Heapify Example

&
d/@

Heapify Example

8
d/@

Heapify Example

&
d/@

Heapify Example

e
"

\
=

dmw

He m
a
p
i
fy Examp
X
a
|
=

e
"

\
=

dmw

He m
a
p
i
fy Examp
X
a
|
=

Heapify Example

e
"

\
=

dmw

He m
a
p
i
fy Examp
X
a
|
=

Heapify Pseudocode

heapify (A)
A :an array
for i < parent (last()) downto 0 do

fix-down (A4, i)

= Straightforward analysis yields complexity O(nlogn)
= Careful analysis yields complexity ©(n)
= A heap can be built in linear time if we know all items in advance

Heapify Analysis

depth nodes

0 20
1 21
h <logn
i 2!
h—1 201

h—1
2L (h h
zz(h ‘)—th (zh)=2h. (zh l)

1=0

. h h—1 1
=2 2h+2h—1+ +21
h

i
= 2N T < 2h¢ < plogng — o

=1 20i+1) 1

convergent series llm — —

work per node

h
h—1

ﬁ o® 6)1

HeapSort

n=7

n=

n=

n=

n=

0 1 2 3 4 5 6

30 54 15 17 5 32 6
l heapify

0 1 2 3 4 5 6

54 30 32 17 5 15 6
l deleteMax

0 1 2 3 4 5 6

32 30 15 17 5 6 54
l deleteMax

0 1 2 3 4 5 6

30 17 15 6 5 32 54
l deleteMax

0 1 2 3 4 5 6

17 6 15 5 30 32 54
l deleteMax

0 1 2 3 4 5 6

15 6 5 17 30 32 54

HeapSort

HeapSort(A)
for i « parent (last()) downto O do heapify
fix-down (4, 1) o(n)
while n > 1
swap items A[root()] and A[last()] |deleteMax, n times
decrease n 0(nlogn)
fix-down(A,root())

= Similar to PQ-Sort with heaps, but uses input array A for
storing heap

" |n-place, i.e. only O(1) extra space

Heap Summary

Binary heap: binary tree that satisfies structural property and
heap order property
Heaps are one possible realization of ADT PriorityQueue

= nsert takes O(logn) time

» deleteMax takes O(logn) time

= also supports findMax in 0O(1) time

A binary heap can be built in linear time, if all elements are
known beforehand

With binary heaps leads to a sorting algorithm with O (nlogn)
worst case time

We have seen max-oriented version of heaps

There exists a symmetric min-oriented version supporting
insert and deleteMin with same run times

Outline

= Priority Queues

= |ntro for the Selection Problem

Selection

0 1 2 3 4 5 6
3 6 10 0 5 4 9
sorted 0 3 4 5 6 9 10

Select(k) problem find kth item in array A of n numbers
= jtem that would be in A[k] if A was sorted in nondecreasing order
» thisis (k + 1) smallest item in the array
= example: select(3) =5
"= nondecreasing = increasing if keys do not repeat
Solution 1
" make k + 1 passes through A4, deleting minimum number each time
= Q(kn)
= k =n/2, time complexity is @(n?)
= efficient solution is harder to obtain if k is a median
Solution 2
= sort array 4 and return number at index k
* O(nlogn)
= complexity does not depend on k

Selection

= Solution3
" scan A and maintain k + 1 smallest numbers seen so far in max-heap

= example: select(3) (10 |
3] 6] 10] 0] 5] 4] 9 (6) (3]
L0]
(6]
3 6 | 10| O 5 4 9 (5][3]
Lo]
(5)
3 6 | 10| O 5 4 9 (a] (3]
L0
(5]
3 6| 10| O 5 4 9 a4) [3]
Lo

= atthe end, kth item is on the heap top (5 in our example)
= P(nlogk) time complexity
= for k = n/2, this solution is @(nlogn)

Selection

0 1 2 3 4 5 6 7 8 9

3 6 10| O 5 4 9 2 1 7

= Solution 4
" make A into a min-heap by calling heapify(A)
= call deleteMin(A) k + 1 times
*Q(n + klogn)
= better than ®(nlog k) time complexity of solution 3
" if k =n/2, this solutionis O(nlogn)

