#### CS 240 – Data Structures and Data Management

#### Module 4: Dictionaries

#### A. Hunt and O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

### **Outline**

- Dictionaries and Balanced Search Trees
  - Dictionary ADT
  - Review: Binary Search Trees
  - AVL Trees
    - insertion
    - restoring the AVL Property: Rotations
    - full code for insertion
    - deletion

### **Outline**

- Dictionaries and Balanced Search Trees
  - Dictionary ADT
  - Review: Binary Search Trees
  - AVL Trees
    - insertion
    - restoring the AVL Property: Rotations
    - deletion

### **Dictionary ADT**

- A dictionary is a collection of items, each of which contains
  - a key
  - some data
- Item is called a key-value pair (KVP)
- Keys can be compared and are (typically) unique
  - can extend to handle non-unique keys
- Operations
  - $\blacksquare$  search(k)
    - also called findElement(k)
  - insert(k, v)
    - also called *insertItem*(k, v)
  - delete(k)
    - also called removeElement(k)
  - optional: closestKeyBefore, join, isEmpty, size, etc.
- Examples: symbol table, license plate database

# **Elementary Implementations**

- Common assumptions
  - dictionary has n KVPs
  - each KVP uses constant space
    - if not, the "value" could be a pointer
  - keys can be compared in constant time
- Unordered array or linked list
  - search  $\Theta(n)$
  - insert  $\Theta(1)$

| (7,'Ace') (1,'Pot') | (3,'Top') | (2,'Dog') | (0,'Cat') | (5,'Log') |
|---------------------|-----------|-----------|-----------|-----------|
|---------------------|-----------|-----------|-----------|-----------|

- $delete \Theta(n)$ 
  - need to search
- Ordered array
  - search  $\Theta(\log n)$

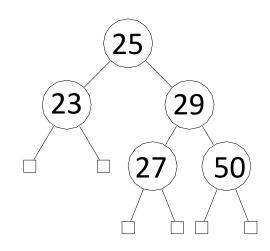
| (0,'Cat') | (1,'Pot') | (2,'Dog') | (3,'Top') | (5,'Log') | (7,'Ace') |
|-----------|-----------|-----------|-----------|-----------|-----------|
|-----------|-----------|-----------|-----------|-----------|-----------|

- via binary search
- insert  $\Theta(n)$
- $delete \Theta(n)$

### **Outline**

- Dictionaries and Balanced Search Trees
  - Dictionary ADT
  - Review: Binary Search Trees
  - AVL Trees
    - insertion
    - restoring the AVL Property: Rotations
    - full code for insertion
    - deletion

### Binary Search Trees (review)

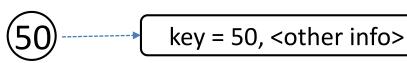


#### Structure

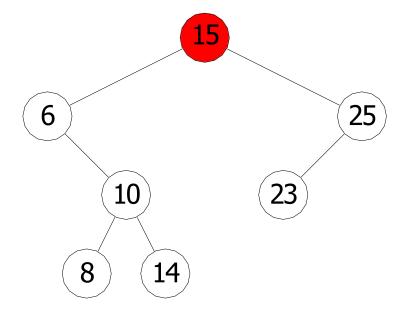
- Binary tree is either empty or consists of nodes
- All nodes have two (possibly empty) subtrees, L (left) and R (right)
- Every node stores a KVP
- Leaves store empty subtrees
- Empty subtrees usually not shown

#### Ordering

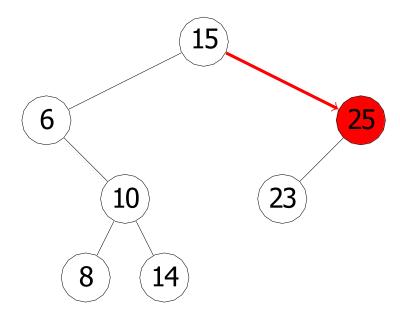
- every key in the left subtree of node v is less than v. key
- every key the right subtree of node v greater than v.key
- Show only keys, directly in the node
- More accurate picture



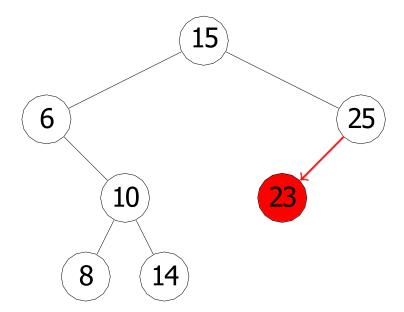
- BST::search(k)
  - start at root, compare k to current node
  - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)



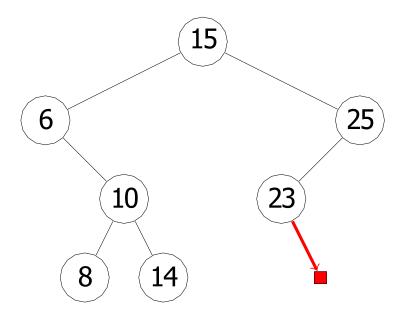
- BST::search(k)
  - start at root, compare k to current node
  - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)



- BST::search(k)
  - start at root, compare k to current node
  - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)

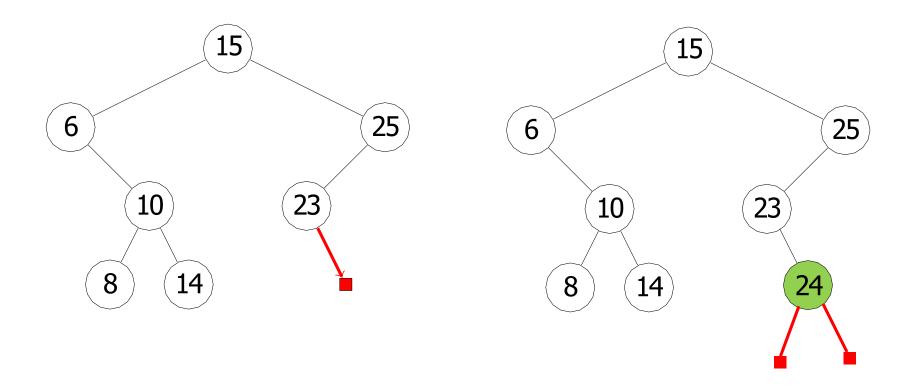


- BST::search(k)
  - start at root, compare k to current node
  - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)



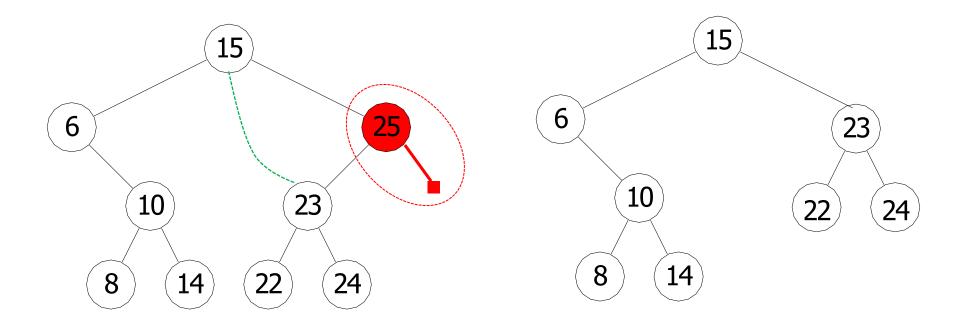
### **BST Insert**

- BST::insert(k, v)
  - search for k, then insert (k, v) as a new node at the empty subtree where search stops "expand at empty"
- Example: BST::insert(24, v)



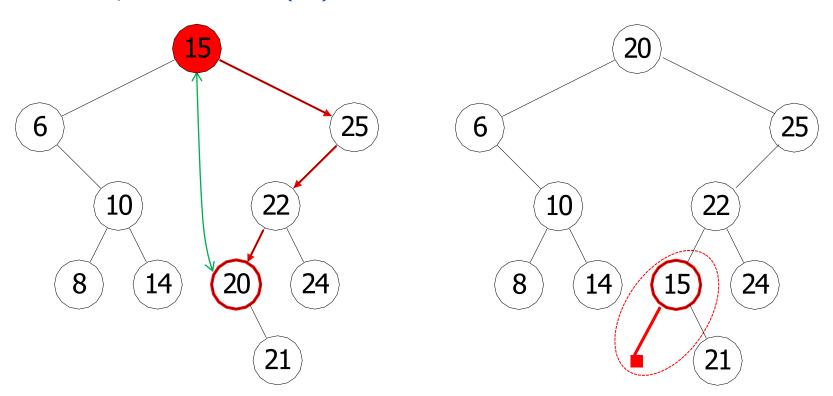
### BST Delete, case 1

- First search for the node x that contains the key
  - 1. If *x* has at least one empty subtree
    - delete it with the empty subtree
    - If x has a parent, reconnect the other subtree of x to the parent of x
- Example: BST::delete(25)



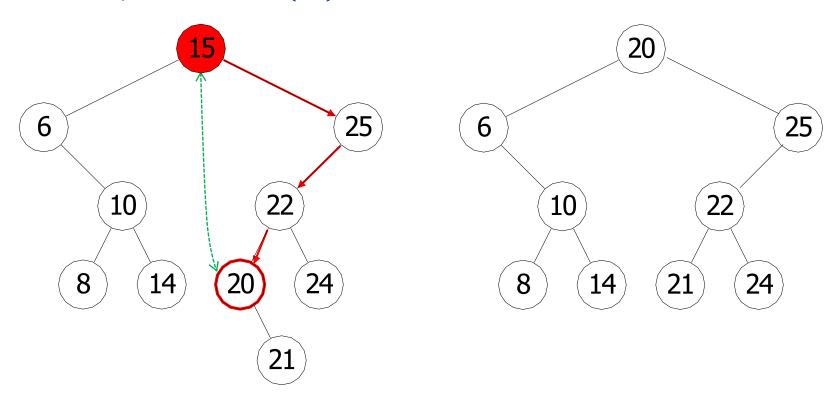
### BST Delete, case 2

- First search for the node x that contains the key
  - 2. If *x* has only non-empty subtrees
    - swap KVP at x with KVP at successor node (or predecessor node)
    - delete successor node (or predecessor node)
      - case 1 applies
- Example: BST::delete(15)

