
CS 240 – Data Structures and Data Management

Module 5: Other Dictionary Implementations

A. Hunt and O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2022

Outline

 Dictionaries with Lists Revisited

 Dictionary ADT

 implementations so far

 Skip Lists

 Re-ordering items

Outline

 Dictionaries with Lists Revisited

 Dictionary ADT

 implementations so far

 Skip Lists

 Re-ordering items

Dictionary ADT: Implementations thus far
 A dictionary is a collection of key-value pairs (KVPs)

 search, insert, and delete

 Realizations

 Balanced search trees (AVL trees)

 Θ(log 𝑛) search, insert, and delete

 complex code and not necessarily the fastest running time in practice

 Binary search trees

 Θ(ℎ𝑒𝑖𝑔ℎ𝑡) search, insert and delete

 simpler than AVL tree

 randomization helps efficiency

 Ordered array

 simple implementation

 Θ(log 𝑛) search

 Θ(𝑛) insert and delete

6544 69 79 8337 Ordered linked list

 simple implementation

 Θ(𝑛) search, insert and delete

 search is the bottleneck, insert and delete would be Θ(1) if do search first and
account for its running time separately

 efficient search (like binary search) in ordered linked list?

Outline

 Dictionaries with Lists Revisited

 Dictionary ADT

 implementations so far

 Skip Lists

 Re-ordering items

Skip Lists: Motivation

 Ordered array has efficient binary search

23 37 44 65 69 79 83

 Can we imitate binary search in an ordered linked list?

0 1 2 3 4 5 6

6544 69 7923 8337

65

7937 65

Skip Lists: Motivation

 Search(83)

6544 69 7923 8337

65

7937 65

if didn’t have this
node, would ‘fall’ to
the bottom list

Skip Lists: Motivation
 Imitating binary search with a hierarchy of linked lists

log 𝑛
height

 When searching, go through the highest level possible

 thus visit at most two items at each level

 build from bottom to top, each higher up list has 1/2 of previous list items

 log 𝑛 height (total number of linked lists needed)

6544 69 7923 8337

65

7937 65

 Easy to implement if data structure is static

 know all items beforehand, no need to insert or delete, but in static case an
ordered array will work, and is more efficient (no links)

 To enable insert and delete, use randomization

Skip Lists: Motivation

23 37 6544 69 79 8783 94

 For next level, choose each item from previous level with probability ½ (coin toss)

0 0 1 0 1 1 0 1 0

1 0 1 0

44 79
0 1

79

𝑛

expected
number of nodes

𝑛

2

𝑛

22

𝑛

23

 𝑖th list is expected to have 𝑛/2𝑖 nodes

 Expect about log(𝑛) lists in total

44 69 79 87

Skip Lists: Motivation

23 37 6544 69 79 8783 94

 Insert ‘boundary’ nodes with special sentinel symbols −∞ and +∞
 to simplify code for searching

44 79

79

44 69 79 87

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

Skip Lists: Motivation

23 37 6544 69 79 8783 94

 Insert sentinel only level, with only −∞ and +∞
 to simplify code for searching

44 79

79

44 69 79 87

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

23,v 37,v 65,v44,v 69,v 79,v 87,v83,v 94,v−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

Skip Lists [Pugh’1989]

 A hierarchy S of ordered linked lists (levels) 𝑆0, 𝑆1, … , 𝑆ℎ

 other lists store only keys, or links to nodes in 𝑆0

 𝑆0 contains the KVPs of 𝑆 in non-decreasing order

 each 𝑆𝑖 contains special keys (sentinels) −∞ and +∞

 each 𝑆𝑖 is randomly generated subsequence of 𝑆𝑖−1 i.e., 𝑆0 ⊇ 𝑆1 ⊇ ⋯ ⊇ 𝑆ℎ

 𝑆ℎ contains only sentinels, the left sentinel is the root

root

23 37 6544 69 79 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

Skip Lists [Pugh’1989]
 Will show only keys from now on

 Each KVP belongs to a tower of nodes

 Each node 𝑝 has references to after(𝑝) and below(𝑝)

