CS 240 — Data Structures and Data Management

Module 5: Other Dictionary Implementations

A. Hunt and O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2022

Outline

= Dictionaries with Lists Revisited
= Dictionary ADT
" implementations so far
= Skip Lists
" Re-ordering items

Outline

= Dictionaries with Lists Revisited
= Dictionary ADT
" implementations so far

Dictionary ADT: Implementations thus far

= Adictionary is a collection of key-value pairs (KVPs)

search, insert, and delete

= Realizations
= Balanced search trees (AVL trees)

®(logn) search, insert, and delete
complex code and not necessarily the fastest running time in practice

= Binary search trees

®(height) search, insert and delete
simpler than AVL tree
randomization helps efficiency

= Ordered array

Ordered linked list 37

simple implementation
®(logn) search
®(n) insert and delete

A 4
\ 4
A 4
\ 4

44 65 69 /9

A 4

33

simple implementation
®(n) search, insert and delete

search is the bottleneck, insert and delete would be ©(1) if do search first and
account for its running time separately

efficient search (like binary search) in ordered linked list?

Outline

= Skip Lists

Skip Lists: Motivation

= Ordered array has efficient binary search
0 1 2 3 4 5 6

23 137 |44 65|69 |79 83

= Can we imitate binary search in an ordered linked list?

65

4

1 37 " 65 179

\ 4

Skip Lists: Motivation

= Search(83)

if didn’t have this
node, would ‘fall’ to

the bottom list
{ 37 { 65 79 :
,, | l !
{23 37|44 |65 6979 ~{83 |~

Skip Lists: Motivation

= |mitating binary search with a hierarchy of linked lists

= build from bottom to top, each higher up list has 1/2 of previous list items

= Jogn height (total number of linked lists needed)

65 :
v
37 65 {79 =
123 H 37 69 [+ 79 || 83 |

= When searching, go through the highest level possible

= thus visit at most two items at each level
= Easy to implement if data structure is static

= know all items beforehand, no need to insert or delete, but in static case an
ordered array will work, and is more efficient (no links)

= To enable insert and delete, use randomization

logn
height

Skip Lists: Motivation
= For next level, choose each item from previous level with probability % (coin toss)

= jth list is expected to have n/2! nodes
expected

" Expect about log(n) lists in total number of nodes

79 n

l g

n

44 79 %

0 1

. n

44 1 69 Pl 79 1 87 2
1 0 1 0

23 1 37 7144 71 65 1 69 7| 79 | 83 7| 87 || 94 n

Skip Lists: Motivation

" |nsert ‘boundary’ nodes with special sentinel symbols —co and +co
= to simplify code for searching

— oo 179 | +00
— o0 1 44 1 79 | +00
— o0 44 69 [.| 79 87 +00

Skip Lists: Motivation

" |nsert sentinel only level, with only —oo and 400

= to simplify code for searching

—00 » 400
a0 1 79 400
—oo | 44 1 79 400
—oo | 44 1 69 [+ 79 1 87 {+oo
O M 2313714416569 17908378794 pt®

Skip Lists [Pugh’1989]
= A hierarchy S of ordered linked lists (/evels) So, S1, ..., Si,

So contains the KVPs of S in non-decreasing order
other lists store only keys, or links to nodes in Sy

each S;contains special keys (sentinels) —oo and 4o

each S; is randomly generated subsequence of S;_;i.e., So 5512 .. 2 Sy

S1 contains only sentinels, the left sentinel is the root

root

— 00 »| 4+ 00
— e 7
— o | 37 ["65 | 83 ["oa |5
—00 P23,V P 3;,v > 44,v P 6g,v - 69,v »| 79,v > 83,v [+ 87,v > 94,v | +;o

Skip Lists [Pugh’1989]

= Will show only keys from now on

—00 » + 00
i i

— 1 65 "%
v tower of height 1 !