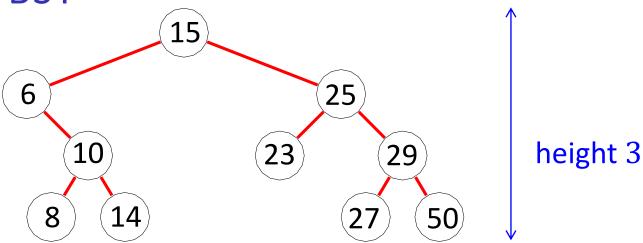


### BST Delete, case 2

- First search for the node x that contains the key
  - 2. If *x* has only non-empty subtrees
    - swap KVP at x with KVP at successor node (or predecessor node)
    - delete successor node (or predecessor node)
      - case 1 applies
- Example: BST::delete(15)



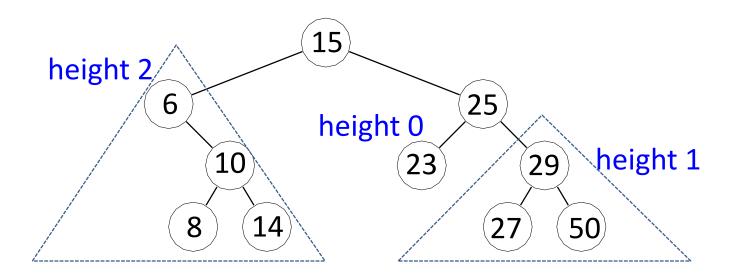
Height of a BST



- BST::search, BST::insert, BST::delete all have cost  $\Theta(h)$ 
  - h = height of the tree = maximum length path from root to a leaf node
  - height of an empty tree is defined to be -1
- If n items are BST::inserted one-at-a-time, how big is h?
  - worst-case is  $n-1=\Theta(n)$
  - best case is  $\Theta(\log n)$ 
    - binary tree with n nodes has height  $\geq \log(n+1)-1$
  - can show if insert items in random order then height is  $\Theta(\log n)$

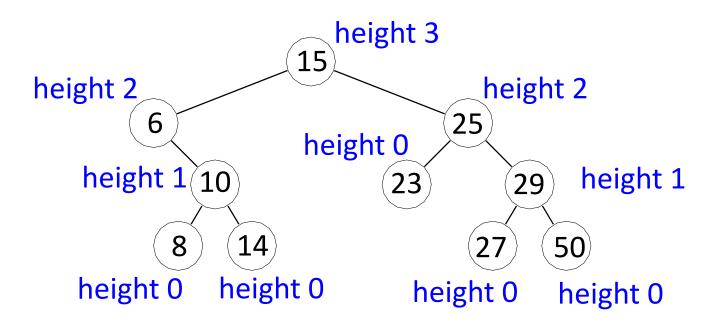
# Height of a node

lacktriangle Height of node  $oldsymbol{v}$  is the height of the tree rooted at node  $oldsymbol{v}$ 



### Height of a node

lacktriangle Height of node  $oldsymbol{v}$  is the height of the tree rooted at node  $oldsymbol{v}$ 



- Can compute heights of all nodes in post order traversal
  - height of a leaf is 0
  - height of any other node  $oldsymbol{v}$  is

```
1 + max{height(v.left), height(v.right)}
```

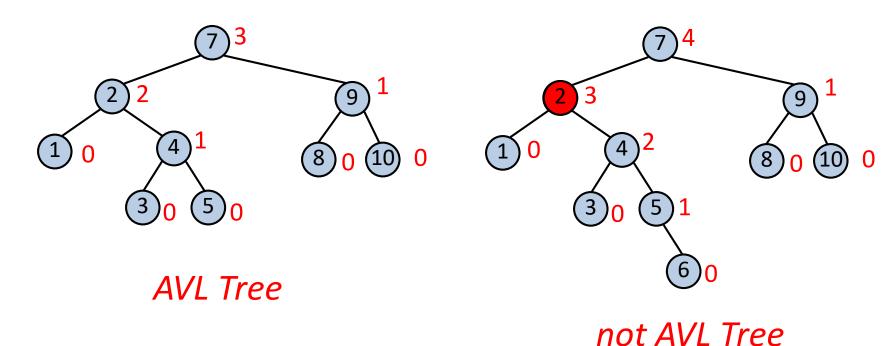
### **Outline**

### Dictionaries and Balanced Search Trees

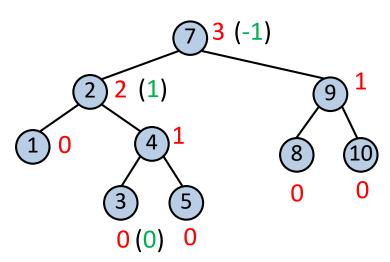
- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
  - insertion
  - restoring the AVL Property: Rotations
  - full code for insertion
  - deletion

#### **AVL Trees**

- Adelson-Velski and Landis, 1962
  - "An algorithm for organization of information", Doklady Akademii Nauk USSR
- AVL Tree is a BST with height-balance property
  - for any node v, heights of its left subtree L and right subtree R differ by at most 1



#### **AVL** Trees



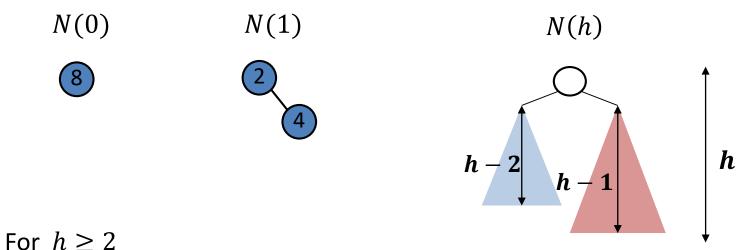
- AVL Tree is a BST with height-balance property
  - for any node v, heights of its left subtree L and right subtree R differ by at most 1
  - In other words,  $height(v.right) height(v.left) \in \{-1, 0, 1\}$ 
    - -1 means v is *left-heavy*
    - 0 means v is balanced
    - +1 means v is right-heavy
- Need to store at each node v its height
  - enough to store **balance factor** = height(v.right) height(v.left)
    - fewer bits
    - but code more complicated, especially for deleting

### Height of an AVL tree

**Theorem:** AVL tree on n nodes has  $\Theta(\log n)$  height

#### **Proof:**

- Only need upper bound, as height is  $\Omega(\log n)$
- Let N(h) be the *smallest* number of nodes an AVL tree of height h can have
  - any AVL tree of height h has number of nodes  $n \geq N(h)$



- $N(h) = \frac{N(h-1)}{N(h-2)} + \frac{N(h-2)}{N(h-2)} + \frac{N(h-2)}{N(h-2)} = \frac{2N(h-2)}{N(h-2)}$
- Thus  $N(h) \ge 2N(h-2)$

# Height of an AVL tree

**Theorem:** AVL tree on *n* nodes

#### **Proof:**

- Only need upper bound, as heig
- Let N(h) be the smallest numb

N(1)

8

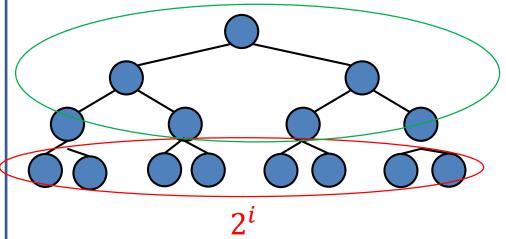


- For  $h \ge 2$  N(h) = N(h-1) + N(h-2)
- Thus  $N(h) \ge 2N(h-2)$

#### Side Note

- Recall heaps
  - add new level i, number of nodes basically doubles

$$2^0 + 2^1 + \dots + 2^{i-1} = 2^i - 1$$



- $N(h) \approx 2N(h-1)$
- In AVL tree to add two levels to double number of nodes
  - slower, but also exponential growth

### Height of an AVL tree

#### **Proof: (continued)**

- N(h) is the *least* number of nodes in height-h AVL tree
  - any AVL tree of height h has number of nodes  $n \ge N(h)$
  - N(0) = 1, N(1) = 2
- Recurrence inequality for  $h \ge 2$  is  $N(h) \ge 2N(h-2)$
- Solve by expanding until reach the base case

$$N(h) \ge 2N(h-2) \ge 2^2N(h-2\cdot 2) \ge 2^3N(h-2\cdot 3) \ge \dots \ge 2^iN(h-2\cdot i)$$