 There are (usually) more nodes than keys

tower of height 1

after 65

below 65

 Height of the skip list is the maximum height of any tower

 height is 3 in this example

23 37 6544 69 79 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

Search in Skip Lists

 search(87)

 For each level, predecessor of key 𝑘 is the node before node with key 𝑘, or, if
key 𝑘 is not present at that level, the node before where 𝑘 would be

 𝑃 collects predecessors of key 𝑘 at level 𝑆0, 𝑆1 , …
 these are needed for insert/delete

 𝑘 is in skip list if and only if 𝑃. 𝑡𝑜𝑝(). 𝑎𝑓𝑡𝑒𝑟 has key 𝑘

𝑃 = −∞

65

83

83

comparison
scan-forward

drop-down

√

comparison
leading to node we do not take

Search in Skip Lists

getPredecessors(𝑘)

𝑝 ← root

𝑃 ← stack of nodes, initially containing 𝑝

while 𝑝. 𝑏𝑒𝑙𝑜𝑤 ≠ 𝑁𝐼𝐿 do

𝑝 ← 𝑝. below

while 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 < 𝑘 do

𝑝 ← 𝑝. 𝑎𝑓𝑡𝑒𝑟

𝑃. 𝑝𝑢𝑠ℎ(𝑝)

return 𝑃

// keep dropping down until reach 𝑆0

// predecessor of 𝑘 in 𝑆0

skipList::search(𝑘)

𝑃 ← getPredecessors 𝑘

𝑞 ← 𝑃. 𝑡𝑜𝑝()

if 𝑞. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 = 𝑘 return 𝑞. 𝑎𝑓𝑡𝑒𝑟

else return ‘not found, but would be after 𝑞’

// move to the right

// this is next predecessor

Insert in Skip Lists

𝑆0

𝑆1

𝑆2

𝑆3

insert new item

insert new item with probability ½

if in 𝑆1, then insert new item with probability ½

if in 𝑆2, then insert new item with probability ½

 Keep “tossing a coin” until 𝑇 appears

 Insert into 𝑆0 and as many other 𝑆𝑖 as there are heads

 Examples

 𝐻,𝐻, 𝑇 (insert into 𝑆0, 𝑆1, 𝑆2) ⇒ will say 𝑖 = 2

 𝐻, 𝑇 (insert into 𝑆0, 𝑆1) ⇒ will say 𝑖 = 1

 𝑇 (insert into 𝑆0) ⇒ will say 𝑖 = 0

Insert in Skip Lists: Example 1
 skipList::insert(52, 𝑣)

 coin tosses: 𝐻, 𝑇 ⇒ 𝑖 = 1

 getPredecessors(52)

𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

Insert in Skip Lists Example 1
 skipList::insert(52, 𝑣)

 coin tosses: 𝐻, 𝑇 ⇒ 𝑖 = 1

 getPredecessors(52)

 now insert into 𝑆0 and 𝑆1 𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

52

52

Insert in Skip Lists: Example 2
 skipList::insert(100, 𝑣)

 coin tosses: 𝐻,𝐻,𝐻, 𝑇 ⇒ 𝑖 = 3

 first increase height

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

Insert in Skip Lists: Example 2
 skipList::insert(100, 𝑣)

 coin tosses: 𝐻,𝐻,𝐻, 𝑇 ⇒ 𝑖 = 3

 first increase height

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

−∞ +∞𝑆4

 next getPredecessors (100)

Insert in Skip Lists: Example 2

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

−∞ +∞𝑆4

 skipList::insert(100, 𝑣)

 coin tosses: 𝐻,𝐻,𝐻, 𝑇 ⇒ 𝑖 = 3

 first increase height

 next getPredecessors (100)

Insert in Skip Lists: Example 2

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

−∞ +∞𝑆4

 skipList::insert(100, 𝑣)

 coin tosses: 𝐻,𝐻,𝐻, 𝑇 ⇒ 𝑖 = 3

 first increase height

 next getPredecessors (100)

 insert new key

Insert in Skip Lists: Example 2

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

−∞ +∞𝑆4

100

100

100

100

 insert new key

 skipList::insert(100, 𝑣)

 coin tosses: 𝐻,𝐻,𝐻, 𝑇 ⇒ 𝑖 = 3

 first increase height

 next getPredecessors (100)

