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Dictionary ADT
 A dictionary is a collection of items, each of which contains

 a key

 some data

 Item is called a key-value pair (KVP)

 Keys can be compared and are (typically) unique

 can extend to handle non-unique keys

 Operations

 search(𝑘)

 also called findElement(𝑘)

 insert(𝑘, 𝑣 )

 also called insertItem(𝑘, 𝑣)

 delete(𝑘)

 also called removeElement(𝑘)

 optional: closestKeyBefore, join, isEmpty, size, etc.

 Examples: symbol table, license plate database



Elementary Implementations
 Common assumptions

 dictionary has 𝑛 KVPs

 each KVP uses constant space

 if not, the “value” could be a pointer

 keys can be compared in constant time

(7,’Ace’) (1,’Pot’) (3,’Top’) (2,’Dog’) (0,’Cat’) (5,’Log’)

(0,’Cat’) (1,’Pot’) (2,’Dog’) (3,’Top’) (5,’Log’) (7,’Ace’)
 Ordered array

 search Θ(log 𝑛)

 via binary search

 insert Θ(𝑛)

 delete Θ(𝑛)

 Unordered array or linked list

 search  Θ(𝑛)

 insert Θ(1)

 delete Θ(𝑛)

 need to search
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Binary Search Trees (review)

 Structure 

 Binary tree is either empty or consists of nodes

 All nodes have two (possibly empty) subtrees, L (left) and R (right)

 Every node stores a KVP

 Leaves store empty subtrees

 Empty subtrees usually not shown

 Ordering

 every key in the left subtree of node 𝑣 is less than 𝑣. 𝑘𝑒𝑦

 every key the right subtree of node 𝑣 greater than 𝑣. 𝑘𝑒𝑦

 Show only keys, directly in the  node

 More  accurate picture

25

23 29

27 50

key = 50, <other info>50



BST Search
 BST::search(𝑘)

 start at root, compare 𝑘 to current node

 stop if found or subtree is empty, else recurse at subtree

 Example: BST::search(24)
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BST Search
 BST::search(𝑘)

 start at root, compare 𝑘 to current node

 stop if found or subtree is empty, else recurse at subtree

 Example: BST::search(24)



BST Insert
 BST::insert(𝑘, 𝑣)

 search for 𝑘, then insert (𝑘, 𝑣) as a new node at the empty 
subtree where search stops “expand at empty”

 Example: BST::insert(24, 𝑣)
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BST Delete, case 1
 First search for the node 𝑥 that contains the key

 Example: BST::delete(25)
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15

6
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8

23

14

22 24

1. If 𝑥 has at least one  empty subtree

 If 𝑥 has a parent, reconnect the other subtree of 𝑥 to the parent of 𝑥
 delete it with the empty subtree



BST Delete, case 2
 First search for the node 𝑥 that contains the key

 Example: BST::delete(15)

2. If x has only non-empty subtrees

 delete successor node (or predecessor node)

 case 1 applies

 swap KVP at 𝑥 with KVP at successor node (or predecessor node)
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BST Delete, case 2
 First search for the node 𝑥 that contains the key

 Example: BST::delete(15)

2. If x has only non-empty subtrees

 delete successor node (or predecessor node)

 case 1 applies

 swap KVP at 𝑥 with KVP at successor node (or predecessor node)



Height of a BST

 BST::search, BST::insert, BST::delete all have cost Θ(ℎ)
 ℎ = height of the tree = maximum length path from root to a leaf node
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height 3

 height of an empty tree is defined to be −1

 If 𝑛 items are BST::inserted one-at-a-time, how big is ℎ?

 worst-case is  𝑛 − 1 = Θ(𝑛)

 best case is Θ(log 𝑛)

 binary tree with 𝑛 nodes has height ≥ log(𝑛 + 1) − 1

 can show if insert items in random order then height is Θ(log𝑛)



Height of a node
 Height of node 𝑣 is the height of the tree rooted at node 𝑣
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Height of a node
 Height of node 𝑣 is the height of the tree rooted at node 𝑣