Base case for odd h

- expand until  $h-2 \cdot i=1$
- rewriting, i = (h-1)/2

$$N(h) \ge 2^{(h-1)/2} N(1) = 2^{\frac{h-1}{2}} \cdot 2$$

take log

$$\log N(h) \ge \frac{h-1}{2} + 1$$

rearrange

$$h \le 2\log N(h) - 2 \le 2\log n - 2$$

 $\blacksquare$  overand until h 2 i = 0

Base case for even *h* 

- expand until  $h-2 \cdot i = 0$
- rewriting, i = h/2 $N(h) \ge 2^{h/2}N(0) = 2^{\frac{h}{2}} \cdot 1$
- take log

$$\log N(h) \ge \frac{h}{2}$$

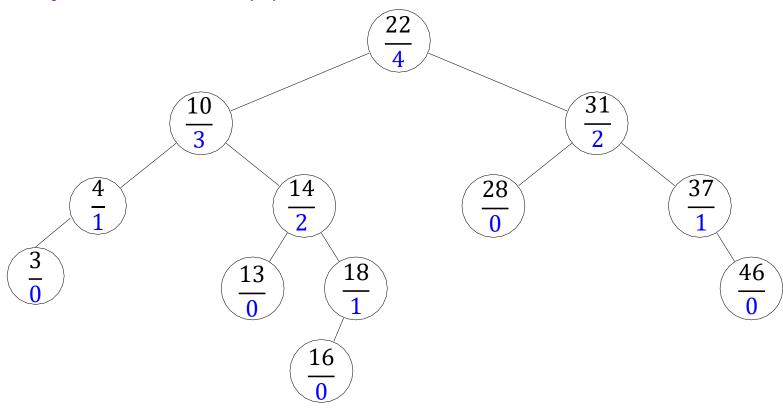
rearrange h ≤ 2log N(h) ≤ 2log n

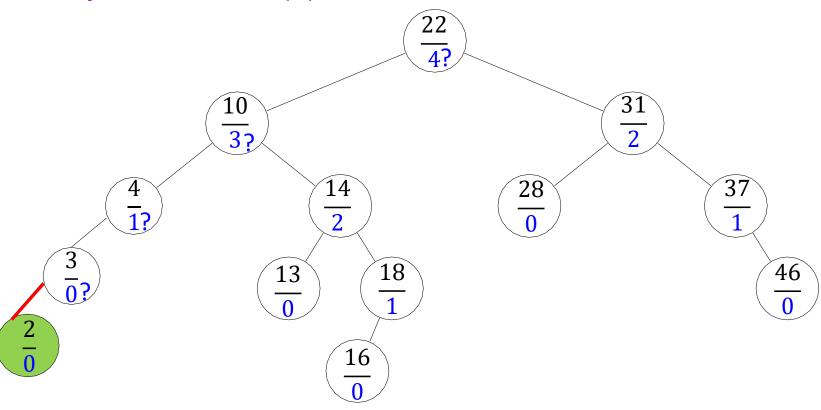
h is  $O(\log n)$ 

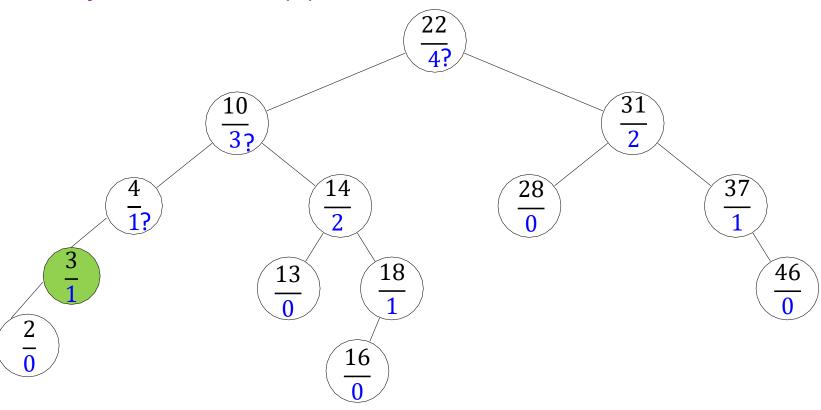
### **Outline**

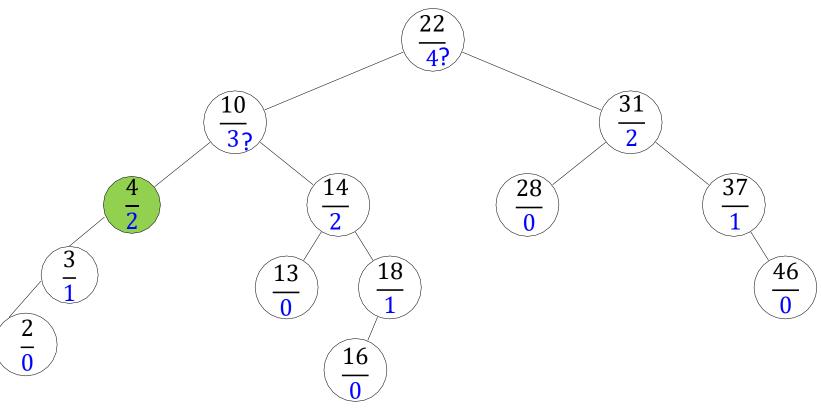
### Dictionaries and Balanced Search Trees

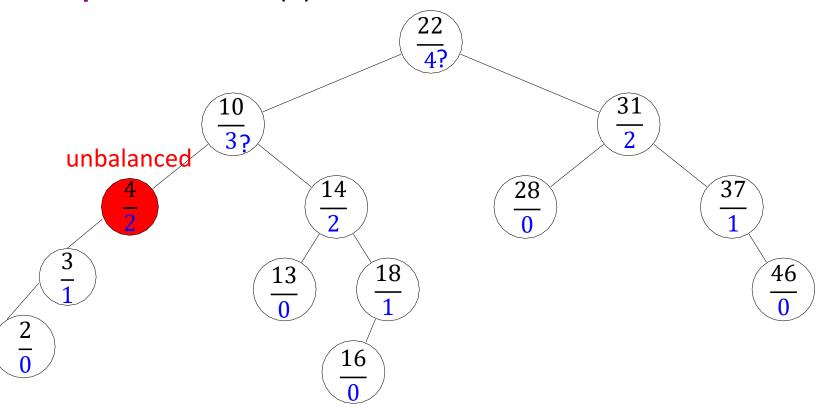
- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
  - insertion
  - restoring the AVL Property: Rotations
  - full code for insertion
  - deletion











#### **AVL** insertion

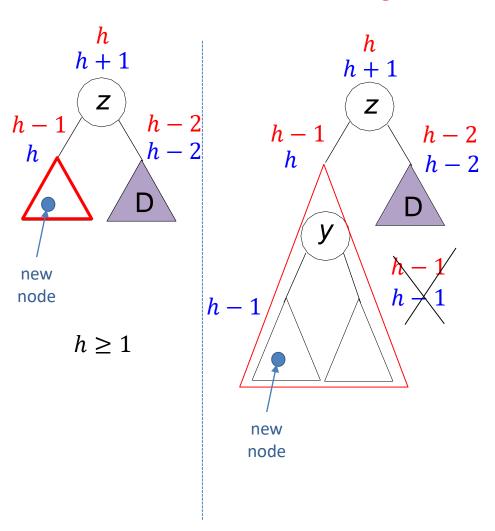
- AVL::insert(T, k, v)
  - 1. insert (k, v) into T with the usual BST insertion
    - assume this returns the new leaf where the key was inserted
    - heights of nodes on path from this leaf to root may have increased
  - move up the path from the new leaf to the root, updating heights
  - 3. if the height difference becomes  $\pm 2$  for some node on this path, the node is *unbalanced* 
    - must re-structure the tree to restore height-balance property

### **Outline**

- Dictionaries and Balanced Search Trees
  - Dictionary ADT
  - Review: Binary Search Trees
  - AVL Trees
    - insertion
    - restoring the AVL Property: Rotations
    - full code for insertion
    - deletion

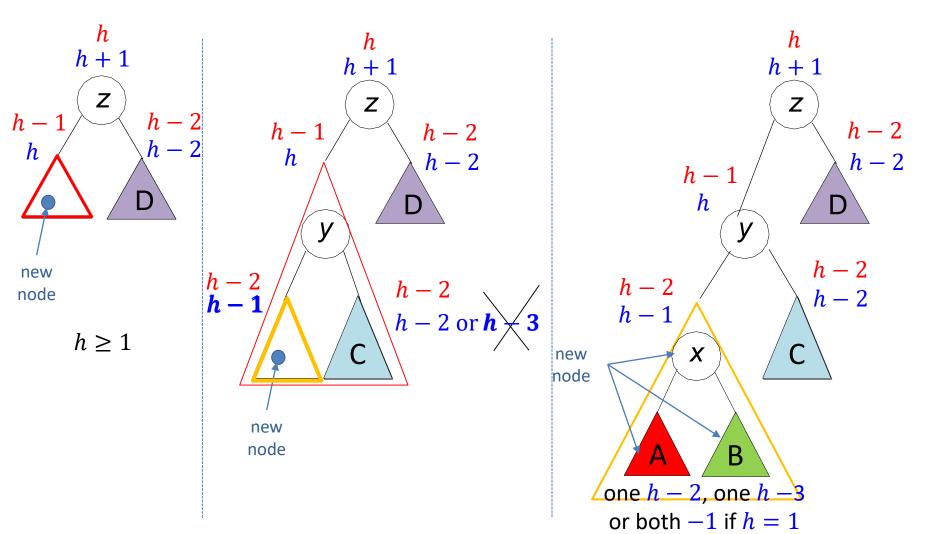
### **Restoring Height After Insertion**

 Let z be the first unbalanced node on path from inserted node to the root height after insertion/height before insertion



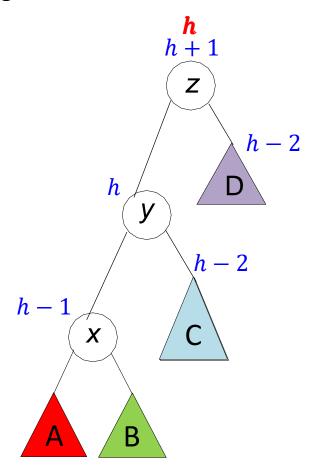
## Restoring Height After Insertion

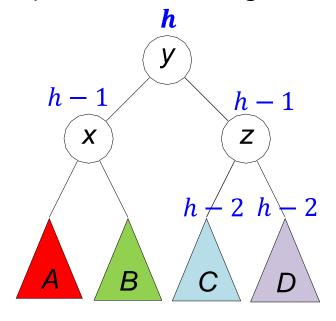
 Let z be the first unbalanced node on path from inserted node to the root height after insertion/height before insertion



# Restoring Height: Right Rotation

- Let z be the first unbalanced node on path from inserted node to the root
- Right rotation is used for left-left imbalance (taller left child and grandchild)