Insert in Skip Lists
skipList::insert(𝑘, 𝑣)

for 𝑖 ← 0; 𝑟𝑎𝑛𝑑𝑜𝑚 2 = 1; 𝑖 ← 𝑖 + 1 {}

for ℎ ← 0, 𝑝 ← 𝑟𝑜𝑜𝑡. 𝑏𝑒𝑙𝑜𝑤; 𝑝 ≠ 𝑁𝐼𝐿𝐿; 𝑝 ← 𝑝. 𝑏𝑒𝑙𝑙𝑜𝑤 do ℎ ++

while 𝑖 ≥ ℎ

𝑟𝑜𝑜𝑡 ← new sentinel-only list linked in appropriately

ℎ ++

𝑃 ← getPredecessors(𝑘)

𝑝 ← 𝑃. 𝑝𝑜𝑝()

𝑧𝐵𝑒𝑙𝑙𝑜𝑤 ← new node with (𝑘, 𝑣) inserted after 𝑝

while 𝑖 > 0

𝑝 ← 𝑃. 𝑝𝑜𝑝()

𝑧 ← new node with 𝑘 added after 𝑝

𝑧. 𝑏𝑒𝑙𝑜𝑤 ← 𝑧𝐵𝑒𝑙𝑙𝑜𝑤

𝑧𝐵𝑒𝑙𝑙𝑜𝑤 ← 𝑧

𝑖 ← 𝑖 − 1

// random tower height

// increase skip-list height if needed

// insert (𝑘, 𝑣) in 𝑆0

// insert 𝑘 in 𝑆1 𝑆2,…, 𝑆i

Example: Delete in Skip Lists
 skipList::delete 65

 first getPredecessors 𝑆, 65

𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

 then delete key 65 from all 𝑆𝑖
 𝑃 has predecessor of each node to be deleted

Example: Delete in Skip Lists

23 37 44 69 8783 94−∞ +∞

37 83 94−∞ +∞

−∞ +∞

−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

 height decrease: delete all unnecessary 𝑆𝑖, if any

 skipList::delete 65
 first getPredecessors 𝑆, 65

 then delete key 65 from all 𝑆𝑖
 𝑃 has predecessor of each node to be deleted

Example: Delete in Skip Lists

23 37 44 69 8783 94−∞ +∞

37 83 94−∞ +∞

−∞ +∞

𝑆0

𝑆1

𝑆2

 skipList::delete 65
 first getPredecessors 𝑆, 65

 then delete key 65 from all 𝑆𝑖
 𝑃 has predecessor of each node to be deleted

 height decrease: delete all unnecessary 𝑆𝑖, if any

Delete in Skip Lists

skipList::delete(𝑘)

𝑃 ← getPredecessors(𝑘)

while 𝑃 is non-empty

𝑝 ← 𝑃. 𝑝𝑜𝑝()

if 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 = 𝑘

𝑝. 𝑎𝑓𝑡𝑒𝑟 ← 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑎𝑓𝑡𝑒𝑟

else break

𝑝 ← left sentinel of the root-list

while 𝑝. 𝑏𝑒𝑙𝑜𝑤. 𝑎𝑓𝑡𝑒𝑟 is the ∞ sentinel

𝑝. 𝑏𝑒𝑙𝑜𝑤 ← 𝑝. 𝑏𝑒𝑙𝑜𝑤. 𝑏𝑒𝑙𝑜𝑤

𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑏𝑒𝑙𝑜𝑤 ← 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑏𝑒𝑙𝑜𝑤. 𝑏𝑒𝑙𝑜𝑤

// predecessor of 𝑘 in some layer

// no more copies of 𝑘

// the two top lists are both only sentinels, remove one

// removes the second empty list

Skip List Analysis

 In the worst case, the height of a tower could be arbitrary large

 no bound on height in terms of 𝑛

 Therefore operations could be arbitrarily slow, and space requirements
arbitrarily large

