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Dictionary ADT

Dictionary: An ADT consisting of a collection of items, each of which
contains

a key
some data (the “value”)

and is called a key-value pair (KVP). Keys can be compared and are
(typically) unique.

Operations:
search(k) (also called findElement(k))
insert(k, v) (also called insertItem(k, v))
delete(k) (also called removeElement(k)))
optional: closestKeyBefore, join, isEmpty, size, etc.

Examples: symbol table, license plate database
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Elementary Implementations
Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the “value” could be a pointer)
Keys can be compared in constant time

Unordered array or linked list
search Θ(n)
insert Θ(1) (except array occasionally needs to resize)
delete Θ(n) (need to search)

Ordered array
search Θ(log n) (via binary search)
insert Θ(n)
delete Θ(n)
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Binary Search Trees (review)
Structure Binary tree: all nodes have two (possibly empty) subtrees

Every node stores a KVP
Empty subtrees usually not shown

Ordering Every key k in T .left is less than the root key.
Every key k in T .right is greater than the root key.
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)
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BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)
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Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up
Else, swap key at x with key at successor or predecessor node and
then delete that node
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Height of a BST

BST::search, BST::insert, BST::delete all have cost Θ(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
Worst-case:

n − 1 = Θ(n)
Best-case: Θ(log n).
Any binary tree with n nodes has height ≥ log(n + 1)− 1
Average-case: Can show Θ(log n) for elements inserted in random
order
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AVL Trees

Introduced by Adel’son-Vel’skĭı and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.
(The height of an empty tree is defined to be −1.)

Rephrase: If node v has left subtree L and right subtree R, then

balance(v) := height(R)− height(L) must be in {−1, 0, 1}

balance(v) = −1 means v is left-heavy
balance(v) = +1 means v is right-heavy

Need to store at each node v the height of the subtree rooted at it
Can show: It suffices to store balance(v) instead

I uses fewer bits, but code gets more complicated
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AVL tree example

(The lower numbers indicate the height of the subtree.)
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AVL tree example

Alternative: store balance (instead of height) at each node.
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Height of an AVL tree
Theorem: An AVL tree on n nodes has Θ(log n) height.
⇒ search, insert, delete all cost Θ(log n) in the worst case!

Proof:
Define N(h) to be the least number of nodes in a height-h AVL tree.
What is a recurrence relation for N(h)?
What does this recurrence relation resolve to?
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AVL insertion

To perform AVL::insert(k, v):
First, insert (k, v) with the usual BST insertion.
We assume that this returns the new leaf z where the key was stored.
Then, move up the tree from z , updating heights.

I We assume for this that we have parent-links. This can be avoided if
BST::Insert returns the full path to z .

If the height difference becomes ±2 at node z , then z is unbalanced.
Must re-structure the tree to rebalance.

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 12 / 27



AVL insertion

AVL::insert(k, v)
1. z ← BST::insert(k, v) // leaf where k is now stored
2. while (z is not NIL)
3. if (|z .left.height − z .right.height| > 1) then
4. Let y be taller child of z
5. Let x be taller child of y
6. z ← restructure(x , y , z) // see later
7. break // can argue that we are done
8. setHeightFromSubtrees(z)
9. z ← z .parent

setHeightFromSubtrees(u)
1. u.height ← 1 + max{u.left.height, u.right.height}
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AVL Insertion Example
Example: AVL::insert(8)
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How to “fix” an unbalanced AVL tree

Note: there are many different BSTs with the same keys.
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Goal: change the structure among three nodes without changing the
order and such that the subtree becomes balanced.
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Right Rotation
This is a right rotation on node z :

z

y

x

A B
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y

x

A B

z

C D

rotate-right(z)
1. y ← z .left, z .left ← y .right, y .right ← z
2. setHeightFromSubtrees(z), setHeightFromSubtrees(y)
3. return y // returns new root of subtree
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Why do we call this a rotation?
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Why do we call this a rotation?
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Left Rotation

Symmetrically, this is a left rotation on node z :

z

A

y

B

x

C D

y

z

A B

x

C D

Again, only two links need to be changed and two heights updated.
Useful to fix right-right imbalance.
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Double Right Rotation

This is a double right rotation on node z :

z

y

A

x

B C

D

z

x

y

A B

C

D

x

y

A B

z

C D

First, a left rotation at y .

Second, a right rotation at z .
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Double Right Rotation

This is a double right rotation on node z :
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First, a left rotation at y .
Second, a right rotation at z .
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Double Left Rotation

Symmetrically, there is a double left rotation on node z :

z
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First, a right rotation at y .
Second, a left rotation at z .
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Fixing a slightly-unbalanced AVL tree

restructure(x , y , z)
node x has parent y and grandparent z
1. case

z

y

x

: : // Right rotation
return rotate-right(z)

z

y

x

: : // Double-right rotation
z .left ← rotate-left(y)
return rotate-right(z)

z

y

x

: : // Double-left rotation
z .right ← rotate-right(y)
return rotate-left(z)

z

y

x

: : // Left rotation
return rotate-left(z)

Rule: The middle key of x , y , z becomes the new root.
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AVL Insertion Example revisited
Example: AVL::insert(8)
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AVL Insertion: Second example
Example: AVL::insert(45)
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AVL Deletion
Remove the key k with BST::delete.
Find node where structural change happened.

(This is not necessarily near the node that had k.)
Go back up to root, update heights, and rotate if needed.

AVL::delete(k)
1. z ← BST::delete(k)
2. // Assume z is the parent of the BST node that was removed
3. while (z is not NIL)
4. if (|z .left.height − z .right.height| > 1) then
5. Let y be taller child of z
6. Let x be taller child of y (break ties to prefer single rotation)
7. z ← restructure(x , y , z)
8. // Always continue up the path and fix if needed.
9. setHeightFromSubtrees(z)
10. z ← z .parent
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AVL Deletion Example
Example: AVL::delete(22)
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AVL Deletion Example
Example: AVL::delete(22)
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AVL Deletion Example
Important: Ties must be broken to prefer single rotation.
Consider again the above example. If we applied double-rotation:
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Resulting tree is not an AVL-tree.
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AVL Deletion Example
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AVL Tree Operations Runtime

search: Just like in BSTs, costs Θ(height)

insert: BST::insert, then check & update along path to new leaf
total cost Θ(height)
restructure restores the height of the subtree to what it was,
so restructure will be called at most once.

delete: BST::delete, then check & update along path to deleted node
total cost Θ(height)
restructure may be called Θ(height) times.

Worst-case cost for all operations is Θ(height) = Θ(log n).

But in practice, the constant is quite large.
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