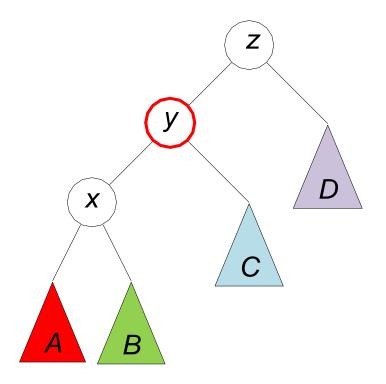




- BST order is preserved
- Balanced
- Same height as before insertion

# Right Rotation Pseudocode

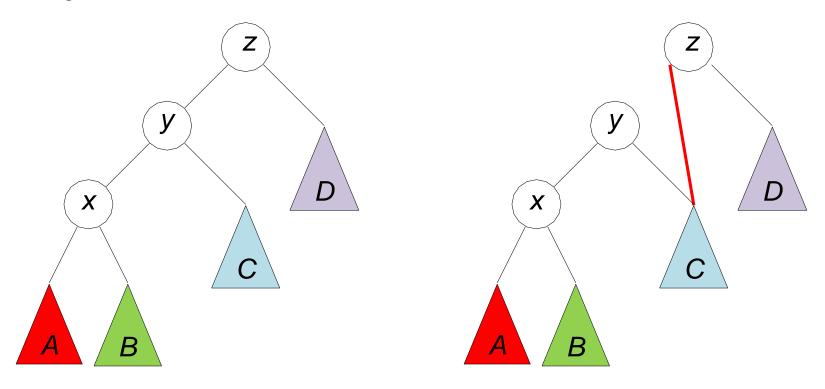
Right rotation on node z



```
 \begin{aligned} \textit{rotate-right}(z) \\ \textit{y} \leftarrow \textit{z.left}, \textit{z.left} \leftarrow \textit{y.right}, \textit{y.right} \leftarrow \textit{z} \\ \textit{setHeightFromChildren}(z), \textit{setHeightFromChildren}(y) \\ \textit{return } \textit{y} \quad // \textit{ returns new root of subtree} \end{aligned}
```

## Right Rotation Pseudocode

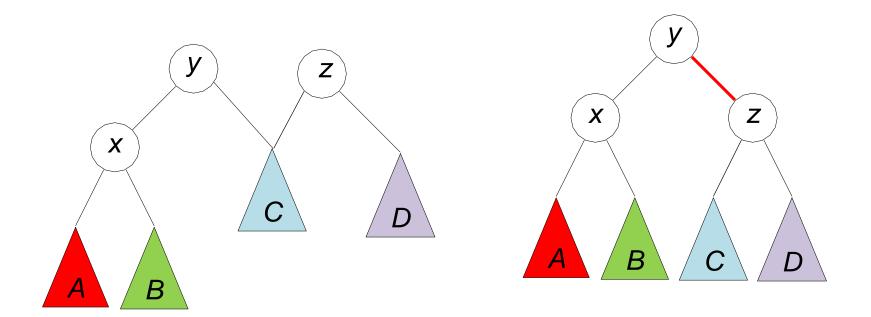
Right rotation on node z



```
 rotate-right(z) \\ y \leftarrow z.left, \textbf{z.left} \leftarrow \textbf{y.right}, y.right \leftarrow z \\ setHeightFromChildren(z), setHeightFromChildren(y) \\ return y // returns new root of subtree
```

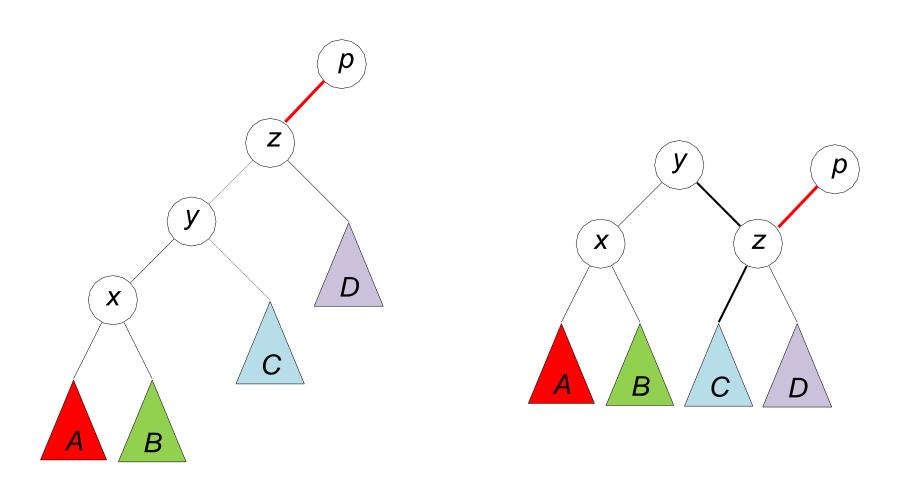
## Right Rotation Pseudocode

Right rotation on node z

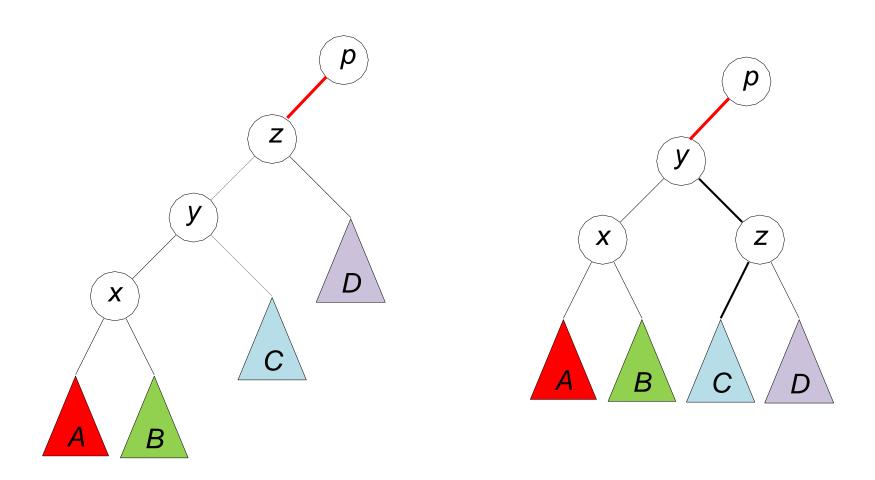


```
 rotate-right(z) \\ y \leftarrow z.left, z.left \leftarrow y.right, \textit{y.right} \leftarrow \textit{z} \\ setHeightFromChildren(z), setHeightFromChildren(y) \\ return y // returns new root of subtree
```

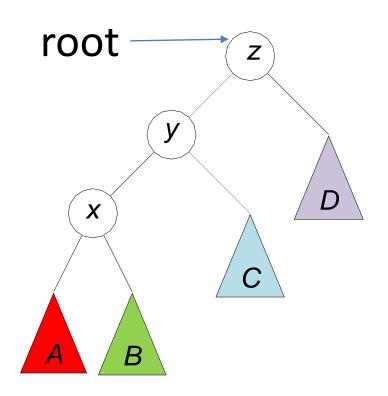
• If z had a parent p, need to set y as the new child of p

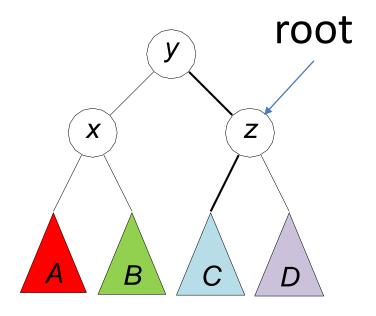


• If z had a parent p, need to set y as the new child of p

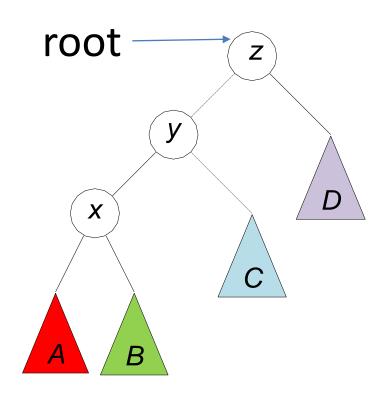


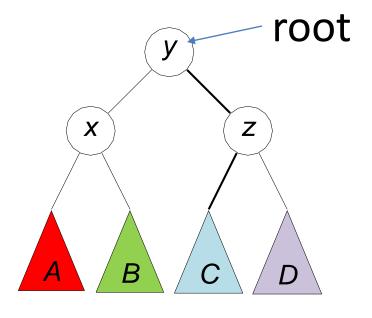
• If node z was the tree root, then y becomes new tree root

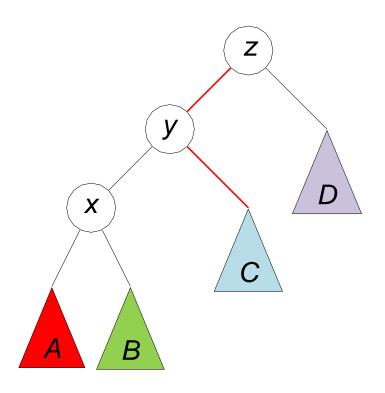


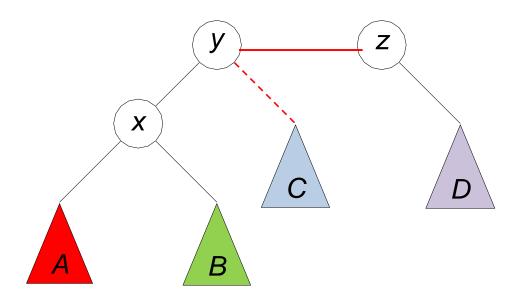


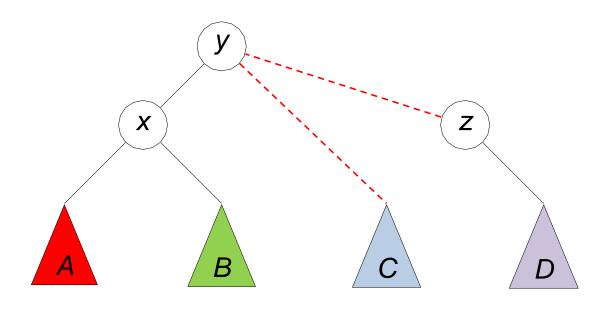
• If node z was the tree root, then y becomes new tree root