15

256

10

8 14

23 29

27 50

height 3

height 2 height 2

height 1
height 0

height 0 height 0

height 1

 Can compute heights of all nodes in post order traversal

 height of a leaf is 0

 height of any other node 𝑣 is

1 + max height 𝑣. left , height 𝑣. right

height 0height 0
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AVL Trees

 AVL Tree is a BST with  height-balance property

 for any node 𝑣, heights of its left subtree 𝑳 and right subtree 𝑹 differ 
by at most 1
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 Adelson-Velski and Landis,  1962

 "An algorithm for organization of information", Doklady Akademii Nauk USSR

AVL Tree 
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AVL Trees

 AVL Tree is a BST with  height-balance property

 for any node 𝑣, heights of its left subtree 𝑳 and right subtree 𝑹 differ 
by at most 1
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 In other words, ℎ𝑒𝑖𝑔ℎ𝑡(𝑣. 𝑟𝑖𝑔ℎ𝑡) − ℎ𝑒𝑖𝑔ℎ𝑡(𝑣. 𝑙𝑒𝑓𝑡) ∈ {−1, 0, 1}
 −1 means 𝑣 is left-heavy

 0 means 𝑣 is balanced

 +1 means 𝑣 is right-heavy

 Need to store at each node 𝑣 its height 

 enough to store balance factor = ℎ𝑒𝑖𝑔ℎ𝑡 𝑣. 𝑟𝑖𝑔ℎ𝑡 − ℎ𝑒𝑖𝑔ℎ𝑡(𝑣. 𝑙𝑒𝑓𝑡)

 fewer bits

 but code more complicated, especially for deleting

(0)

(-1)

(1)



Height of an AVL tree

 Only need upper bound, as height is Ω(log 𝑛)

 Let  𝑁(ℎ) be the smallest number of nodes an AVL tree of height ℎ can have

 any AVL tree of height ℎ has number of nodes 𝑛 ≥ 𝑁 ℎ

𝒉
𝒉 − 𝟏

𝒉 − 𝟐

𝑁 ℎ

8

𝑁(0)

2

4

𝑁(1)

 For  ℎ ≥ 2

𝑁 ℎ = 𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 ≥ 𝑁 ℎ − 2 + 𝑁 ℎ − 2 = 2𝑁 ℎ − 2

Theorem: AVL tree on 𝑛 nodes has Θ(log 𝑛) height

 Thus   𝑁(ℎ) ≥ 2𝑁(ℎ − 2)

Proof:



𝑁 ℎ

𝒉 − 𝟏
𝒉 − 𝟐

= 2𝑁 ℎ − 2≥ 𝑁 ℎ − 2 + 𝑁 ℎ − 2𝑁 ℎ = 𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1

Theorem: AVL tree on 𝑛 nodes has Θ(log 𝑛) height

Height of an AVL tree

 Only need upper bound, as height is Ω(log 𝑛)

 Let  𝑁(ℎ) be the smallest number of nodes an AVL tree of height ℎ can have

𝒉

8

𝑁(0)

2

4

𝑁(1)

 For  ℎ ≥ 2

 Thus   𝑁(ℎ) ≥ 2𝑁(ℎ − 2)

Proof:
 Recall heaps

 add new level 𝑖, number of nodes 
basically doubles

2𝑖

20 + 21 +⋯+ 2𝑖−1 = 2𝑖 − 1

 𝑁(ℎ) ≈ 2𝑁(ℎ − 1)

 In AVL tree to add two levels to  double 
number of nodes

 slower, but also exponential growth

Side Note



Height of an AVL tree
Proof: (continued)