— o0 1 37 | 65 [83 | 94 [f+eo
I below 65

—O 23371144 1651169 11 79 71 83 || 87] 94 It

Each KVP belongs to a tower of nodes

Height of the skip list is the maximum height of any tower

Each node p has references to after(p) and below(p)

height is 3 in this example

There are (usually) more nodes than keys

Search in Skip Lists =

83
= search(87)
65
P=[-=
Sl e
ldrop-down
. comparison comparison
SZ o scan-forward 65_| leading to node we do not take P 0
Sy |- | 37 | 65 {00
v 4 v v
So|= [23 [37 | 44 || 65 |{ 69 | {00

= For each level, predecessor of key k is the node before node with key k, or, if
key k is not present at that level, the node before where k would be

= P collects predecessors of key k at level So, S1
= these are needed for insert/delete

= fkisinskip listif and only if P.top().after has key k

Search in Skip Lists

getPredecessors(k)
p « root
P« stack of nodes, initially containing p
while p. below # NIL do // keep dropping down until reach S,
p < p.below
while p.after.key < kdo
p < p.after //move to the right

P.push(p) // this is next predecessor
return P

skipList::search(k)
P « getPredecessors(k)
q « P.top() // predecessor of k in S,
if g.after.key = k return g.after
else return ‘not found, but would be after ¢’

Insert in Skip Lists

S3 <«—— ifin Sz, theninsert new item with probability 7

S, <«—— ifin§y, theninsert new item with probability 7

S1 < insert new item with probability %

So -« insert new item

= Keep “tossing a coin” until T appears

" |nsertinto S, and as many other S; as there are heads

= Examples
= H,H,T (insertinto So, S1,S52) = willsayi = 2
= H,T (insertintoSo, S1) = willsayi =1
= T (insert into So) = willsayi =0

Insert in Skip Lists: Example 1

skipList::insert(52,v) a4
cointosses: H,T = i = 1 37
getPredecessors(52) — 0
P=|-

»| + 00

1 65 » 4 0o

37_| | 65 1 83 | 94 plt

23 [37- 65 [69 [83 [87 | 94 [+

Insert in Skip Lists Example 1

skipList::insert(52,v)
cointosses: H,T = i =1

getPredecessors(52) — 0
now insert into So and S1 = | —o
s +00
| 65 »| +00
37 52 |1 65 " 83 | 94 plt©
23 [{37- 52 65 60 |83 {87 | 04 [+

Insert in Skip Lists: Example 2
skipList::insert(100,v)

cointosses: H,H,H, T = i =3
first increase height

. o+ 00
— o0 | 65 A +00
— 0 | 37 . 65 | 83 J 94 plt®
_;o 23 37 44 E;S 69 [’ 83 || 87 || 94 *+;°

Insert in Skip Lists: Example 2
skipList::insert(100, v)

cointosses: HH HT = i =3
first increase height
next getPredecessors (100)

0 > 400
0 > 400
— 00 " 65 > 400
— 1 37 ;| 65) 83 | 94 plt
‘i; 23 é% 44 65 69 | 83 || 87 || 94 *44;

Insert in Skip Lists: Example 2
skipList::insert(100, v)
cointosses: HH HT = i =3

first increase height
next getPredecessors (100)

\ 4

\ 4

65 |
— 0 | 37 | 65 » 83
— 1 23 71 37 17| 44 7| 65 1| 69 |’ 83 |1 87

A 4

Insert in Skip Lists: Example 2
skipList::insert(100, v)
cointosses: HH HT = i =3

first increase height

next getPredecessors (100)

insert new key

\ 4

\ 4

137

»@

1 65

» 83

23

37

44

69

87

Insert in Skip Lists: Example 2

" skipList::insert(100,v)

= cointosses: H H HT =i =3
= first increase height

= next getPredecessors (100)

= insert new key

+
8

»@

S1|—> 137 1 65 » 83

So |—co 11 23 1 37 I* 44 [65 |*| 69 [83 |

nsert in Skip Lists

skipList::insert(k, v)

for (i « 0; random(2) = 1;i <« i+ 1) {} // random tower height

for (h « 0,p < root.below;p + NILL; p < p.bellow) do h ++

whilei > h // increase skip-list height if needed
root < new sentinel-only list linked in appropriately
h ++