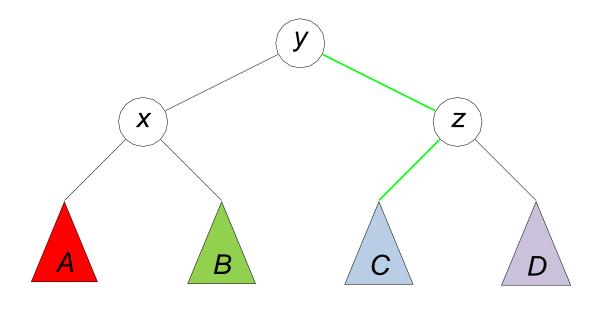




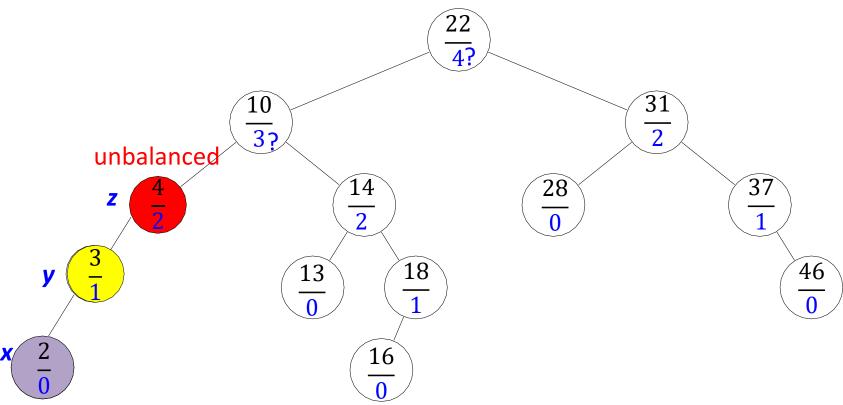






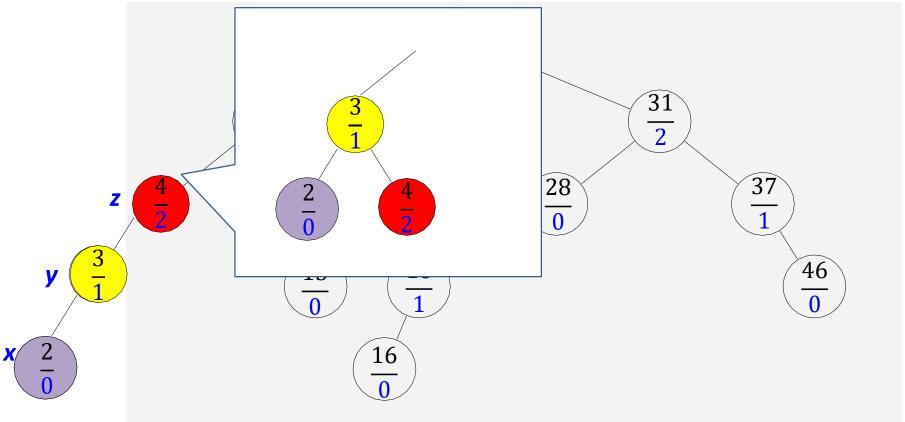


**Example**: AVL::insert(2)



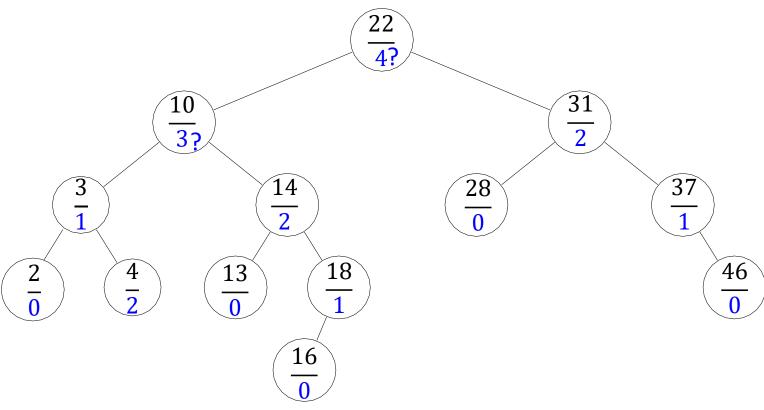
Fix with right rotation on node z

**Example**: AVL::insert(2)

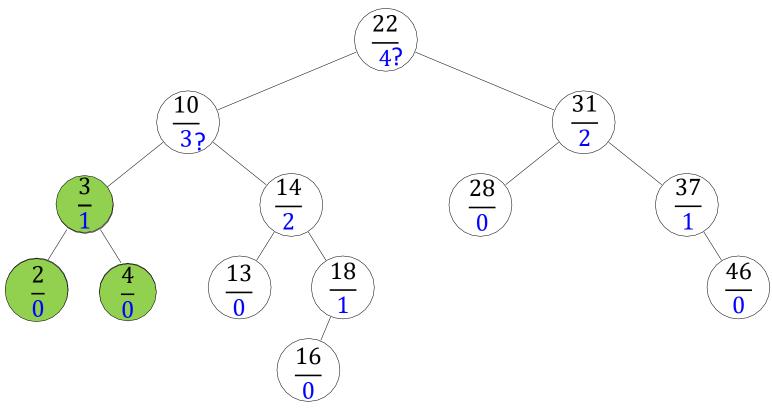


Fix with right rotation on node z

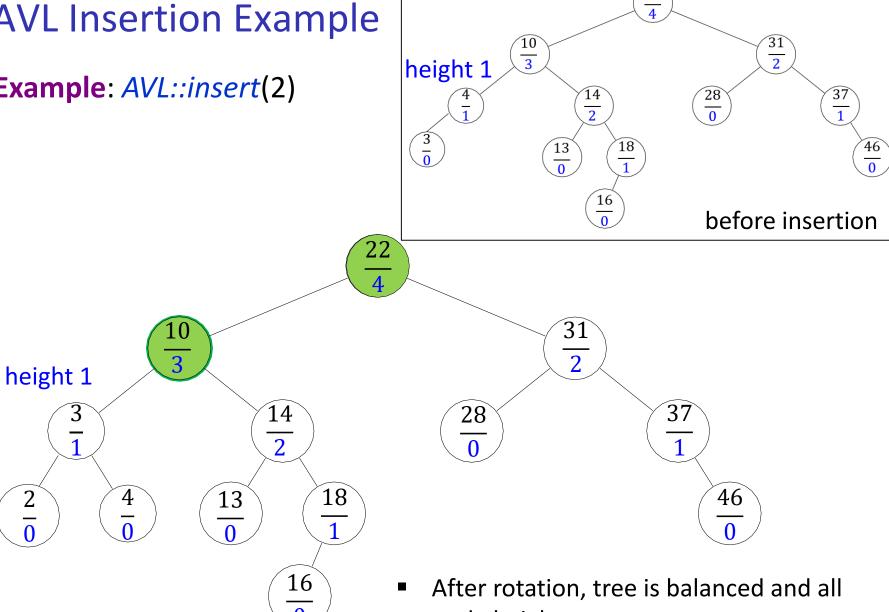
Example: AVL::insert(2)



Example: AVL::insert(2)

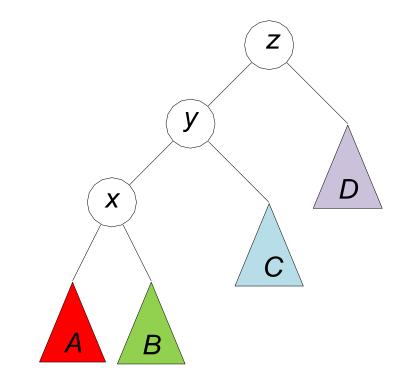


**Example**: AVL::insert(2)

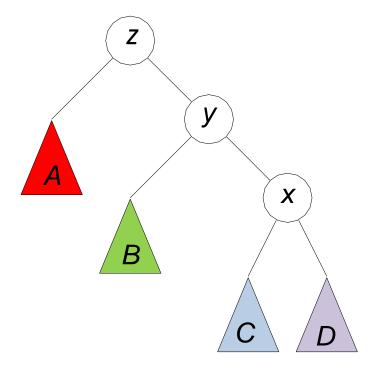


node heights are correct

## Restoring Height Balance, Case 2



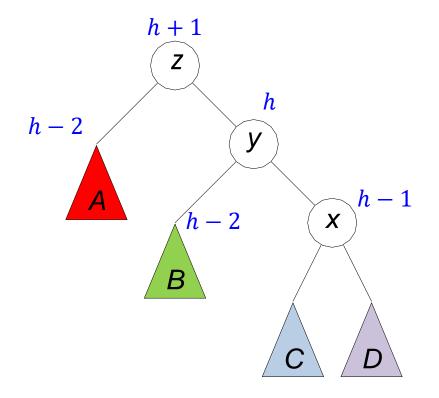
Case 1: Fixed with right rotation

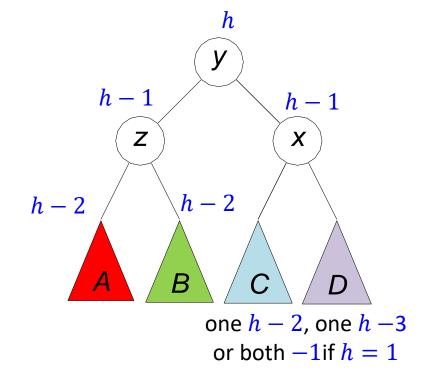


Case 2: Fixed with left rotation

### **Left Rotation**

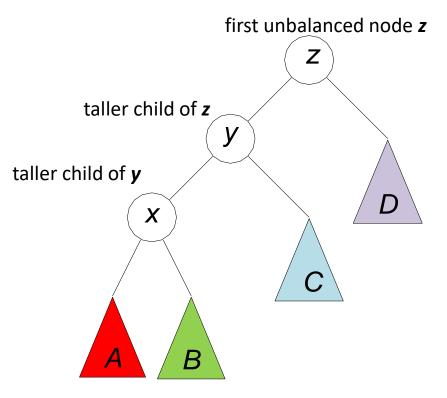
- Symmetrically, this is a *left rotation* on node z
- Useful to fix right-right imbalance



