
CS 240 – Data Structures and Data Management

Module 6: Dictionaries for special keys

A. Hunt and O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard

▪ Variations of Tries

▪ Compressed Tries

▪ Multiway Tries

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard

▪ Variations of Tries

▪ Compressed Tries

▪ Multiway Tries

Lower bound for search

Theorem: Ω(log 𝑛) comparisons required for search in comparison based model

Proof:

▪ Can we beat the lower bound if keys are special? Yes!
1. Interpolation search: keys have special distribution

2. Tries: keys are strings

▪ Search is Θ(log 𝑛) in fastest implementations of dictionary ADT
▪ 𝑛 is the number of items stored

▪ Is this the best possible?

𝑥𝑖 < 𝑘?

𝑘 < 𝑥𝑗? 𝑥𝑙 < 𝑥𝑗?

no 𝑘𝑘 = 𝑥1

▪ consider binary decision tree

yes no▪ leaves correspond to answers returned

▪ decision tree must have at least (𝑛 + 1) leaves

▪ +1 for “no key found”

▪ binary tree of height ℎ has at most 2ℎ leaves

▪ thus 2ℎ ≥ 𝑛 + 1

ℎ ≥ log(𝑛 + 1)

𝑘 = 𝑥2

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard

▪ Variations of Tries

▪ Compressed Tries

▪ Multiway Tries

Binary Search on Ordered Array
▪ insert and delete: Θ(𝑛), search is Θ(log 𝑛)

Binary-search(𝐴, 𝑛, 𝑘)

𝐴: Array of size 𝑛, 𝑘: key

𝑙 ← 0

𝑟 ← 𝑛 − 1

while 𝑙 ≤ 𝑟

𝑚 ←
𝑙+𝑟

2

if (𝑘 == 𝐴 𝑚) return “found at 𝐴 𝑚 ”

else if 𝐴 𝑚 < 𝑘 // key cannot be in the left part of 𝐴

𝑙 ← 𝑚 + 1

els𝐞 𝑟 ← 𝑚 − 1 // key cannot be in the right part of 𝐴

else return 𝑚

return “not found but would be between 𝐴 𝑙 − 1 and 𝐴 𝑙 ”

Interpolation Search: Motivation

▪ binary search looks at index
𝑙+𝑟

2

𝑙 𝑟

▪ If keys are close to uniformly distributed, where would key 𝑘 = 100 be?

▪ 𝑘 = 100 is ¾ of the way between 𝐴 𝑙 = 40 and 𝐴 𝑟 = 120

40 120

middle

fractional distance

𝑙 +
3

4
(𝑟 − 𝑙)

▪ Interpolation search

▪ look at index 𝑙 +
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
(𝑟 − 𝑙)

= 𝑙 +
1

2
(𝑟 − 𝑙)

𝐴[𝑟] − 𝐴[𝑙] = 80

▪ so look at index which is ¾ of the way between 𝑙 and 𝑟

𝑘 − 𝐴[𝑙] = 60

Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

▪ Search(449), iteration 1

𝑙 = 0, 𝑟 = 𝑛 − 1 = 10,

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑚 = 0 +
449 − 0

1500 − 0
(10 − 0) = 2

𝑙 𝑟

Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

▪ Search(449), iteration 2

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑙 = 3, 𝑟 = 10, 𝑚 = 3 +
449 − 3

1500 − 3
(10 − 3) = 5

𝑙 𝑟

▪ Deleted 6 out of 8 elements, better than possible with binary search

Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

▪ Search(449), iteration 3

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑙 = 3, 𝑟 = 4, 𝑚 = 3 +
449 − 3

499 − 3
(4 − 3) = 4

𝑙 𝑟

key found

Interpolation Search

▪ Works well if keys are uniformly distributed

▪ can show: the array in which we recurse into has expected size 𝑛

▪ recurrence relation is 𝑇𝑎𝑣𝑔(𝑛) = 𝑇𝑎𝑣𝑔(𝑛) + Θ(1)

▪ this resolves to 𝑇𝑎𝑣𝑔(𝑛) ∈ Θ(log log 𝑛)

▪ Worst case performance Θ(𝑛)

▪ search(90)

CS240 – Module 6

0 1 2 3 4 5 6 7 8 9

0 11 23 30 44 51 64 73 85 92 105

10

▪ Clever trick

▪ use interpolation search for log 𝑛 steps

▪ if key is still not found, switch to binary search

▪ guarantees 𝑂(log 𝑛) worst case, but could be Θ(log log 𝑛)