 𝑁(ℎ) is the least number of nodes in height-ℎ AVL tree

 any AVL tree of height ℎ has number of nodes 𝑛 ≥ 𝑁 ℎ

 𝑁 0 = 1, 𝑁 1 = 2

≥ 22𝑁 ℎ − 2 ⋅ 2 ≥ ⋯ ≥ 2𝑖𝑁 ℎ − 2 ⋅ 𝑖𝑁 ℎ ≥ 2𝑁 ℎ − 2 ≥ 23𝑁 ℎ − 2 ⋅ 3

Base case for odd ℎ

 Recurrence inequality for ℎ ≥ 2 is  𝑁 ℎ ≥ 2𝑁 ℎ − 2

 Solve by expanding until reach the base case 

 expand until  ℎ − 2 ⋅ 𝑖 = 1

 rewriting, 𝑖 = (ℎ − 1)/2

Base case for even ℎ

𝑁 ℎ ≥ 2(ℎ−1)/2𝑁 1 = 2
ℎ−1
2 ⋅ 2

 take log

log𝑁 ℎ ≥
ℎ−1

2
+ 1

 rearrange

ℎ ≤ 2log𝑁 ℎ − 2𝑁 ℎ

𝑛 ≥ 𝑁 ℎ

≤ 2log 𝑛 − 2

 expand until  ℎ − 2 ⋅ 𝑖 = 0

 rewriting, 𝑖 = ℎ/2

𝑁 ℎ ≥ 2ℎ/2𝑁 0 = 2
ℎ
2 ⋅ 1

 take log

log𝑁 ℎ ≥
ℎ

2

 rearrange

ℎ ≤ 2log𝑁 ℎ ≤ 2log 𝑛𝑁 ℎ

ℎ is 𝑂(log 𝑛)
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AVL Insertion Example

Example: AVL::insert(2)
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AVL insertion

 AVL::insert(𝑇, 𝑘, 𝑣)

1. insert (𝑘, 𝑣) into 𝑇 with the usual BST insertion
 assume this returns the new leaf where the key was inserted

 heights of nodes on path from this leaf to root may have 
increased

2. move up the path from the new leaf to the root, updating 
heights

3. if the height difference becomes ±2 for some node on this 

path, the node is unbalanced 
 must re-structure the tree to restore height-balance property
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Restoring Height After Insertion

z

ℎ + 1

ℎ ℎ − 2

height after insertion

D
y

ℎ − 1

/height before insertion

 Let z be the first unbalanced node on path from inserted node  to the root

z

ℎ + 1

ℎ ℎ − 2

D

new 
node

new 
node

ℎ − 1 ℎ − 2

ℎ

ℎ − 1 ℎ − 2

ℎ

ℎ ≥ 1

ℎ − 1

ℎ − 1



Restoring Height After Insertion

z

ℎ + 1

ℎ ℎ − 2

height after insertion

D
y

ℎ − 2 or ℎ − 3

C

/height before insertion

ℎ − 2 ℎ − 2

 Let z be the first unbalanced node on path from inserted node  to the root

z

ℎ + 1

ℎ ℎ − 2

D

new 
node

new 
node

ℎ − 1 ℎ − 2

ℎ

ℎ − 1 ℎ − 2

ℎ

y

ℎ − 1
ℎ − 2

C

ℎ − 2
ℎ − 2

z

ℎ + 1

ℎ

ℎ − 2

D
ℎ − 1

ℎ − 2

ℎ

x

A B

new 
node

one ℎ − 2, one ℎ −3
or both −1 if ℎ = 1

ℎ ≥ 1

𝒉 − 𝟏
𝒉 − 𝟑

ℎ − 1



Restoring Height: Right Rotation
 Let z be the first unbalanced node on path from inserted node  to the root

 Right rotation is used for left-left imbalance (taller left child and grandchild)

y

ℎ − 1

ℎ − 2

C

z

ℎ + 1

ℎ

ℎ − 2

D

x

A B

y

x

A B

z

C D

ℎ − 2 ℎ − 2

ℎ − 1

ℎ

ℎ − 1

 BST order is preserved

 Balanced

 Same height as before insertion

ℎ 𝒉𝒉



Right Rotation Pseudocode

 Right rotation on node 𝑧

y

x

A B

C

D

z

rotate-right(𝑧)
y ← z.left, z.left ← y.right, y.right ← z
setHeightFromChildren(𝑧), setHeightFromChildren(𝑦)
return 𝑦 // returns new root of subtree
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Right Rotation Pseudocode

 Right rotation on node 𝑧

rotate-right(𝑧)
y ← z.left, z.left ← y.right, y.right ← z
setHeightFromChildren(𝑧), setHeightFromChildren(𝑦)
return 𝑦 // returns new root of subtree



y

x

A B

C D

z

y

x

A B

z

C D

Right Rotation Pseudocode

 Right rotation on node 𝑧

rotate-right(𝑧)
y ← z.left, z.left ← y.right, y.right ← z
setHeightFromChildren(𝑧), setHeightFromChildren(𝑦)
return 𝑦 // returns new root of subtree
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C D

z

After Rotation:
 If 𝑧 had a parent 𝑝, need to set 𝑦 as the new child of 𝑝

p

p
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A B
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C D

z

After Rotation:
 If 𝑧 had a parent 𝑝, need to set 𝑦 as the new child of 𝑝

p
p
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A B

z

C D

z

After Rotation:
 If node 𝑧 was the tree root, then 𝑦 becomes new tree root

root
root
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C D

z

After Rotation:
 If node 𝑧 was the tree root, then 𝑦 becomes new tree root

root
root



Why do we call this a rotation?
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Why do we call this a rotation?



y

x

A B

z

C D

Why do we call this a rotation?
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Why do we call this a rotation?