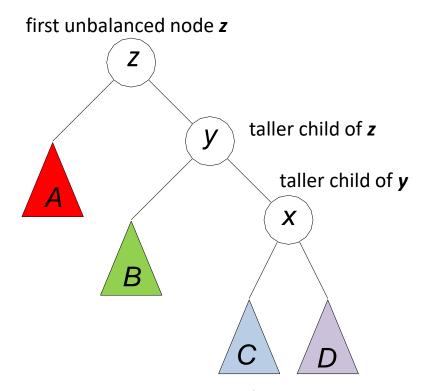


- BST order is preserved
- Balanced
- Same height as before insertion

## Distinguishing between Case 1 and Case 2



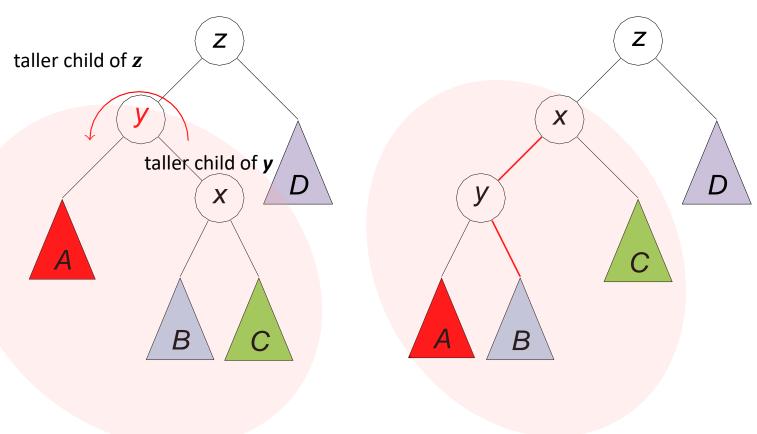
Case 1: Fixed with right rotation



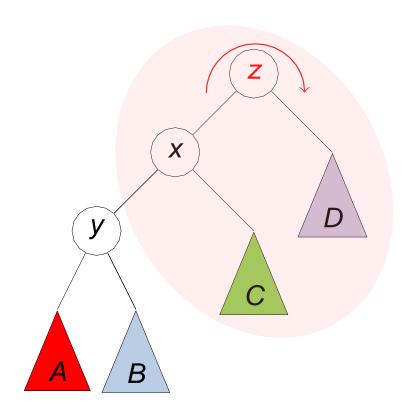
Case 2: Fixed with left rotation

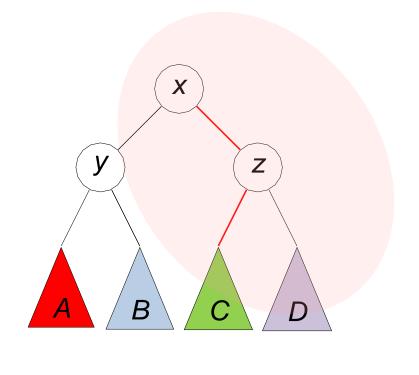
- $z \leftarrow$  the first unbalanced node on path from inserted node to the root
- $y \leftarrow \text{taller child of } z$
- $x \leftarrow \text{taller child of } y$

first unbalanced node z



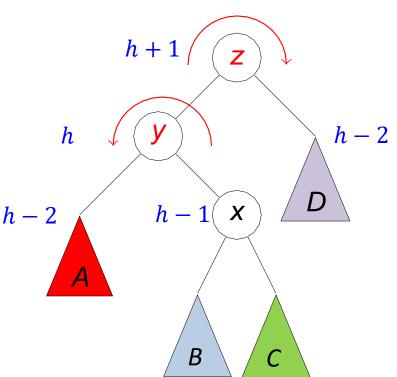
- Fix with double rotation on node z
  - first, left rotation at y

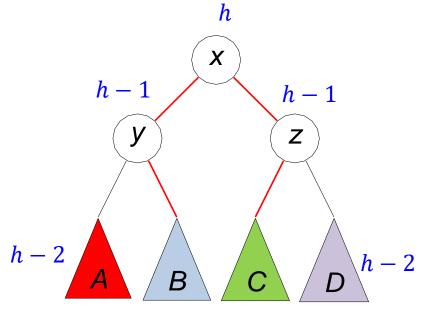




- Fix with double rotation on node *z* 
  - first, left rotation at y
  - second, right rotation at z

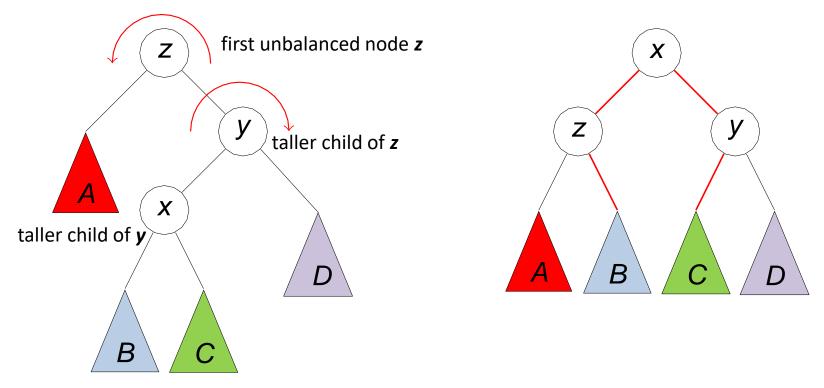
Cumulative result of double right rotation on node z





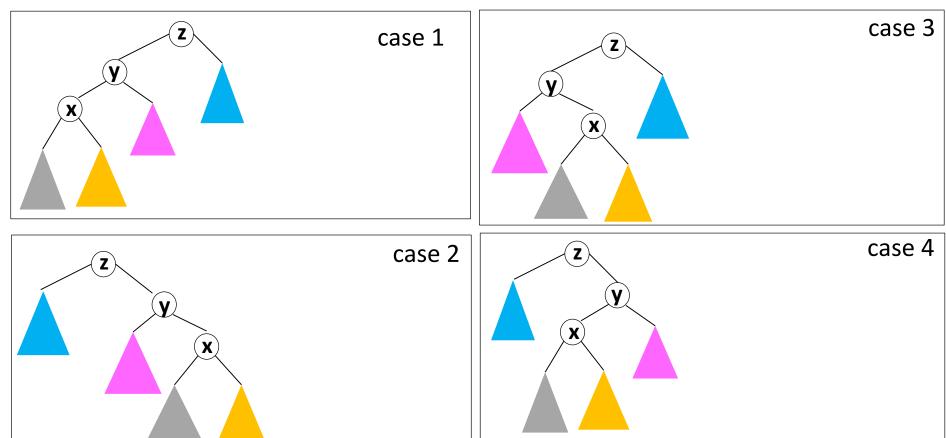
- First, left rotation at y, second, right rotation at z
- BST order is preserved
- Useful for left-right imbalance
  - can argue height balance property restored as before

Symmetrically, there is a double left rotation on node z



- First, a right rotation at y, second, a left rotation at z
- BST order is preserved
- Useful for right-left imbalance
  - can argue height balance property restored as before

### Unbalanced Node z: all 4 cases



- z is the first unbalanced node on the path from inserted node to the root
- y is the taller child of z
  - z is guaranteed to have one child taller than the other
- x is the taller child of y
  - y is guaranteed to have one child taller than the other

## Fixing Unbalanced AVL tree

```
restructure(x, y, z)
     x: node of BST that has an unbalanced grandparent,
      y and z: the parent and grandparent of x
              case
              :// Right rotation
case 1
                return rotate-right(z)
              :// Double-right rotation
             z.left \leftarrow rotate-left(y)
                return rotate-right(z)
              :// Double-left rotation
case
                z.right \leftarrow rotate-right(y)
                return rotate-left(z)
              : // Left rotation
case
                return rotate-left(z)
```

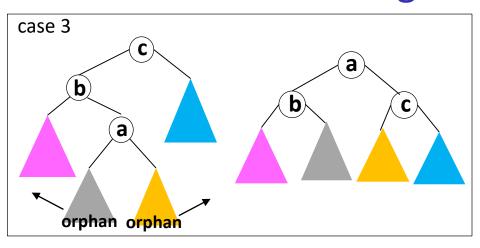
• In each case, the middle key of x, y, z becomes the new root

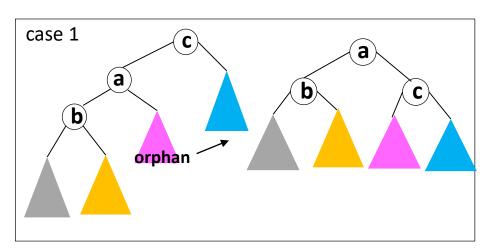
## Tri-Node Restructuring



All four cases can be handled with one method, Tri-Node restructuring

### **Tri-Node Restructuring**





- New names
  - a = node with middle key
  - **b** = node with smallest key
  - c = node with largest key
- Restructure
  - **a** becomes new subtree parent
  - b becomes left child of a
  - c becomes right child of a
  - one or two subtrees of a get "orphaned"
    - left subtree, if orphan, becomes right child of b
    - right subtree, if orphan, becomes left child of c