0 1 2 3 4 5 6 7 8 9

0 90 91 92 93 94 95 96 97 98 99

10

Interpolation Search
▪ Code similar to binary search, but compare at interpolated index

▪ Need extra test to avoid division by zero due to 𝐴[𝑙] = 𝐴[𝑟]

Interpolation-search(𝐴, 𝑛, 𝑘)

𝐴: Sorted array of size 𝑛, 𝑘: key

𝑙 ← 0

𝑟 ← 𝑛 − 1

while 𝑙 ≤ 𝑟

if (𝑘 < 𝐴 𝑙 or 𝑘 > 𝐴[𝑟]) return “not found”

if (𝑘 = 𝐴[𝑟]) return “found at 𝐴[𝑟]”

𝑚 ← 𝑙 +
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
(𝑟 − 𝑙)

if 𝐴 𝑚 == 𝑘 return “found at 𝐴[𝑚]”
else if 𝐴 𝑚 < 𝑘

𝑙 ← 𝑚 + 1

elsif 𝑟 ← 𝑚 − 1

// we always return somewhere within while loop

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard

▪ Variations of Tries

▪ Compressed Tries

▪ Multiway Tries

Tries: Introduction
▪ Trie (also known as radix tree): a dictionary for bit strings (words)

▪ should know: string, word, alphabet, prefix, suffix, comparing words

▪ Comparison with AVL trees

▪ let the number of strings in dictionary be 𝑛

▪ let 𝑥 be the length of a string 𝑥

▪ in tries, insert, find, delete strings is 𝑂(𝑥) time

▪ independent of 𝑛

▪ AVL tree requires 𝑂(𝑥 log(𝑛)) time

▪ 𝑂(log(𝑛)) to search, 𝑂(𝑥) operations at each node

▪ Efficient for prefix search

▪ find all words in the dictionary that start with “abl”

▪ Applications

▪ auto-completion

▪ smart phones

▪ commands for operating systems

▪ spell checking

▪ DNA sequencing

Tries: definition

▪ Trie (Radix Tree): comes from word retrieval, but pronounced “try”

▪ tree based on bitwise comparisons: edges labeled with corresponding bit

▪ keys are stored only at leaves

▪ similar to radix sort: use individual bits, not the whole key

▪ string stored at a leaf 𝑣 is “read” from path from root to 𝑣

0011 0100

1

S = {000, 0011, 0100, 011, 11}

0

0

1

1

1

1
000

0

0
011

11
1

▪ So far, works only for prefix-free 𝑆

▪ no pair of binary strings where one is prefix of another

▪ prefix of a string 𝑆[0…𝑛 − 1] is 𝑆[0… 𝑖] for some 0 ≤ 𝑖 < 𝑛 − 1

▪ always satisfied if 𝑆 has strings of the same length

0

0001
???

Tries: Relaxing Prefix-Free Requirement

▪ Add a special character ‘$’ to signal string end

▪ Each node can have up to three children

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

▪ Trie structure is independent of the key insertion order

▪ Space requirements

▪ for each word 𝑥, have |𝑥| nodes

▪ total at most σ𝑤𝑜𝑟𝑑𝑠 𝑥 |𝑥|

▪ but usually need much less space as words share prefixes

▪ shared prefix means shared trie node

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$)

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$)

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$)

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$)

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) successful

$

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(0111$)

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(0111$)

no 1-child

unsuccessful

Tries: Search

▪ Start from the root and the most significant bit of 𝑥

▪ Follow the link that corresponds to the current bit in 𝑥

▪ return failure if the link is missing

▪ Return success if we reach a leaf (it must store 𝑥)

▪ Else recurse on the new node and the next bit of 𝑥

Trie-search(𝑣 ← 𝑟𝑜𝑜𝑡, 𝑑 ← 0, 𝑥)

𝑣 : node of trie; 𝑑 : level of 𝑣 , 𝑥 : word stored as array of chars

if 𝑣 is a leaf

return 𝑣

else

let 𝑣′ be child of 𝑣 labelled with 𝑥[𝑑]

if there is no such child

return “not found”

else Trie-search(𝑣′, 𝑑 + 1, 𝑥)

Tries: Insert Example

Example: Insert(0111$)

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Tries: Insert Example

Example: Insert(0111$)

▪ first search(0111$)

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

no 1-child

Tries: Insert Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

0111$

1

Example: Insert(0111$)

▪ first search(0111$)

▪ now add ‘1’, ‘$’

Tries: Delete Example

Example: Delete(01001$)