 But this is exceedingly unlikely

 Therefore we analyse expected run-time and space-usage

𝑃 𝑋𝑘 ≥ 𝑖 = 𝑃 𝐻 𝐻 … 𝐻

𝑖 times

=
1

2

𝑖

37

37

tower of height 1

 Let 𝑋𝑘 be the height of tower for key 𝑘

 𝑃(𝑋𝑘 ≥ 1) =
1

2
, 𝑃(𝑋𝑘 ≥ 2) =

1

2
∙
1

2
, 𝑃(𝑋𝑘 ≥ 3) =

1

2
∙
1

2
∙
1

2

 In general

Skip List Analysis

 Let 𝑋𝑘 be the height of tower for key 𝑘,we know 𝑃(𝑋𝑘 ≥ 𝑖) =
1

2𝑖

𝑆0

𝑆1

𝑆2

𝑆3

𝑘1 𝑘2 𝑘3 𝑘4

𝑋𝑘1 = 3

 If 𝑋𝑘 ≥ 𝑖 then list 𝑆𝑖 includes key 𝑘

𝑋𝑘2 = 1 𝑋𝑘3 = 0 𝑋𝑘4 = 2

 Let 𝑆𝑖 be the number of keys in list 𝑆𝑖
 sentinels do not count towards the length

 𝑆0 always contains all 𝑛 keys

𝑆0 = 4

𝑆1 = 3

𝑆2 = 2

𝑆3 = 1

Skip List Analysis

 Let 𝐼𝑖, 𝑘 = ቊ
0 if 𝑋𝑘 < 𝑖
1 if 𝑋𝑘 ≥ 𝑖

 Let 𝑋𝑘 be the height of tower for key 𝑘,we know 𝑃(𝑋𝑘 ≥ 𝑖) =
1

2𝑖

 If 𝑋𝑘 ≥ 𝑖 then list 𝑆𝑖 includes key 𝑘

 𝑆𝑖 = σ𝑘𝑒𝑦 𝑘 𝐼𝑖, 𝑘

𝑆0

𝑆1

𝑆2

𝑆3

𝐼1, 𝑘1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼1, 𝑘3 = 0𝐼1, 𝑘2 = 1 𝐼1, 𝑘4 = 1

𝐼2, 𝑘1 = 1 𝐼2, 𝑘3 = 0𝐼2, 𝑘2 = 0 𝐼2, 𝑘4 = 1

𝐼3, 𝑘1 = 1 𝐼3, 𝑘3 = 0𝐼3, 𝑘2 = 0 𝐼3, 𝑘4 = 0

 Let 𝑆𝑖 be the number of keys in list 𝑆𝑖
 sentinels do not count towards the length

Skip List Analysis

 Let 𝐼𝑖, 𝑘 = ቊ
0 if 𝑋𝑘 < 𝑖
1 if 𝑋𝑘 ≥ 𝑖

 Let 𝑋𝑘 be the height of tower for key 𝑘,we know 𝑃(𝑋𝑘 ≥ 𝑖) =
1

2𝑖

 𝑆𝑖 = σ𝑘𝑒𝑦 𝑘 𝐼𝑖, 𝑘

𝑆0

𝑆1

𝑆2

𝑆3

𝐼1, 𝑘1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼1, 𝑘3 = 0𝐼1, 𝑘2 = 1 𝐼1, 𝑘4 = 1