P « getPredecessors(k)

p < P.pop()

zBellow < new node with (k, v) inserted after p /[nsert (k,v) in S,

while i >0 //insertkinS;S,,.., S,
p < P.pop()

Z < new node with k added after p
z.below « zBellow

zBellow < z

l<—1—1

Example: Delete in Skip Lists

= skipList::delete(65)

44
. 37
= first getPredecessors(S, 65)
= then delete key 65 from all S; —
= P has predecessor of each node to be deleted P >
» + 00
+ oo
37 1 83 1 94 plt®

oz} (2]

69

33

87

94

Example: Delete in Skip Lists
= skipList::delete(65)

= first getPredecessors(S, 65)

= then delete key 65 from all S;

= P has predecessor of each node to be deleted
= height decrease: delete all unnecessary §;, if any

S3 |~

L8

!
|

<
<

23

37

]

A 4

oo
oo

1 83 194 pl+e

69 |{ 83 |{ 87 |{ 94 |{r

Example: Delete in Skip Lists
= skipList::delete(65)

= first getPredecessors(S, 65)

= then delete key 65 from all S;

= P has predecessor of each node to be deleted
= height decrease: delete all unnecessary §;, if any

37

]

A 4

» 4+ 00
{ 83 { 94 [+
69 " 83 1| 87 || 94 Pt

Delete in Skip Lists

skipList::delete(k)
P« getPredecessors(k)
while P is non-empty
p « P.pop() // predecessor of k in some layer
if p.after.key =k
p.after < p.after.after
else break // no more copies of k

p <« left sentinel of the root-list
while p. below. after is the o sentinel

// the two top lists are both only sentinels, remove one
p.below « p.below.below // removes the second empty list

p.after.below < p.after.below.below

tower of height 1

Skip List Analysis ~ towerofh _

" Let X be the height of tower for key k 37

. 11 111
u P(XRZ].):E, P(XkZZ)zzijp(XREB)ZEEE

l
= Ingeneral P(X,=2i) =P(HH .. H) = (—)
[times
= |nthe worst case, the height of a tower could be arbitrary large
= no bound on height in terms of n
= Therefore operations could be arbitrarily slow, and space requirements
arbitrarily large

= But this is exceedingly unlikely
= Therefore we analyse expected run-time and space-usage

Skip List Analysis

S3 |S3] =1

S, |S2| = 2

S1 1S1] =3

So |So| = 4
k1 k2 k3 ka

Xk1 =3 Xpp =1 Xp3 =0 Xpyq=2

= Let X be the height of tower for key k, we know P(Xy = i) = %
= If X;, = ithenlist S; includes key k

= Let |S;| be the number of keys in list S;
= sentinels do not count towards the length
= So always contains all n keys

Skip List Analysis

S5 Ispir=1 I3pe=0 I3k3=0 I3ks=0
S Iii=1 Iwe=0 Ik3=0 Izu=1
51 Iiin=1 like=1 Ii,3=0 I =1
So

k1 k2 k3 ka

= Let X, be the height of tower for key k, we know P(X), = i) = =

21
= If X;; = ithenlistS; includes key k

= Let |S;| be the number of keys in list S;
= sentinels do not count towards the length

.)0 it X<
Let I“’“{1 if X > i

" |Sl| =Zkeyk1i,k

Skip List Analysis

S5 Ispir=1 I3pe=0 I3k3=0 I3ks=0
S Iii=1 Iwe=0 Ik3=0 Izu=1
51 Iiin=1 like=1 Ii,3=0 I =1
So

k1 k2 k3 k4
= Let Xj be the height of tower for key k, we know P(X}, = i) = %
= Let |S;| be the number of keys in list S;

o if xk<i
Let I""_{1 it X > i

|Sl| — Zkeykli,k

E[IS!] = [zkeyk] Z E[li] = Z P(lix=1) = z P(Xe= i) =%

key k key k key k

The expected length of list S; is%

Sklp List Ana|ysis S4 has only sentinels I+=0

53 13 =1
|Si| is number of keys in list S; I
S 2 =
= E[|Si]] = :l :
S1 ILH=1
0 if |Si=0
Let I; = : So
{1 if |Si] =1 kI k2 k3 k4

h=1+),..1;i (here +1is for the sentinel-only level)