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

0111$

1

Tries: Delete Example

Example: Delete(01001$)

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

0111$

1

Tries: Delete Example

Example: Delete(01001$)

root

$

00$

$

0001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

0111$

1

Tries: Delete Example

Example: Delete(01001$)

root

$

00$

$

0001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

0111$

1

Tries: Insert & Delete

▪ Insert(𝑥)

▪ Search for 𝑥, this should be unsuccessful

▪ Suppose finish search at node 𝑣 that is missing a suitable child

▪ 𝑥 has extra bits left

▪ Expand the trie from node 𝑣 by adding necessary nodes corresponding to
extra bits of 𝑥

▪ Delete(𝑥)

▪ search for 𝑥

▪ let 𝑣 be the leaf where 𝑥 is found

▪ delete 𝑣 and all ancestors of 𝑣 until reach ancestor with two children

▪ Time Complexity of all operations: Θ(|𝑥|)

▪ |𝑥| is the length of binary string 𝑥

▪ number of bits in 𝑥

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard

▪ Variations of Tries

▪ Compressed Tries

▪ Multiway Tries

Variation 1 of Tries: No leaf labels

▪ Do not store actual keys at the leaves

▪ The key is stored implicitly through characters along the path to the leaf

▪ Halves the amount of space

root

$
00$

$
0001$

011$
$

1

0

0

0 1

0 0 1

1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

root

0

0 1

$ 0 0 1 0 1

1 0 $ 0 $ 1 $

$ 1 1 $

$ $

1

1

$
01001$

$
01101$

Variation 2 of Tries: Allow Proper Prefixes

▪ Allow prefixes to be in dictionary

▪ internal nodes may now also represent keys

▪ use a flag to indicate such nodes

▪ remove $-children, replace by flags

▪ now trie is a binary tree

▪ expresses 0-child and 1-child implicitly via left and right child

▪ more space-efficient

$

$

1

$

0

0

0 1

0 0 1

1 0

$ 1

$

$

0

$ 1 $

1

1

1
root

root

Variations 3 of Tries: Remove Chains to Leafs (Labels)

▪ Pruned trie: stop adding nodes to trie as soon as the key is unique

$
00$

$
0001$

011$
$

1

0

0

0 1

0 0 1

1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

$
01001$

$
01101$

$ 0
00$ 0001$

0

0
01001$

$ 0
011$ 01101$

1

1

0

$ 1
110$ 1101$

0 1
111$

1

1

▪ node has a child only if it has at least two descendants

▪ saves space if there are only few bitstrings that are long

▪ can even store really long bitstrings more efficiently (real numbers)

▪ this variation cannot be combined with the previous one

▪ why?

▪ more efficient version of tries, but operations get complicated

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Tries

▪ Variations of Tries

▪ Compressed Tries

▪ Multiway Tries

Variation 4: Compressed Tries (Patricia Tries)

▪ Removing chains to labels helps, but can still have internal nodes with one child

$ 0
00$ 0001$

0

0
01001$

$ 0
011$ 01101$

1

1

0

$ 1
110$ 1101$

0 1
111$

1

1

$
00$

$
0001$

011$
$

1

0

0

0 1

0 0 1

1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

$
01001$

$
01101$

▪ Such ‘chains’ in a trie waste space and reduce search/insert/delete efficiency

▪ If we insure each internal node has at least 2 children, no space wasted

▪ 𝑛 leaf nodes = 𝑛 keys stored

▪ at most 𝑛 − 1 internal nodes

▪ at most 2𝑛 − 1 total nodes

Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof

▪ put a stone on each leaf

▪ there are 𝑚 stones

Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof:

▪ put a stone on each leaf

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent

Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof:

▪ put a stone on each leaf

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent
▪ all internal nodes at level ℎ − 1 have

at least 2 stones, they leave one
stone and pass one stone to the
parent

Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof:

▪ put a stone on each leaf

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent
▪ all internal nodes at level ℎ − 1 have

at least 2 stones, they leave one
stone and pass one stone to the
parent

▪ all internal nodes at level ℎ −2 have at
least 2 stones, they leave one stone and
pass one stone to the parent

Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof:

▪ continue until reach the root

▪ now each internal node has 1 stone
and root has 2 or more stones

Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof:

▪ continue until reach the root

▪ now each internal node has 1 stone
and root has 2 or more stones

▪ root leaves 1 stone and throws the
rest outside the tree

▪ now each internal node has 1 stone,
and there is one or more stones
outside the tree

