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Lower bound for search

= Searchis O(logn) in fastest implementations of dictionary ADT
" nisthe number of items stored

= |s this the best possible?

Theorem: )(logn) comparisons required for search in comparison based model
Proof:

= consider binary decision tree @
= |eaves correspond to answers returned veSQ no
= decision tree must have at least (n + 1) leaves

= 41 for “no key found” l l l l l
= binary tree of height h has at most 2" leaves k=x] [k=x, 1o k
" thus 2" >n+1

h =>log(n+ 1)
= Can we beat the lower bound if keys are special? Yes!

1. Interpolation search: keys have special distribution
2. Tries: keys are strings
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Binary Search on Ordered Array

insert and delete: ®(n), search is ®(logn)

Binary-search(A, n, k)

A: Array of sizen, k: key
[ <0
ren—1

while (I < 1)

n e 2]

if (k == A[m]) return “found at A[m]”
else if (A[m] < k) // key cannot be in the left part of A
[m + 1
elser «m — 1 //Kkeycannot be in the right part of 4
else return m
return “not found but would be between A[l — 1] and A[l]”




Interpolation Search: Motivation

middle
= binary search looks at index l+r —l { (r—l)‘
3
[ [+ L—L(‘r — l)‘
40 k—A[ll = 60 " 120

| A )
Alr] - Al = 80

= |f keys are close to uniformly distributed, 'yv’ﬁ“ére would key k = 100 be?
* k =100is % of the way between A[l] = 40 and A[r] = 120
= 5o look at index which is %of the way between [ and r

= Interpolation search .
k- Al l]

= |ook atindex ! +

(=10

fractlonal dlstance



Interpolation Search Example
k — A[l]

= [ — 1
m=l+ gAY
0 1 2 3 4 5 6 7 8 9 10
0 T |i 2 |I 3 (449 (450 |600 (800 [1000 [1200 {1500
) r
=  Search(449), iteration 1
449 — 0
[l=0r=n-1 = 10, =0 10 — 0)| =2
m=0+ 7550 =0 )



Interpolation Search Example

m=l+{ ] (r—l)‘
Alr] — A[l]

0 2 3 4 5 6 7 8 9 10
1 | 2 | 3 [449 [a50—feee—feeo—T1e06Tr200T15001
[ r
=  Search(449), iteration 2
449 —
[ = 3, r = 10, = 3 10 — =5
mEe {1500 —310=3)

= Deleted 6 out of 8 elements, better than possible with binary search



Interpolation Search Example

=1+ k— Al [

m=lt =AY
0 1 2 3 4 5 6 7 8 9 10
1 2 3 (449 1450 |600 (800 [1000 [1200 {1500

[ r
key found
=  Search(449), iteration 3
449 — 3
[ =3, r =4, = 4 — =4
m 3+\499_3( 3)‘



Interpolation Search
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= Works well if keys are uniformly distributed

can show: the array in which we recurse into has expected size v/n

recurrence relation is T*9(n) = T*9(yn) + 0(1)
this resolves to T*"9(n) € 0O(loglogn)

=  Worst case performance ©(n)

= search(90)
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= (Clever trick

= use interpolation search for logn steps
= if key is still not found, switch to binary search
= guarantees O(logn) worst case, but could be ©(loglog n)




Interpolation Search

= Code similar to binary search, but compare at interpolated index
= Need extra test to avoid division by zero due to A[l] = A[r]

[<0
ren—1
while (I < 1)

m « [+

Interpolation-search(A,n, k)
A: Sorted array of size n, k: key

if (k < A[l]ork > A[r]) return “not found”
if (k = Alr ]) return “found at A[r]”

A[r] A ( _l)‘

if (A[m] == k) return “found at A[m]”
else if (A[m
[lem + 1
elsif r«m —1
// we always return somewhere within while loop

1 <k)
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Tries: Introduction

= Trie (also known as radix tree): a dictionary for bit strings (words)
= should know: string, word, alphabet, prefix, suffix, comparing words
=  Comparison with AVL trees
= |et the number of strings in dictionary be n
= et |x]| be the length of a string x
= in tries, insert, find, delete strings is O (|x|) time
= independent of n
= AVL tree requires O(|x|log(n)) time
= (O(log(n)) to search, O(|x|) operations at each node
= Efficient for prefix search
= find all words in the dictionary that start with “abl”
= Applications
= auto-completion

=  smart phones
= commands for operating systems

= spell checking
= DNA sequencing



Tries: definition

???

