
CS 240 – Data Structures and Data Management

Module 4: Dictionaries

A. Hunt O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

version 2023-02-05 15:18

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 1 / 27

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Review: Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restoring the AVL Property: Rotations

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Review: Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restoring the AVL Property: Rotations

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023

Dictionary ADT

Dictionary: An ADT consisting of a collection of items, each of which
contains

a key
some data (the “value”)

and is called a key-value pair (KVP). Keys can be compared and are
(typically) unique.

Operations:
search(k) (also called findElement(k))
insert(k, v) (also called insertItem(k, v))
delete(k) (also called removeElement(k)))
optional: closestKeyBefore, join, isEmpty, size, etc.

Examples: symbol table, license plate database

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 2 / 27

Elementary Implementations
Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the “value” could be a pointer)
Keys can be compared in constant time

Unordered array or linked list
search Θ(n)
insert Θ(1) (except array occasionally needs to resize)
delete Θ(n) (need to search)

Ordered array
search Θ(log n) (via binary search)
insert Θ(n)
delete Θ(n)

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 3 / 27

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Review: Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restoring the AVL Property: Rotations

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023

Binary Search Trees (review)
Structure Binary tree: all nodes have two (possibly empty) subtrees

Every node stores a KVP
Empty subtrees usually not shown

Ordering Every key k in T .left is less than the root key.
Every key k in T .right is greater than the root key.

15

6

∅ 10

8

∅ ∅

14

∅ ∅

25

23

∅ ∅

29

27

∅ ∅

50

∅ ∅(In our examples we only show the keys, and we show them directly in the
node. A more accurate picture would be key = 15, <other info>

)
Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 4 / 27

BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23 29

27 50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 5 / 27

BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23 29

27 50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 5 / 27

BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23 29

27 50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 5 / 27

BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23

∅

29

27 50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 5 / 27

BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node
Example: BST::insert(24, v)

15

6

10

8 14

25

23

24

29

27 50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 5 / 27

Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up
Else, swap key at x with key at successor or predecessor node and
then delete that node

15

6

10

8 14

25

23

22 24

29

27 50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 6 / 27

Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up
Else, swap key at x with key at successor or predecessor node and
then delete that node

15

6

10

8 14

25

23

22 24

29

50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 6 / 27

Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up

Else, swap key at x with key at successor or predecessor node and
then delete that node

15

6

10

8 14

25

23

22 24

29

50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 6 / 27

Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up

Else, swap key at x with key at successor or predecessor node and
then delete that node

15

10

8 14

25

23

22 24

29

50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 6 / 27

Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up
Else, swap key at x with key at successor or predecessor node and
then delete that node

15

10

8 14

25

23

22 24

29

50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 6 / 27

Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up
Else, swap key at x with key at successor or predecessor node and
then delete that node

15

10

8 14

25

23

22 24

29

50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 6 / 27

Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up
Else, swap key at x with key at successor or predecessor node and
then delete that node

22

10

8 14

25

23

24

29

50

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 6 / 27

Height of a BST

BST::search, BST::insert, BST::delete all have cost Θ(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
Worst-case:

n − 1 = Θ(n)
Best-case: Θ(log n).
Any binary tree with n nodes has height ≥ log(n + 1)− 1
Average-case: Can show Θ(log n) for elements inserted in random
order

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 7 / 27

Height of a BST

BST::search, BST::insert, BST::delete all have cost Θ(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
Worst-case: n − 1 = Θ(n)
Best-case:

Θ(log n).
Any binary tree with n nodes has height ≥ log(n + 1)− 1
Average-case: Can show Θ(log n) for elements inserted in random
order

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 7 / 27

Height of a BST

BST::search, BST::insert, BST::delete all have cost Θ(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
Worst-case: n − 1 = Θ(n)
Best-case: Θ(log n).
Any binary tree with n nodes has height ≥ log(n + 1)− 1
Average-case:

Can show Θ(log n) for elements inserted in random
order

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 7 / 27

Height of a BST

BST::search, BST::insert, BST::delete all have cost Θ(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
Worst-case: n − 1 = Θ(n)
Best-case: Θ(log n).
Any binary tree with n nodes has height ≥ log(n + 1)− 1
Average-case: Can show Θ(log n) for elements inserted in random
order

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 7 / 27

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Review: Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restoring the AVL Property: Rotations

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023

AVL Trees

Introduced by Adel’son-Vel’skĭı and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.
(The height of an empty tree is defined to be −1.)