AVL Insertion Example

Example: AVL::insert(2)
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 Fix with right rotation on node z
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AVL Insertion Example

Example: AVL::insert(2)
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before insertion

height 1

height 1

 After rotation, tree is balanced and all 
node heights are correct



Restoring Height Balance, Case 2

y

x

A B

C

D

z

A

y

B

x

z

C D

Case 1: Fixed with right rotation Case 2: Fixed with left rotation



Left Rotation

A

y

B

x

C D

z

 BST order is preserved

 Balanced

 Same height as before insertion

 Symmetrically, this is a left rotation on node z 

 Useful to fix right-right imbalance 

ℎ − 1
ℎ − 2

ℎ + 1

ℎ
ℎ − 2

y

z

A B

x

C D

ℎ − 2 ℎ − 2

ℎ − 1

ℎ

ℎ − 1

one ℎ − 2, one ℎ −3
or both −1if ℎ = 1



Distinguishing between Case 1 and Case 2

 z ← the first unbalanced node on path from inserted node  to the root

 y ← taller child of z

 x  ← taller child of y

y

x

A B

C

D

z

taller child of z

taller child of y

A

y

B

x

z

taller child of z

taller child of y

C D

Case 1: Fixed with right rotation Case 2: Fixed with left rotation

first unbalanced node z first unbalanced node z



Case 3

y

A

x D

z

x

y

A B

C

D

B C

 Fix with double rotation on node 𝑧
 first, left rotation at 𝒚

z
taller child of 𝒛

taller child of y

first unbalanced node 𝒛



x

y

A B

z

C D

Case 3

z

x

y

A B

C

D

 Fix with double rotation on node 𝑧
 first, left rotation at 𝑦
 second, right rotation at 𝒛



x

y

A B

z

C D

Case 3
 Cumulative result of double right rotation on node 𝑧

 First,  left rotation at 𝑦, second, right rotation at 𝑧

 BST order is preserved

 Useful for left-right imbalance

 can argue height balance property restored as before

y

A

x D

B C

z

ℎ − 1ℎ − 2

ℎ + 1

ℎ ℎ − 2

ℎ − 2 ℎ − 2

ℎ − 1

ℎ

ℎ − 1



z
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x
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D

x

z
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y

C D

 First, a right rotation at 𝑦,  second, a left rotation at 𝑧

Case 4
 Symmetrically, there is a double left rotation on node 𝑧

taller child of z

taller child of y

first unbalanced node z

 BST order is preserved

 Useful for right-left imbalance
 can argue height balance property restored as before



Unbalanced Node 𝒛: all 4 cases 

 𝑧 is the first unbalanced node on the path from inserted node to the root

 𝑦 is the taller child of 𝑧
 𝑧 is guaranteed to have one child taller than the other

 𝑥 is the taller child of 𝑦
 𝑦 is guaranteed to have one child taller than the other

z

x

y

z

y

x

case 1

case 2

z

y

x

z

x

y

case 4

case 3



Fixing Unbalanced AVL tree

restructure(𝑥, 𝑦, 𝑧)
x : node of BST that has an unbalanced grandparent,
𝑦 and 𝑧: the parent and grandparent of 𝑥

case

y

x

z

y

x

z

: // Right rotation  

return rotate-right(𝑧)

: // Double-rightrotation
z.left ← rotate-left(𝑦)

z

y

x

return rotate-right(𝑧)

: // Double-leftrotation
z.right ← rotate-right(𝑦)
return rotate-left(𝑧)

z

y

x

: // Leftrotation
return rotate-left(𝑧)