#### **Outline**

- Dictionaries and Balanced Search Trees
  - Dictionary ADT
  - Review: Binary Search Trees
  - AVL Trees
    - insertion
    - restoring the AVL Property: Rotations
    - full code for insertion
    - deletion

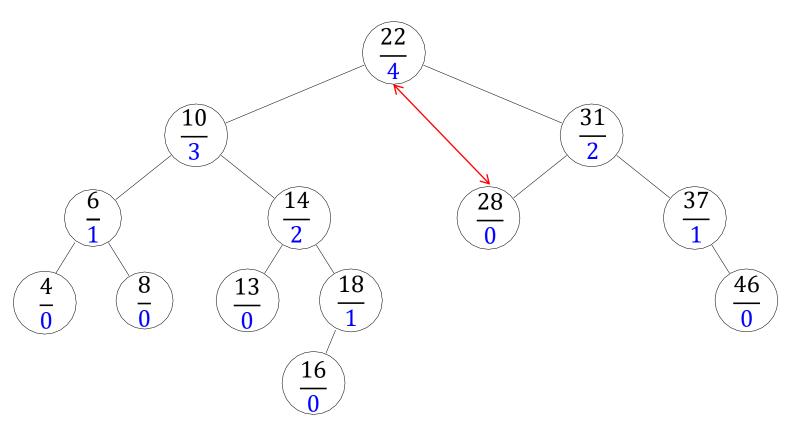
#### **AVL** insertion

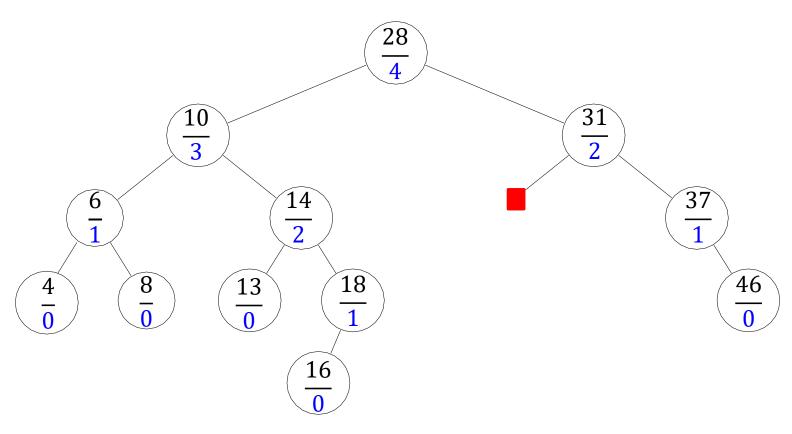
```
AVL::insert(k, v)
       z \leftarrow BST::insert(k, v)
       z.height \leftarrow 0
       while (z is not NIL)
            z \leftarrow \text{parent of } z
            if (|z| left . height - z . right . height| > 1) then
                    let y be tallest child of z
                    let x be tallest child of y
                    z \leftarrow restructure(x, y, z)
                    break
                                           // done after one restructure
             setHeightFromSubtrees(z)
```

```
 \begin{array}{l} \textit{setHeightFromSubtrees}(u) \\ \textbf{if } u \text{ is not an empty subtree} \\ u.\textit{height } \leftarrow 1 \ + \ \max\{u.\textit{left.height}, u.\textit{right.height}\} \end{array}
```

#### **Outline**

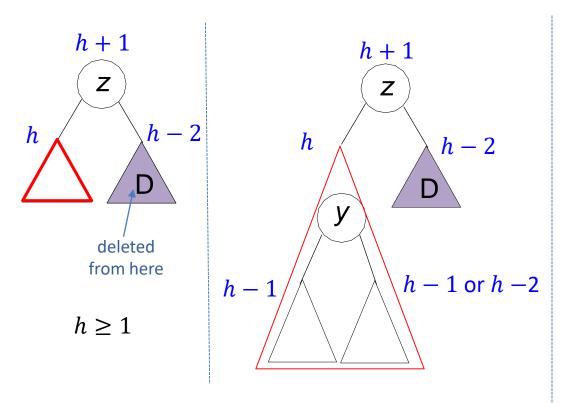
- Dictionaries and Balanced Search Trees
  - Dictionary ADT
  - Review: Binary Search Trees
  - AVL Trees
    - insertion
    - restoring the AVL Property: Rotations
    - full code for insertion
    - deletion



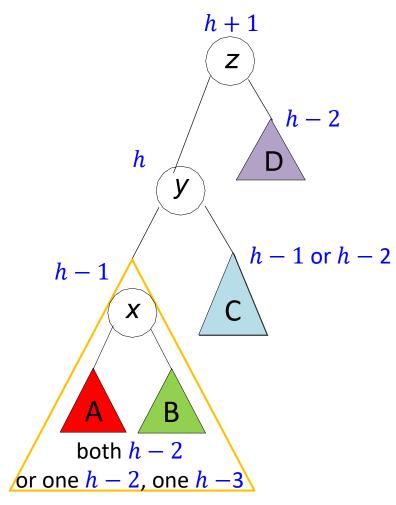


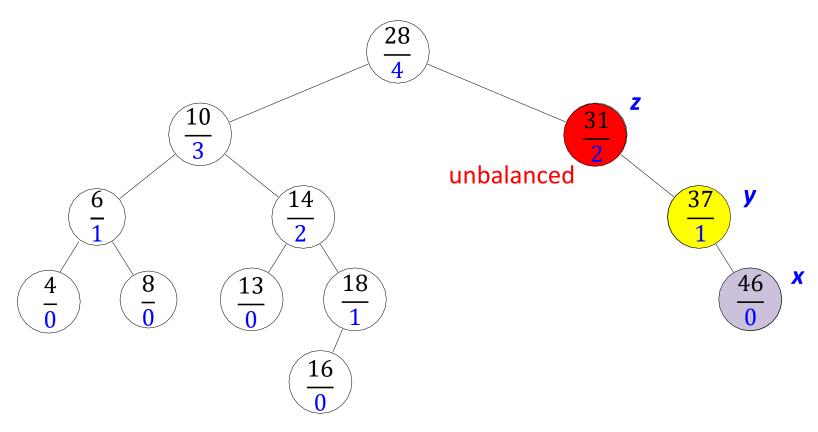
## Restoring Height After Deletion: Case 1

 Let z be the first unbalanced node on path from the parent of deleted node to the root height after deletion

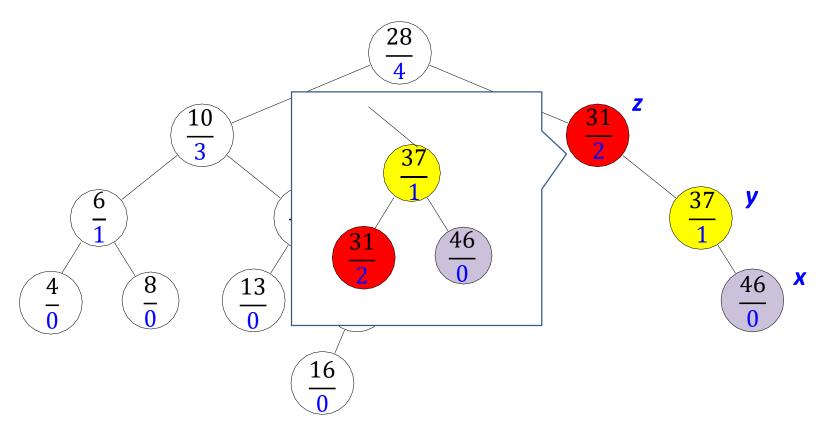


- Rebalancing is similar to that after insertion, but
  - z is guaranteed to have one taller child
  - y may have both children of the same height