𝐼2, 𝑘1 = 1 𝐼2, 𝑘3 = 0𝐼2, 𝑘2 = 0 𝐼2, 𝑘4 = 1

𝐼3, 𝑘1 = 1 𝐼3, 𝑘3 = 0𝐼3, 𝑘2 = 0 𝐼3, 𝑘4 = 0

 Let 𝑆𝑖 be the number of keys in list 𝑆𝑖

 𝐸[𝑆𝑖] =

𝑘𝑒𝑦 𝑘

𝐸[𝐼𝑖, 𝑘]= 𝐸
𝑘𝑒𝑦 𝑘

𝐼𝑖, 𝑘 =

𝑘𝑒𝑦 𝑘

𝑃(𝐼𝑖, 𝑘 = 1) =

𝑘𝑒𝑦 𝑘

𝑃 (𝑋𝑘 ≥ 𝑖) =
𝑛

2𝑖

 The expected length of list 𝑆𝑖 is
𝑛

2𝑖

Skip List Analysis

 Let 𝐼𝑖 = ቊ
0 if 𝑆𝑖 = 0
1 if 𝑆𝑖 ≥ 1

 Since 𝐼𝑖 ≤ 1 we have that 𝐸[𝐼𝑖] ≤ 1

 Since 𝐼𝑖 ≤ 𝑆𝑖 we have that 𝐸[𝐼𝑖] ≤ 𝐸[𝑆𝑖]

𝑆0

𝑆1

𝑆2

𝑆3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
 𝑆𝑖 is number of keys in list 𝑆𝑖

 𝐸[𝑆𝑖] =
𝑛

2𝑖

 𝐸[ℎ] = 1 +

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 +

𝑖≥1

𝐼𝑖 = 1 +
𝑖=1

log 𝑛

𝐸[𝐼𝑖] +
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝑆4 has only sentinels

 ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here +1 is for the sentinel-only level)

≤ 1 +
𝑖=1

log 𝑛

1

=
𝑛

2𝑖

≤ 1 + log𝑛

 For ease of derivation, assume 𝑛 is a power of 2

+
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

+
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

Skip List Analysis

 Let 𝐼𝑖 = ቊ
0 if 𝑆𝑖 = 0
1 if 𝑆𝑖 ≥ 1

 Since 𝐼𝑖 ≤ 1 we have that 𝐸[𝐼𝑖] ≤ 1

 Since 𝐼𝑖 ≤ 𝑆𝑖 we have that 𝐸[𝐼𝑖] ≤ 𝐸[𝑆𝑖]

𝑆0

𝑆1

𝑆2

𝑆3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
 𝑆𝑖 is number of keys in list 𝑆𝑖

 𝐸[𝑆𝑖] =
𝑛

2𝑖

 𝐸[ℎ] = 1 +

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 +

𝑖≥1

𝐼𝑖 = 1 +
𝑖=1

log 𝑛

𝐸[𝐼𝑖] +
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝑆4 has only sentinels

 ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here +1 is for the sentinel-only level)

≤ 1 +
𝑖=1

log 𝑛

1 +
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

=
𝑛

2𝑖

≤ 1 + log𝑛 +
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

 For ease of derivation, assume 𝑛 is a power of 2

𝑆0

𝑆1

𝑆2

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

= 1 +
𝑖=1

log 𝑛

𝐸[𝐼𝑘] +
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑘]

≤ 1 +
𝑖=1

log 𝑛

1 +
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

=
𝑛

2𝑖

≤ 1 + log𝑛 +
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

𝑆0

𝑆1

𝑆2

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

= 1 +
𝑖=0

log 𝑛

𝐸[𝐼𝑘] +
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑘]

=
𝑛

2𝑖

𝑆 =
𝑖=0

∞ 1

2𝑖

=
1

2

𝑖=0

∞ 𝑛

2𝑖2log 𝑛

=
1

2

𝑖=0

∞ 𝑛

2𝑖𝑛

=
1

2

𝑖=0

∞ 1

2𝑖

𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

2𝑆 =
𝑖=0

∞ 1

2𝑖−1

𝑆 = 2𝑆 − 𝑆 = 2

= 2 +
𝑖=0

∞ 1

2𝑖

= 1

 Expected height of skip list is at most 2 + log𝑛

Skip List Analysis

 Let 𝐼𝑖 = ቊ
0 if 𝑆𝑖 = 0
1 if 𝑆𝑖 ≥ 1

 Since 𝐼𝑖 ≤ 1 we have that 𝐸[𝐼𝑖] ≤ 1

 Since 𝐼𝑖 ≤ 𝑆𝑖 we have that 𝐸[𝐼𝑖] ≤ 𝐸[𝑆𝑖]