0001

0011

0100

S = {000,0011,0100,011,11}

= Trie (Radix Tree): comes from word retrieval, but pronounced “try”

= So far, works only for prefix-free S

tree based on bitwise comparisons: edges labeled with corresponding bit

keys are stored only at leaves

similar to radix sort: use individual bits, not the whole key

string stored at a leaf v is “read” from path from root to v

" no pair of binary strings where one is prefix of another
= prefix of astring S[0..n — 1] is S[0...i] forsome 0 <i<n-—1
= always satisfied if S has strings of the same length



Tries: Relaxing Prefix-Free Requirement

= Add a special character ‘S’ to signal string end

Each node can have up to three children

= Trie structure is independent of the key insertion order

= Space requirements
= for each word x, have |x| nodes
» total at most Yy, 0rds x |X]

= but usually need much less space as words share prefixes
= shared prefix means shared trie node



Tries: Search Example

Example: Search(011S)

00%

root

\\\\\\\\\1\\\\\\\.

o

110$

01001$

01101$

111$




Tries: Search Example

Example: Search(011S)

01001$

01101$




Tries: Search Example

Example: Search(011S)

01001$

root

01101$




Tries: Search Example

Example: Search(011S)

01001$

root

01101$




Tries: Search Example

Example: Search(011S) successful

01001$

root

01101$




Tries: Search Example

Example: Search(01115S)

00%

root

\\\\\\\\\1\\\\\\\.

o

110$

01001$

01101$

111$




Tries: Search Example

Example: Search(0111S)unsuccessful

root

01001% 01101$




Tries: Search

Start from the root and the most significant bit of x

Follow the link that corresponds to the current bit in x
= return failure if the link is missing

Return success if we reach a leaf (it must store x)

Else recurse on the new node and the next bit of x

Trie-search(v « root,d < 0,x)
v : node of trie; d : level of v, x : word stored as array of chars
if visaleaf
return v
else
let v’ be child of v labelled with x[d]
if there is no such child
return “not found”
else Trie-search(v',d + 1,x)




Tries: Insert Example
Example: Insert(01115)

01001$

root

01101$




Tries: Insert Example
Example: Insert(01115)

first search(0111S)

01001$

01101$




Tries: Insert Example

Example: Insert(01115)

00%

first search(0111S)
now add ‘1’, ‘S’

root

0 $0 \L
o 011$| e

1 1| $
o

$ $
01001%| [01101$

e 0111%




Tries: Delete Example

Example: Delete(010015)

o [0111$

01101$




Tries: Delete Example

Example: Delete(010015)

1
¢ (0113 .\T 110 111%
$+ 1 1 $ }

0001$ ? e 0111% 1101%

01001$] [01101$




Tries: Delete Example

Example: Delete(010015)




Tries: Delete Example

Example: Delete(010015)




Tries: Insert & Delete

" |nsert(x)
= Search for x, this should be unsuccessful
= Suppose finish search at node v that is missing a suitable child
= x has extra bits left

= Expand the trie from node v by adding necessary nodes corresponding to
extra bits of x

= Delete(x)
= search for x
= |et v be the leaf where x is found
= delete v and all ancestors of v until reach ancestor with two children
= Time Complexity of all operations: @(|x|)
= |x]|isthe length of binary string x
*= number of bits in x
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Variation 1 of Tries: No leaf labels