Rephrase: If node v has left subtree L and right subtree R, then

balance(v) := height(R)− height(L) must be in {−1, 0, 1}

balance(v) = −1 means v is left-heavy
balance(v) = +1 means v is right-heavy

Need to store at each node v the height of the subtree rooted at it
Can show: It suffices to store balance(v) instead

I uses fewer bits, but code gets more complicated

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 8 / 27

AVL Trees

Introduced by Adel’son-Vel’skĭı and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.
(The height of an empty tree is defined to be −1.)

Rephrase: If node v has left subtree L and right subtree R, then

balance(v) := height(R)− height(L) must be in {−1, 0, 1}

balance(v) = −1 means v is left-heavy
balance(v) = +1 means v is right-heavy

Need to store at each node v the height of the subtree rooted at it
Can show: It suffices to store balance(v) instead

I uses fewer bits, but code gets more complicated

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 8 / 27

AVL tree example

(The lower numbers indicate the height of the subtree.)

22
4

10
3

4
1

6
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 9 / 27

AVL tree example

Alternative: store balance (instead of height) at each node.

22
-1

10
+1

4
+1

6
0

14
+1

13
0

18
-1

16
0

31
+1

28
0

37
+1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 10 / 27

Height of an AVL tree
Theorem: An AVL tree on n nodes has Θ(log n) height.
⇒ search, insert, delete all cost Θ(log n) in the worst case!

Proof:
Define N(h) to be the least number of nodes in a height-h AVL tree.
What is a recurrence relation for N(h)?
What does this recurrence relation resolve to?

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 11 / 27

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Review: Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restoring the AVL Property: Rotations

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023

AVL insertion

To perform AVL::insert(k, v):
First, insert (k, v) with the usual BST insertion.
We assume that this returns the new leaf z where the key was stored.
Then, move up the tree from z , updating heights.

I We assume for this that we have parent-links. This can be avoided if
BST::Insert returns the full path to z .

If the height difference becomes ±2 at node z , then z is unbalanced.
Must re-structure the tree to rebalance.

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 12 / 27

AVL insertion

AVL::insert(k, v)
1. z ← BST::insert(k, v) // leaf where k is now stored
2. while (z is not NIL)
3. if (|z .left.height − z .right.height| > 1) then
4. Let y be taller child of z
5. Let x be taller child of y
6. z ← restructure(x , y , z) // see later
7. break // can argue that we are done
8. setHeightFromSubtrees(z)
9. z ← z .parent

setHeightFromSubtrees(u)
1. u.height ← 1 + max{u.left.height, u.right.height}

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 13 / 27

AVL Insertion Example
Example: AVL::insert(8)

22
4

10
3

4
1

6
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 14 / 27

AVL Insertion Example
Example: AVL::insert(8)

22
4?

10
3?

4
1?

6
0?

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 14 / 27

AVL Insertion Example
Example: AVL::insert(8)

22
4?

10
3?

4
1?

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 14 / 27

AVL Insertion Example
Example: AVL::insert(8)

22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 14 / 27

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Review: Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restoring the AVL Property: Rotations

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023

How to “fix” an unbalanced AVL tree

Note: there are many different BSTs with the same keys.

20

A

40

30

B C

D

20

A

30

B

40

C D

30

20

A B

40

C D

40

30

20

A B

C

D

40

20

A

30

B C

D

Goal: change the structure among three nodes without changing the
order and such that the subtree becomes balanced.

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 15 / 27

Right Rotation
This is a right rotation on node z :

z

y

x

A B

C

D

y

x

A B

z

C D

rotate-right(z)
1. y ← z .left, z .left ← y .right, y .right ← z
2. setHeightFromSubtrees(z), setHeightFromSubtrees(y)
3. return y // returns new root of subtree

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 16 / 27

Why do we call this a rotation?

z

y

x

A B

C

D

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 17 / 27

Why do we call this a rotation?

y

x

A B

C

z

D

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 17 / 27

Why do we call this a rotation?

y

x

A B

z

C D

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 17 / 27

Why do we call this a rotation?

y

x

A B

z

C D

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 17 / 27

Left Rotation

Symmetrically, this is a left rotation on node z :

z

A

y

B

x

C D

y

z

A B

x

C D

Again, only two links need to be changed and two heights updated.
Useful to fix right-right imbalance.

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 18 / 27

Double Right Rotation

This is a double right rotation on node z :

z

y

A

x

B C

D

z

x

y

A B

C

D

x

y

A B

z

C D

First, a left rotation at y .

Second, a right rotation at z .

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 19 / 27

Double Right Rotation

This is a double right rotation on node z :

z

y

A

x

B C

D

z

x

y

A B

C

D

x

y

A B

z

C D

First, a left rotation at y .
Second, a right rotation at z .

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 19 / 27

Double Left Rotation

Symmetrically, there is a double left rotation on node z :

z

A

y

x

B C

D

x

z

A B

y

C D

First, a right rotation at y .
Second, a left rotation at z .