𝑆0

𝑆1

𝑆2

𝑆3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
 𝑆𝑖 is number of keys in list 𝑆𝑖

 𝐸[𝑆𝑖] =
𝑛

2𝑖

 𝐸[ℎ] = 1 +

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 +

𝑖≥1

𝐼𝑖 = 1 +
𝑖=1

log 𝑛

𝐸[𝐼𝑖] +
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝑆4 has only sentinels

 ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here +1 is for the sentinel-only level)

≤ 1 +
𝑖=1

log 𝑛

1 +
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

=
𝑛

2𝑖

≤ 1 + log𝑛 + 1

 For ease of derivation, assume 𝑛 is a power of 2

Skip List Analysis: Expected Space

 We need space for nodes storing sentinels and nodes storing keys

1. Space for nodes storing sentinels

 there are 2ℎ + 2 sentinels, where ℎ be the skip list height

 𝐸 ℎ ≤ 2 + log 𝑛

 expected space for sentinels is at most

𝐸 2ℎ + 2 = 2𝐸 ℎ + 2 ≤ 6 + 2log 𝑛

= 2𝑛

2. Space for nodes storing keys

 Let 𝑆𝑖 be the number of keys in list 𝑆𝑖

 𝐸[𝑆𝑖] =
𝑛

2𝑖

 expected space for keys is

𝑖≥0

𝑛

2𝑖
𝐸

𝑖≥0

𝑆𝑖 =

 Total expected space is Θ(𝑛)

Skip List Analysis: Expected Running Time

 search, insert, and delete are dominated by the running time of
getPredecessors

 So let us analyze the expected time of getPredecessors

 In getPredecessors, running time is proportional to the number of ‘drop-down’
and ‘scan-forward’

 We ‘drop-down’ ℎ times, where ℎ is skip list height

 expected height ℎ is O(log 𝑛)

 total expected time spent on ‘drop-down’ operations is O(log 𝑛)

 Will show next that expected number of ‘scan-forward’ is also O(log 𝑛)

 So the expected running time is O(log𝑛)

drop-down
scan-forward

drop-down
scan-forward

Skip List Analysis: Expected Running Time
 What about ‘scan-forward’ at level 𝑖?

 assume 𝑖 < ℎ (if 𝑖 = ℎ, then we are at the top list and do not scan forward at all)

 let 𝑣 be leftmost key in 𝑆𝑖 we visit during search

 we 𝑣 reached by dropping down from 𝑆𝑖 + 1

𝑤
 let 𝑤 be the key right after 𝑣

𝑣

𝑣𝑆𝑖+1

𝑆𝑖

𝐸[number of scans] =

𝑙≥1

P(scans ≥ 𝑙) ≤

𝑙≥1

1

2𝑙
= 1=

𝑙≥1

𝑙 ∙ P(scans = 𝑙)

 height of tower of 𝑤 in this case is at least 𝑖

 What is the probability of scanning from 𝑣 to 𝑤?

 If we do scan forward from 𝑣 to 𝑤, then 𝑤 did not exist in 𝑆𝑖+1
 otherwise, we would scan forward from 𝑣 to 𝑤 in 𝑆𝑖+1
 in other words, we always enter the tower of any node ‘at the top’

 Thus if we do scan forward from 𝑣 to 𝑤, then the tower of 𝑤 has height 𝑖

 𝑃(tower of 𝑤 has height 𝑖| tower of 𝑤 has height at least 𝑖) = ½

 we scan forward from 𝑣 to 𝑤 with probability at most ½

 ‘at most’ because we could scan-down down if 𝑘𝑒𝑦 < 𝑤

 repeating the argument, the probability of scan-forward 𝑙 times is at most 1/2 𝑙

Skip List Analysis: Expected Running Time

 Expected number of scan-forwards is O(log 𝑛)

=
𝑖=1

log 𝑛

𝐸[# of scan−for at level 𝑖] +
𝑖=1+log 𝑛

∞

𝐸[# of scan−for at level 𝑖]