= Do not store actual keys at the leaves
= The key is stored implicitly through characters along the path to the leaf
= Halves the amount of space

root root

01001$//01101%




Variation 2 of Tries: Allow Proper Prefixes

root

root

= Allow prefixes to be in dictionary

internal nodes may now also represent keys
= use a flag to indicate such nodes
remove S-children, replace by flags

now trie is a binary tree
= expresses 0-child and 1-child implicitly via left and right child
more space-efficient



Variations 3 of Tries: Remove Chains to Leafs (Labels)

011$ 1108 011$| |01101S | |110S8| |1101S

0001$ s s 1101$
01001$(/01101%

"  Pruned trie: stop adding nodes to trie as soon as the key is unique

= node has a child only if it has at least two descendants
= saves space if there are only few bitstrings that are long
= can even store really long bitstrings more efficiently (real numbers)
= this variation cannot be combined with the previous one
=  why?
= more efficient version of tries, but operations get complicated
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Variation 4: Compressed Tries (Patricia Tries)

011S

011$| |01101S 110S 1101S$

0001% $ §
01001$)|01101%

=  Removing chains to labels helps, but can still have internal nodes with one child

= Such ‘chains’ in a trie waste space and reduce search/insert/delete efficiency

= |f weinsure each internal node has at least 2 children, no space wasted
= 71 leaf nodes = n keys stored
= atmostn — 1 internal nodes
= at most 2n — 1 total nodes



Compressed Tries

= LetT be atree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof
= putastone on each leaf
= there are m stones



Compressed Tries

= LetT be atree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof:
= putastone on each leaf

= there are m stones
= all leaves pass a stone to the parent




Compressed Tries

= LetT be atree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof:

put a stone on each leaf

there are m stones

all leaves pass a stone to the parent
all internal nodes at level h — 1 have
at least 2 stones, they leave one
stone and pass one stone to the
parent



Compressed Tries

= LetT be atree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof:
= putastone on each leaf

= there are m stones

= all leaves pass a stone to the parent

= allinternal nodes at level h — 1 have
at least 2 stones, they leave one
stone and pass one stone to the
parent

= allinternal nodes at level h —2 have at
least 2 stones, they leave one stone and
pass one stone to the parent




Compressed Tries

= LetT be atree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof:

= continue until reach the root

"=  now each internal node has 1 stone
and root has 2 or more stones




Compressed Tries

Let T be a tree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof:

= continue until reach the root

"=  now each internal node has 1 stone
and root has 2 or more stones

=  root leaves 1 stone and throws the
rest outside the tree

= npow each internal node has 1 stone,
and there is one or more stones
outside the tree

=  since number of stones is equal to
the number of leaves, the number of
internal nodes is strictly less than the
number of leaves



Compressed Tries (Patricia Tries)

= How to compress

trie above
~_bit5

1

1

bit 6
trie above

bit 7 [ compressing > bit 5\@after this node, search
. according to bit 11
bit 8 bit 11

€3 %k %k %k %k k7

bit 9 trie below

bit 10

0N
, \ .
, N
’ A I
N
4 N
N

trie below

=  But now we lost part of the binary string ‘10011’

= Check the final answer (leaf) if it stores exact match to the search key



Compressed Tries (Patricia Tries)

o o O,
/O/ 1 PO @y 1

$/\0 0/ \1 (2)
00S S 1 0 1 $ 1

1l ol $/\o $ 003 | [00015 | [01001$ | [1103] [ 11019

0115 ] @ [110] ® [111$ s/ \0
$ 1 1 011$ | |011015$ |
0001$ $ $ 1101S

01001$//01101%$

=  Morrison (1968): Patricia-Tries

=  Practical Algorithm to Retrieve Information Coded in Alphanumeric

= |ldea: compress paths of nodes with only one child

=  Each node stores an index : next bit to be tested during a search

=  Compressed trie with n keys has at most n — 1 internal (non-leaf) nodes



Compressed Tries: Search Example
Example: Search(10S)