SinceI; <1 we have that E[li] <1

n
Since I; < |S;| we have that E[I;] < E[|Si]] = T

For ease of derivation, assume n is a power of 2

1+zzl]_1+zE [1:] _1+210gn]+Z(_)o11 E[li]
i=1+logn

i1 i>1
logn oo n
<1+ Z 1 +Z 7
i=1 i:1+logn2

0 n
=1+ logn T Zi=02i+1+logn

E[h] =E

Skip List Analysis

S3
lict C.

S4 has only sentinels [+=0

|S:| is number of keys in

= Ellsill =5
{0 f IS =
et I“{1 if |5 >

h=1+ ZiZl I (here A

Since I; < 1 we have thi
Since I; < |Si| we have{

DT =50
i=0 2i+1+10g7’l _ 2 =0 lelogn

_12"0 n
2440 2in
_120" 1 .
C 2Lui020

For ease of derivation, a

YR

i1

E[h] =E

S |
5=2 -
i=0 2"

S=25-S

25 = 200 ! =2+ ZOO 1
L2ttt i=0 2

2

i=0 2i+1+logn

Skip List Analysis

|S:| is number of keys in list S;

= E[ISil]l=5
(0 if|s|=0
Let Il_{1 if S, =1

h=1+),..1;i (here +1is for the sentinel-only level)

S4 has only sentinels

S3
S2
S1
So

Since I; < 1 we have that E[li] <1

n
Since I; < |S;| we have that E[I;] < E[|Si]] = T

For ease of derivation, assume n is a power of 2

logn o0
1+le]_1+ZE [1] _1+2]+2 ElL]
i=1+logn
logn os) n
<1+) 1+) n
i=1 i:1+40g712l

<1l+logn+1

E[h] =E

i1 i>1

Expected height of skip list is at most 2 + logn

k1

k2

k3

ka

Iy =
I3 =
I =
I =

Skip List Analysis: Expected Space

= We need space for nodes storing sentinels and nodes storing keys
1. Space for nodes storing sentinels
= thereare 2h + 2 sentinels, where h be the skip list height
= FElh] < 2+logn
= expected space for sentinels is at most
E[2h + 2] = 2E[h] + 2 < 6 + 2logn

2. Space for nodes storing keys
= Let |S;| be the number of keys in list S;

o 2|5i|]=2% = 2n

" E“Sll] Y
= expected space for keysis E
i=0 120

= Total expected space is ©(n)

Skip List Analysis: Expected Running Time

drop-down

scan-forward|

A 4

drop-down i

scan-forward

»
» >

»
>

search, insert, and delete are dominated by the running time of
getPredecessors

So let us analyze the expected time of getPredecessors

In getPredecessors, running time is proportional to the number of ‘drop-down’
and ‘scan-forward’

We ‘drop-down’ h times, where h is skip list height

= expected height h is O(logn)

= total expected time spent on ‘drop-down’ operations is O(logn)
Will show next that expected number of ‘scan-forward’ is also O(logn)
So the expected running time is O(logn)

Skip List Analysis: Expected Running Time

What about ‘scan-forward’ at level i?
= assume i < h (if i = h, then we are at the top list and do not scan forward at all)
= et v be leftmost key in S; we visit during search

= we v reached by dropping down from S; ; 1

A 4

Si+1 >V
= |et w be the key right after v v v
Si — UV > W

= height of tower of w in this case is at least i

= What is the probability of scanning from v to w?
= If we do scan forward from v to w, then w did not exist in S; ;4
= otherwise, we would scan forward from vtow in S; 4
= in other words, we always enter the tower of any node ‘at the top’
= Thus if we do scan forward from v to w, then the tower of w has height i
= P(tower of w has height i| tower of w has height at least i) =1
= we scan forward from v to w with probability at most %
= ‘at most’ because we could scan-down down if key < w