≤
𝑖=1

log 𝑛

1 +
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

 At level 𝑖 < ℎ: 𝐸[number of scan-forward] ≤ 1

 Also, expected number of scan-forward at level 𝑖 is less then 𝑆𝑖

 𝑆𝑖 the number of keys in list on level 𝑖, and 𝐸[𝑆𝑖] =
𝑛

2𝑖

 for ease of derivation, assume 𝑛 is a power of 2

 Expected number of scan-forward over all levels

𝑖≥0

𝐸[# of scan−forward at level 𝑖]

≤ log𝑛 + 1

Arrays Instead of Linked Lists
 As described now, they are no faster than randomized binary search trees

 Can save links by implementing each tower as an array
 this not only saves space, but gives better running time in practice

 when ‘scan-forward’, we know the correct array location to look at (level 𝑖)

 Search(67)

−∞ 23 44 65 69 +∞

−∞

−∞

−∞

−∞

23

23 44

+∞

+∞

+∞

+∞

65

65

65 69

69

Summary of Skip Lists

 For a skip list with 𝑛 items

 expected space usage is 𝑂(𝑛)

 expected running time for search, insert, delete is 𝑂(log 𝑛)

 Two efficiency improvements

 use arrays for key towers for more efficient implementation

 can show: a biased coin-flip to determine tower-height gives smaller
expected run-times

 With arrays and biased coin-flip skip lists are fast in practice and easy to
implement

Outline

 Dictionaries with Lists Revisited

 Dictionary ADT

 implementations so far

 Skip Lists

 Re-ordering items

Re-ordering Items
 Unordered arrays (or lists) are among simplest data structures to implement

 But for Dictionary ADT

 search: Θ(𝑛), insert: Θ(1), delete: Θ(1) (after a search)

 Can we make search in unordered arrays (or lists) more effective in practice?

 No: if items are accessed equally likely

 Yes: otherwise

 intuition: frequently accessed items should be in the front

 Two cases

 know the access distribution beforehand

 do not know access distribution beforehand

 For short lists or extremely unbalanced distributions this may be faster than
AVL trees or Skip Lists, and easier to implement

Optimal Static Ordering

 Order C A B D E has expected cost

 Order D B E A C has expected cost

 Claim: ordering items by non-increasing access-probability minimizes
expected access cost, i.e. best static ordering

 Proof Idea: for any other ordering, exchanging two items that are out-of-
order according to access probabilities makes total cost decrease

key A B C D E

frequency of access 2 8 1 10 5

access probability 2

26

8

26

1

26

10

26

5

26

1

26
∙ 1 +

2

26
∙ 2 +

8

26
∙ 3 +

10

26
∙ 4 +

5

26
∙ 5

10

26
∙ 1 +

8

26
∙ 2 +

5

26
∙ 3 +

2

26
∙ 4 +

1

26
∙ 5

≈ 3.61

≈ 2.54

Dynamic Ordering

 What if we do not know the access probabilities ahead of time?

 Rule of thumb (temporal locality)

 recently accessed item is likely to be accessed soon again

 In list: always insert at the front

 Move-To-Front heuristic (MTF): after search, move the accessed item to
the front

search D

insert F

 We can also do MTF on an array
 but should then insert and search from the back so that we have room to

grow

A B C D E

D A B C E

D A B C EF

Dynamic Ordering: MTF

 Can show: MTF is “2-competitive”
 no more than twice as bad as the optimal “offline” ordering

programmer A

data

frequency of
access statistics

implements
optimal static

ordering

average run-time of
operations is 𝑡

programmer B

implements
MTF dynamic

ordering

average run-time of
operations is at most 2𝑡

Dynamic Ordering: Transpose
 Transpose heuristic: Upon a successful search, swap accessed item with the

immediately preceding item

 Avoids drastic changes MTF might do, while still adapting to access patterns

 Worst case is Θ(𝑛) for both transpose and MTF

search D

insert F

A B C D E

A B D C E

A B D C EF