0 O 1
D 2
0 1 0 \1
/ \ / 11
S 1 0 1 S 1
00$| | 0001$ |01001$ 1109 11015
$ 0

011S| |01101S




Compressed Tries: Search Example
Example: Search(10S)

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(10S)

T
skip

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(10S) unsuccessful

01001§/ (3)

$

0

011%

01101%

no S-child

111%




Compressed Tries: Search Example
Example: Search(1015S)

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example
Example: Search(1015S)

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(1015S)

T
skip

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example
Example: Search(101S)

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(101S) Unsuccessful (101S is not equal 1118)

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example
Example: Search(1115S)

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example
Example: Search(111S)

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(111S)

T
skip

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example
Example: Search(111S)

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(111S) successful (111$=1115)

01001§/ (3)

$ 0
011 |01101%




Compressed Tries: Search

Patricia-Trie-search(v < root, x )
v: node of trie; x: word
if v isaleaf
return strcmp(x , v. key)
else
d < index stored at v
v' « child of v labelled with x [d]
if there is no such child
return “not found”

else Patricia-Trie-search(v', x )

Start from the root and the bit indicated at that node
Follow the link that corresponds to the current bit in x
= return failure if the link is missing
If reach a leaf, expicitly check whether word stored at leaf is x
Else recurse on the new node and the next bit of x



Compressed Tries: Insert & Delete
= Delete(x)
» perform search(x)
= remove the node v that stores x
= compress along path to v whenever possible
" |nsert(x)
= perform search(x)
= |et v be node where search ends
= conceptually simplest approach
= uncompress path from root to v
" insert x asin an uncompressed trie
= compress paths from root to v and from root to x
= can also be done by only adding those nodes that are needed
= see the textbook for details
= All operations take O(|x]|) time

= Compressed tries are much more complicated, but space savings
are worth it if words are unevenly distributed
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= Multiway Tries



Multiway Tries: Larger Alphabet

= Represents Strings over any fixed alphabet X
= Any node has at most |X| + 1 children
= one child for the end-of-word character $

= Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}




Compressed Multiway Tries

=  Compressed multi-way tries
= Example: A compressed trie holding strings {bears, benS, beS, soulS, soupS}

be$ bear$ ben$ soul$ soup$




Multiway Tries: Summary

Operations search(x), insert(x) and delete(x) are as for bitstring tries
Run-time O(|x| - (time to find the appropriate child))
Each node now has up to |2| + 1 references to children
How should they be stored? Assume compressed trie

= Solution 1: Array of size |2| + 1 for each node
= Complexity: O(1) to find child, O(|Z]) space per node
= Solution 2: List of children for each node
= Complexity: O(|Z|) to find
child, (#children) space per node,

= O(n) total space assuming compressed trie

= one-one correspondence between each trie
node (except the root) and nodes of all linked
lists



Multiway Tries: Summary

or bitstring tries

)
1

be$ bear$ ben$ soul$ soup$

= Complexity: O(|Z|) to find
child, (#children) space per node,
= O(n) total space assuming compressed trie

= one-one correspondence between each trie
node (except the root) and nodes of all linked
lists



Multiway Tries: Summary

Operations search(x), insert(x) and delete(x) are as for bitstring tries
Run-time O(|x| - (time to find the appropriate child))
Each node now has up to |2| + 1 references to children
How should they be stored? Assume compressed trie

= Solution 1: Array of size |2| + 1 for each node
= Complexity: O(1) to find child, O(|Z]) space per no
= Solution 2: List of children for each node

= Complexity: O(|Z]) to find child, (#children) space
per node

= O(n) total space assuming compressed trie

= one-one correspondence between each trie node /LN
(except the root) and nodes of all linked lists

= Solution 3: AVL-tree of children for each node
» Complexity: O(log(|Z|)) time to find a child, O (n) space
= best in theory, not worth it in practice unless |X| is huge
= Solution 4: hashing, often used in practice

= keys are in typically small range X
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