= repeating the argument, the probability of scan-forward [times is at most (1/2)"

1
E[number of scans] = z [-P(scans =1[) = z P(scans > [) < z? =1

=1 =1 =21

Skip List Analysis: Expected Running Time

= Atleveli < h: E[number of scan-forward] < 1

= Also, expected number of scan-forward at level i is less then |S;]
n

" Sithe number of keys in list on level i, and E|Si|] = -

= for ease of derivation, assume n is a power of 2

= Expected number of scan-forward over all levels

z E[# of scan-forward at level i]

=0

logn (o)
= z E[# of scan—for at level i] + Z E[# of scan—for at level]
i=1 i=1+logn

logn o n
SRETIIE
i=1 i:1+lognzl

<logn+1

= Expected number of scan-forwards is O(logn)

Arrays Instead of Linked Lists

= As described now, they are no faster than randomized binary search trees

= (Can save links by implementing each tower as an array
= this not only saves space, but gives better running time in practice
= when ‘scan-forward’, we know the correct array location to look at (level i)

= Search(67)

—00 » 400
—00 | 65 [» 400
—o0 23 J 65 f 69— 400
—oo [23 || 44 | 65 - {69] +0
¢ L
° L °
e ¢ o--- L L
—oo [==%| 23 |—| 44 =¥ 65 [~ 69 +00

Summary of Skip Lists

= For a skip list with n items

= expected space usage is 0(n)

= expected running time for search, insert, delete is O (logn)
= Two efficiency improvements

= use arrays for key towers for more efficient implementation

= can show: a biased coin-flip to determine tower-height gives smaller
expected run-times

= With arrays and biased coin-flip skip lists are fast in practice and easy to
implement

Outline

" Re-ordering items

Re-ordering Iltems

= Unordered arrays (or lists) are among simplest data structures to implement
= But for Dictionary ADT
= search: ®(n), insert: ©(1), delete: ©(1) (after a search)
= Can we make search in unordered arrays (or lists) more effective in practice?
= No: if items are accessed equally likely
" Yes: otherwise
" intuition: frequently accessed items should be in the front
= Two cases
= know the access distribution beforehand
= do not know access distribution beforehand

= For short lists or extremely unbalanced distributions this may be faster than
AVL trees or Skip Lists, and easier to implement

Optimal Static Ordering

key A B C D E
frequency of access 2 8 1 10 5
access probability 2 8 1 10 5
26 26 26 26 26

Order C A B D E has expected cost

! 1+2 2+8 3+10 4-+5 5
26 26 26 26 26~ ~ 361

Order D B E A C has expected cost
10 8 5 2 1
%'1+%'2+%'3+%'4+%'5z 2.54
Claim: ordering items by non-increasing access-probability minimizes
expected access cost, i.e. best static ordering
Proof Idea: for any other ordering, exchanging two items that are out-of-

order according to access probabilities makes total cost decrease

Dynamic Ordering

= What if we do not know the access probabilities ahead of time?
= Rule of thumb (temporal locality)

= recently accessed item is likely to be accessed soon again
= |n list: always insert at the front

= Move-To-Front heuristic (MTF): after search, move the accessed item to
the front

A B (— C D [~ E
] search D
D A B C—E
ﬂ insert F
F i~ DA~ B~ CiE

We can also do MTF on an array

= but should then insert and search from the back so that we have room to
grow

Dynamic Ordering: MTF

= Canshow: MTF is “2-competitive”
= no more than twice as bad as the optima

Ill

offline” ordering

data

frequency of
access statistics

implements implements
programmer A | gptimal static programmer B MTF dynamic
ordering ordering
average run-time of average run-time of

operations is ¢ operations is at most 2t

Dynamic Ordering: Transpose

" Transpose heuristic: Upon a successful search, swap accessed item with the
immediately preceding item

A— B~ C— DIE
| search D

A— B~ D~ CilE
ﬂinsertF

F — A B D C E

= Avoids drastic changes MTF might do, while still adapting to access patterns
= Worst case is ©(n) for both transpose and MTF