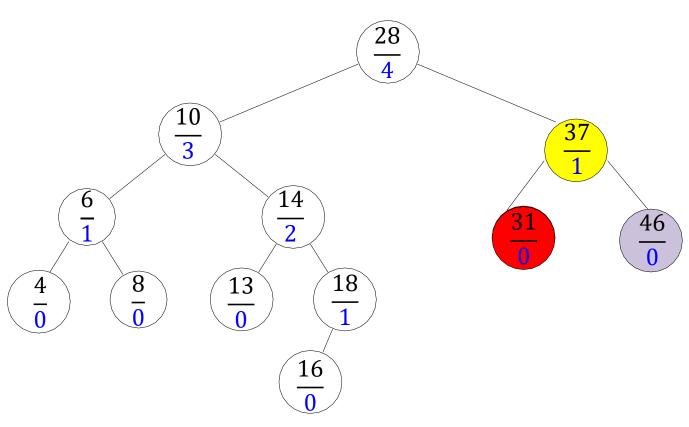


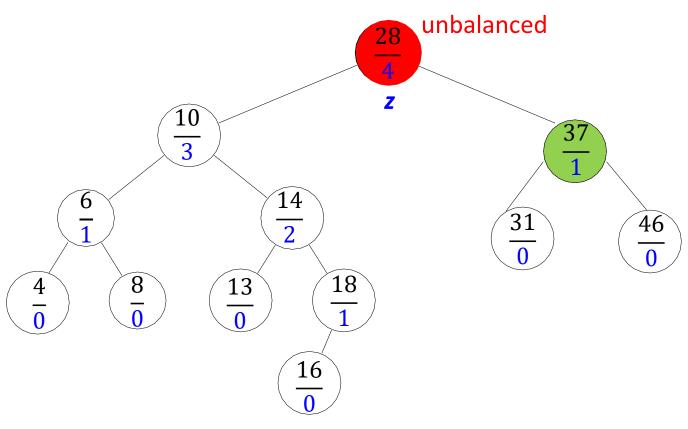


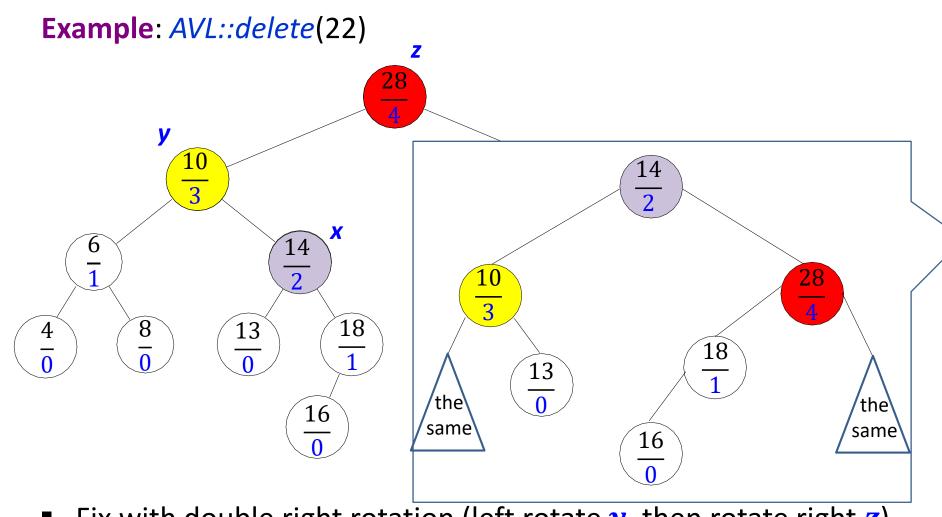
- Fix with left rotation on node z
- Or trinode restructuring on node z



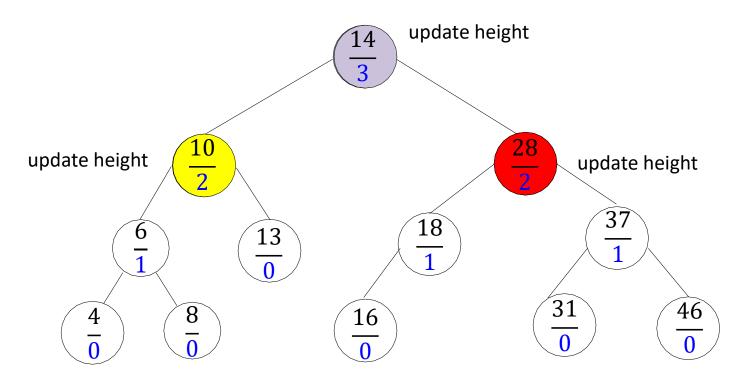
- Fix with left rotation on node z
- Or trinode restructuring



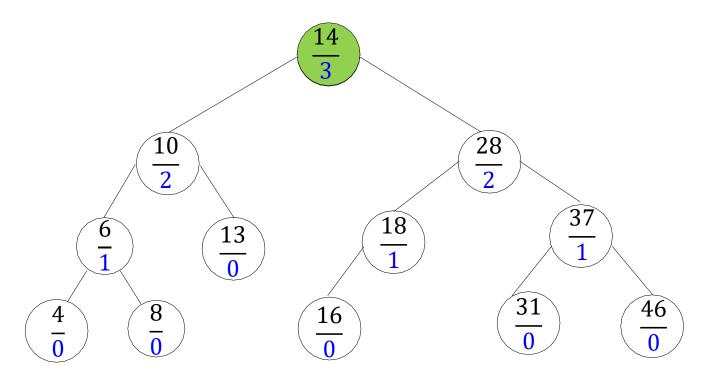




- Fix with double right rotation (left rotate y, then rotate right z)
- Or trinode restructuring on node z



**Example**: *AVL::delete*(22)

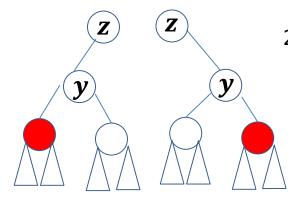


Rebalanced

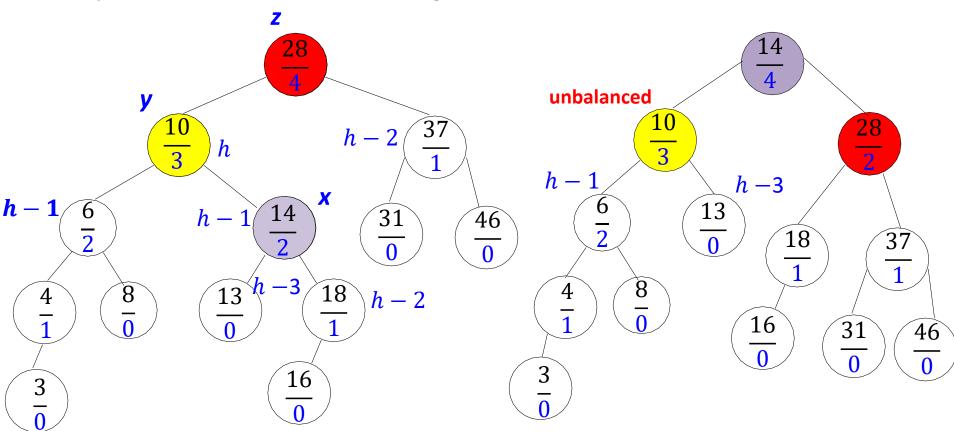
### **AVL Deletion**

- *AVL::delete*(*T*, *k*)
  - first, delete k from T with the usual BST deletion
    - delete returns parent z of the deleted node
    - heights of nodes on path from z to root may have decreased
  - then move up the tree from z, updating heights
  - if height difference is  $\pm 2$  at node z, then z is unbalanced
    - re-structure tree to restore height-balance property
    - just like rebalancing for insertion, with two differences
      - 1. restructuring after deletion does not guarantee to restore tree height to what it was before deletion
        - continue the path up the tree, fixing any imbalances
      - 2. tallerChild(y)
        - left and right children of y may have the same height
        - in case of a tie
          - return left child of y if y is itself the left child
          - return right child of y if y is itself the right child



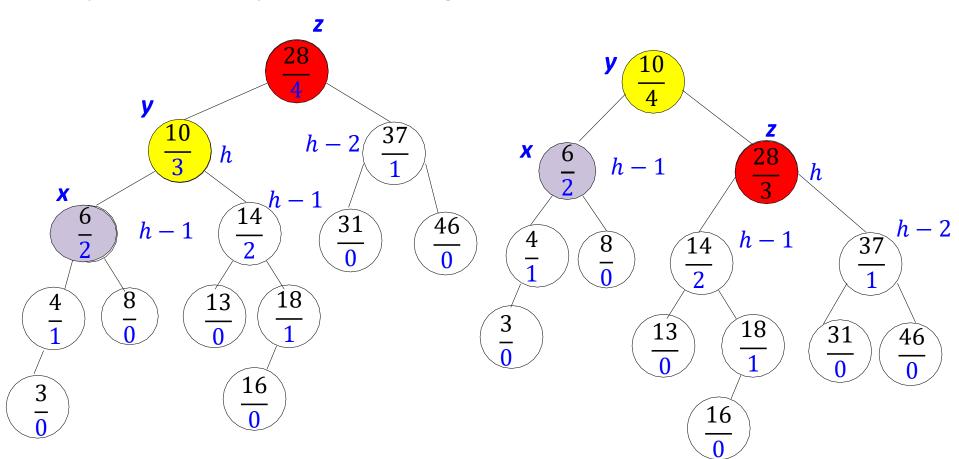


**Example**: incorrect if do not following the "same side" rule



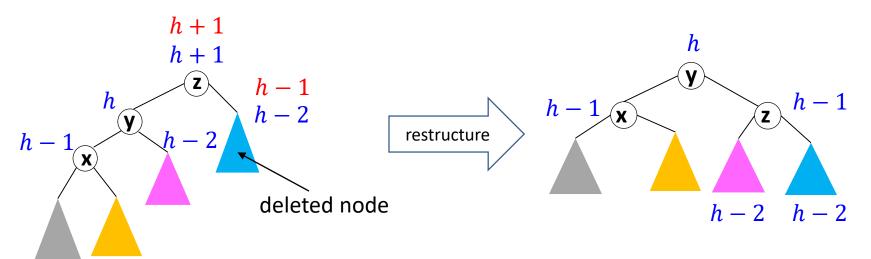
- Double rotate or trinode restructuring
- For insertion, proved that the "other" child of y, not the tallest, has height h-2
  - cannot argue the same for deletion

**Example**: same example, now following the "same side" rule



- Rotate or trinode restructuring
- Rebalanced, now children of x do not separate

## Reduced Height after Deletion



- If 'not the tallest' child of y has height h-2, height decreases after rebalancing
  - might cause imbalance higher up the tree

#### **AVL Delete Pseudocode**

```
AVL::delete(k, v)
       z \leftarrow BST::delete(k, v)
       // Assume z is the parent of the BST node that was removed
       while (z is not NIL)
           if (|z|.left.height - z|.right.height| > 1) then
                   let y be tallest child of z
                   let x be tallest child of y
                  // break ties to prefer 'the same side'
                  z \leftarrow restructure(x, y, z)
                   // must continue checking the path upwards
           setHeightFromSubtrees(z)
            z \leftarrow \text{parent of } z
```

### **AVL Tree Operations Runtime**

- AVL::search
  - just like in BSTs, costs  $\Theta(height)$
- AVL::insert
  - BST::insert
  - then check and update along path to new leaf
    - restructure restores the height of the tree to what it was
    - so restructure will be called at most once
  - total cost  $\Theta(height)$
- AVL::delete
  - BST::delete, then check and update along path to deleted node
    - restructure may be called  $\Theta(height)$  times
  - total cost  $\Theta(height)$
- Total cost for all operations is  $\Theta(height) = \Theta(\log n)$ 
  - but in practice, the constant is quite large