 In each case, the middle key of 𝑥, 𝑦, 𝑧 becomes the new root

case 1

case 3

case 4

case 2



Tri-Node Restructuring

 All four cases can be handled with one method, Tri-Node restructuring

z

x

y

z

y

x

case 1

case 2

z

y

x

z

x

y

case 4

case 3



Tri-Node Restructuring

 New names
 a = node with middle key

a

b c

orphan orphan

orphan

c

b

a

 c = node with largest key

 b = node with smallest key

 Restructure
 a becomes new subtree parent

 b becomes left child of a

 c becomes right child of a

 one or two subtrees of a get “orphaned”

 left subtree, if orphan,  becomes right child of b

 right subtree, if orphan, becomes left child of c

c

b

a
a

b c

case 3 case 1



Outline

 Dictionaries and Balanced Search Trees
 Dictionary ADT 

 Review: Binary Search Trees

 AVL Trees

 insertion 

 restoring the AVL Property: Rotations

 full code for insertion

 deletion



AVL insertion

AVL::insert(𝑘, 𝑣)

𝑧 ← BST::insert(𝑘, 𝑣)

z.height ← 0

while (𝑧 is not NIL)

𝑧 ← parent of 𝑧

if (|𝑧.left.height − 𝑧.right.height| > 1) then 

let 𝑦 be tallest child of 𝑧

let 𝑥 be tallest child of 𝑦

𝑧 ← restructure(𝑥, 𝑦, 𝑧)

break // done after one restructure

setHeightFromSubtrees(𝑧)

setHeightFromSubtrees(𝑢)

if 𝑢 is not an empty subtree

𝑢. ℎ𝑒𝑖𝑔ℎ𝑡 ← 1 + max{𝑢.left.height, 𝑢.right.height}



Outline

 Dictionaries and Balanced Search Trees
 Dictionary ADT 

 Review: Binary Search Trees

 AVL Trees

 insertion 

 restoring the AVL Property: Rotations

 full code for insertion

 deletion



AVL Deletion Example

Example: AVL::delete(22)

22

4

31

2

37

1

46

0

28

0

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0



AVL Deletion Example

Example: AVL::delete(22)

28

4

31

2

37

1

46

0

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0



Restoring Height After Deletion: Case 1

z

ℎ + 1

ℎ ℎ − 2

height after deletion

D
y

ℎ − 1 or ℎ −2

 Rebalancing is similar to that after insertion, but

 z is guaranteed to have one taller child

 y may have both children of the same 
height

z

ℎ + 1

ℎ ℎ − 2

D

deleted 
from here

ℎ ≥ 1

ℎ − 1

y

ℎ − 1
ℎ − 1 or ℎ − 2

C

z

ℎ + 1

ℎ

ℎ − 2

D

x

A B
both ℎ − 2

or one ℎ − 2, one ℎ −3

 Let z be the first unbalanced node on path from the parent of deleted node  
to the root



AVL Deletion Example

Example: AVL::delete(22)

28

4

31

2

37

1

46

0

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

z

y

x

 Fix with left rotation on node 𝒛

 Or trinode restructuring on node 𝒛

31

2

37

1

46

0

unbalanced



AVL Deletion Example

Example: AVL::delete(22)

28

4

31

2

37

1

46

0

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

37

1

46

0

31

2

 Fix with left rotation on node 𝑧
 Or trinode restructuring

z

y

x



AVL Deletion Example

Example: AVL::delete(22)

28

4

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

37

1

46

0

31

2

31

0



AVL Deletion Example

Example: AVL::delete(22)

28

4

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

37

1

46

0

31

0

unbalanced28

4

z
37

1



AVL Deletion Example

Example: AVL::delete(22)

28

4

37

1

46

0

31

0

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

28

4

z

y

x

 Fix with double right rotation (left rotate 𝒚, then rotate right 𝒛)

 Or trinode restructuring on node 𝒛

46

0

31

0

28

4

10

3

14

2

16

0

18

1
the 

same
the 

same

13

0

10

3

14

2



AVL Deletion Example

Example: AVL::delete(22)

28

4

37

1

46

0

31

0

10

3

6

1

8

0

16

0

14

2

18

1
13

0

4

0

update height
10

2

28

2
update height

14

3

update height



AVL Deletion Example

Example: AVL::delete(22)