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 20 / 27

Fixing a slightly-unbalanced AVL tree

restructure(x , y , z)
node x has parent y and grandparent z
1. case

z

y

x

: : // Right rotation
return rotate-right(z)

z

y

x

: : // Double-right rotation
z .left ← rotate-left(y)
return rotate-right(z)

z

y

x

: : // Double-left rotation
z .right ← rotate-right(y)
return rotate-left(z)

z

y

x

: : // Left rotation
return rotate-left(z)

Rule: The middle key of x , y , z becomes the new root.

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 21 / 27

AVL Insertion Example revisited
Example: AVL::insert(8)

22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 22 / 27

AVL Insertion Example revisited
Example: AVL::insert(8)

22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 22 / 27

AVL Insertion: Second example
Example: AVL::insert(45)

22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 23 / 27

AVL Insertion: Second example
Example: AVL::insert(45)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

37
1?

46
0?

45
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 23 / 27

AVL Insertion: Second example
Example: AVL::insert(45)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

37
1?

46
1

45
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 23 / 27

AVL Insertion: Second example
Example: AVL::insert(45)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

37
1?

46
1

45
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 23 / 27

AVL Insertion: Second example
Example: AVL::insert(45)

22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

45
1

37
0

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 23 / 27

AVL Deletion
Remove the key k with BST::delete.
Find node where structural change happened.

(This is not necessarily near the node that had k.)
Go back up to root, update heights, and rotate if needed.

AVL::delete(k)
1. z ← BST::delete(k)
2. // Assume z is the parent of the BST node that was removed
3. while (z is not NIL)
4. if (|z .left.height − z .right.height| > 1) then
5. Let y be taller child of z
6. Let x be taller child of y (break ties to prefer single rotation)
7. z ← restructure(x , y , z)
8. // Always continue up the path and fix if needed.
9. setHeightFromSubtrees(z)
10. z ← z .parent

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 24 / 27

AVL Deletion Example
Example: AVL::delete(22)

22
4

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 25 / 27

AVL Deletion Example
Example: AVL::delete(22)

22
4

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 25 / 27

AVL Deletion Example
Example: AVL::delete(22)

28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2?

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 25 / 27

AVL Deletion Example
Example: AVL::delete(22)

28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2?

37
1

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 25 / 27

AVL Deletion Example
Example: AVL::delete(22)

28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

37
1

31
0

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 25 / 27

AVL Deletion Example
Example: AVL::delete(22)

10
4

6
2

4
1

2
0

8
0

28
3

14
2

13
0

18
1

16
0

37
1

31
0

46
0

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 25 / 27

AVL Deletion Example
Important: Ties must be broken to prefer single rotation.
Consider again the above example. If we applied double-rotation:

28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

37
1

31
0

46
0

Resulting tree is not an AVL-tree.

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 26 / 27

AVL Deletion Example
Important: Ties must be broken to prefer single rotation.
Consider again the above example. If we applied double-rotation:

14
4

10
3

6
2

4
1

2
0

8
0

13
0

28
2

18
1

16
0

37
1

31
0

46
0

Resulting tree is not an AVL-tree.
Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 26 / 27

AVL Tree Operations Runtime

search: Just like in BSTs, costs Θ(height)

insert: BST::insert, then check & update along path to new leaf
total cost Θ(height)
restructure restores the height of the subtree to what it was,
so restructure will be called at most once.

delete: BST::delete, then check & update along path to deleted node
total cost Θ(height)
restructure may be called Θ(height) times.

Worst-case cost for all operations is Θ(height) = Θ(log n).

But in practice, the constant is quite large.

Hunt, Veksler (CS-UW) CS240 – Module 4 Winter 2023 27 / 27

	Dictionaries and Balanced Search Trees
	ADT Dictionary
	Dictionary ADT
	Elementary Implementations

	Review: Binary Search Trees
	Binary Search Trees (review)
	BST as realization of ADT Dictionary
	Deletion in a BST
	Height of a BST

	AVL Trees
	AVL Trees
	AVL tree example
	AVL tree example
	Height of an AVL tree

	Insertion in AVL Trees
	AVL insertion
	AVL insertion
	AVL Insertion Example

	Restoring the AVL Property: Rotations
	How to ``fix'' an unbalanced AVL tree
	Right Rotation
	Why do we call this a rotation?
	Left Rotation
	Double Right Rotation
	Double Left Rotation
	Fixing a slightly-unbalanced AVL tree
	AVL Insertion Example revisited
	AVL Insertion: Second example
	AVL Deletion
	AVL Deletion Example
	AVL Deletion Example
	AVL Tree Operations Runtime