28

2

37

1

46

0

31

0

10

2

6

1

8

0

16

0

14

4

18

1
13

0

4

0

 Rebalanced

14

3



AVL Deletion
 AVL::delete(𝑇, 𝑘)

 first, delete  𝑘 from 𝑇 with the usual BST deletion

 delete returns parent 𝒛 of the deleted node

 heights of nodes on path from 𝒛 to root may have decreased

 then move up the tree from 𝒛, updating heights

 if height difference is ±2 at node 𝒛 , then 𝒛 is unbalanced 

 re-structure tree to restore height-balance property

 just like rebalancing for insertion, with two differences

1. restructuring after deletion does not guarantee to restore 
tree height to what it was before deletion

 continue the path up the tree, fixing any imbalances

𝒚

𝒛 𝒛

tallerChild

 left and right children of 𝒚 may have the same height

 in case of a tie

 return left child of 𝒚 if 𝒚 is itself the left child

 return right child of 𝒚 if 𝒚 is itself the right child

𝒚

2. tallerChild(𝒚)



AVL Deletion Example
Example: incorrect if do not following the “same side” rule

28

4

37

1

46

0

31

0

10

3

6

2

8

0

16

0

14

2

18

1

13

0

4

1

28

4

z

y

 Double rotate or  trinode restructuring

3

0

28

2

10

3

6

2

8

0 16

0

14

4

18

1

13

0

4

1

3

0

37

1

46

0

31

0

unbalanced

10

3

x
14

2
ℎ − 1

ℎ

ℎ − 2
ℎ −3

ℎ − 1

 For insertion, proved that the “other” child of 𝑦, not the tallest, has height ℎ − 2

 cannot argue the same for deletion

ℎ −3ℎ − 1

ℎ − 2

𝒉 − 𝟏



AVL Deletion Example
Example: same example, now following the “same side” rule

 Rotate or trinode restructuring

28

4

37

1

46

0

31

0

10

3

6

2

8

0

16

0

14

2

18

1

13

0

4

1

28

4

z

y

x

3

0

 Rebalanced, now children of 𝒙 do not separate

28

4

37

1

46

0

31

0

10

4

6

2

8

0

16

0

14

2

18

1

13

0

4

1

28

3

3

0

z

y

x
ℎ − 1

ℎ − 2ℎ − 1ℎ − 1

ℎ − 2ℎ

ℎ − 1
ℎ

10

3

6

2



Reduced Height after Deletion

z

x

y
ℎ − 1

ℎ + 1

ℎ

ℎ − 2
ℎ − 2

 If ‘not the tallest’ child of 𝒚 has height ℎ − 2, height decreases after rebalancing

 might cause imbalance higher up the tree

restructure

y

x z

ℎ − 2 ℎ − 2

ℎ − 1 ℎ − 1

ℎ

deleted node

ℎ + 1

ℎ − 1



AVL Delete Pseudocode

AVL::delete(𝑘, 𝑣)

𝑧 ← BST::delete(𝑘, 𝑣)

// Assume z is the parent of the BST node that was removed

while (𝑧 is not NIL)

if (|𝑧.left.height − 𝑧.right.height| > 1) then 

let 𝑦 be tallest child of 𝑧

let 𝑥 be tallest child of 𝑦

// break ties to prefer ‘the same side’

𝑧 ← restructure(𝑥, 𝑦, 𝑧)

// must continue checking the path upwards

setHeightFromSubtrees 𝑧

𝑧 ← parent of 𝑧



AVL Tree Operations Runtime
 AVL::search

 just like in BSTs, costs Θ ℎ𝑒𝑖𝑔ℎ𝑡

 AVL::insert

 BST::insert

 then check and update along path to new leaf

 restructure restores the height of the tree  to what it was

 so restructure will be called at most once

 total cost Θ(ℎ𝑒𝑖𝑔ℎ𝑡)

 AVL::delete

 BST::delete, then check  and update along path to deleted  node

 restructure may be called Θ(ℎ𝑒𝑖𝑔ℎ𝑡) times

 total cost Θ(ℎ𝑒𝑖𝑔ℎ𝑡)

 Total cost for all operations is Θ(ℎ𝑒𝑖𝑔ℎ𝑡) = Θ(log 𝑛)

 but in practice, the constant is quite large