▪ since number of stones is equal to
the number of leaves, the number of
internal nodes is strictly less than the
number of leaves

Compressed Tries (Patricia Tries)
▪ How to compress

1

0

0

1

1

trie above

trie below

trie above

trie below

bit 5

bit 6

bit 7

bit 8

bit 9

bit 10

bit 11

11

▪ But now we lost part of the binary string ‘10011’

after this node, search
according to bit 11

bit 5

bit 11

compressing

‘******’

▪ Check the final answer (leaf) if it stores exact match to the search key

Compressed Tries (Patricia Tries)

▪ Morrison (1968): Patricia-Tries

▪ Practical Algorithm to Retrieve Information Coded in Alphanumeric

▪ Idea: compress paths of nodes with only one child

▪ Each node stores an index : next bit to be tested during a search

▪ Compressed trie with 𝑛 keys has at most 𝑛 − 1 internal (non-leaf) nodes

0

1

2

00$

$ 1

0

2

011$ 01101$

0

0 1

0001$ 01001$ 3

$

1

0

2

3

$ 1

110$ 1101$

0

111$

1

1

$
00$

$
0001$

011$
$

1

0

0

0 1

0 0 1

1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

$
01001$

$
01101$

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$
$

01101$
0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

skip

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1 no $-child

unsuccessful

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

skip

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Unsuccessful (101$ is not equal 111$)

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

skip

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

successful (111$=111$)

Compressed Tries: Search

▪ Start from the root and the bit indicated at that node

▪ Follow the link that corresponds to the current bit in 𝑥

▪ return failure if the link is missing

▪ If reach a leaf, expicitly check whether word stored at leaf is 𝑥

▪ Else recurse on the new node and the next bit of 𝑥

Patricia-Trie-search 𝑣 ← 𝑟𝑜𝑜𝑡, 𝑥

𝑣: node of trie; 𝑥: word

if 𝑣 is a leaf

return strcmp 𝑥 , 𝑣. 𝑘𝑒𝑦

else

𝑑 ← index stored at 𝑣

𝑣′ ← child of 𝑣 labelled with 𝑥 𝑑

if there is no such child

return “not found”

else Patricia-Trie-search(𝑣′, 𝑥)

Compressed Tries: Insert & Delete
▪ Delete(𝑥)

▪ perform search(𝑥)

▪ remove the node 𝑣 that stores 𝑥

▪ compress along path to 𝑣 whenever possible

▪ Insert(𝑥)

▪ perform search(𝑥)

▪ let 𝑣 be node where search ends

▪ conceptually simplest approach

▪ uncompress path from root to 𝑣

▪ insert 𝑥 as in an uncompressed trie

▪ compress paths from root to 𝑣 and from root to 𝑥

▪ can also be done by only adding those nodes that are needed

▪ see the textbook for details

▪ All operations take 𝑂(|𝑥|) time

▪ Compressed tries are much more complicated, but space savings
are worth it if words are unevenly distributed

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Tries

▪ Variations of Tries

▪ Compressed Tries

▪ Multiway Tries

Multiway Tries: Larger Alphabet

be$

$

$

bear$

r $

ben$

a n

e

$

soul$

l

$

soup$

p

o

u

▪ Represents Strings over any fixed alphabet Σ

▪ Any node has at most |Σ| + 1 children

▪ one child for the end-of-word character $

▪ Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

b s

Compressed Multiway Tries
▪ Compressed multi-way tries

▪ Example: A compressed trie holding strings {bear$, ben$, be$, soul$, soup$}

2

be$

$

bear$

a

ben$

n

b

3

l

soul$

p

soup$

s

0

Multiway Tries: Summary

▪ Operations search(𝑥), insert(𝑥) and delete(𝑥) are as for bitstring tries

▪ Run-time 𝑂(|𝑥| · (time to find the appropriate child))

▪ Each node now has up to |Σ| + 1 references to children

▪ How should they be stored? Assume compressed trie

▪ Solution 1: Array of size |Σ| + 1 for each node

▪ Complexity: 𝑂(1) to find child, 𝑂(|Σ|) space per node

▪ Solution 2: List of children for each node

▪ Complexity: 𝑂(|Σ|) to find
child, #𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 space per node,

▪ 𝑂(𝑛) total space assuming compressed trie

▪ one-one correspondence between each trie
node (except the root) and nodes of all linked
lists

‘a’ ‘b’ ‘c’ ‘$’

1 0 1 1

‘a’ ‘c’ ‘$’

Multiway Tries: Summary

▪ Operations search(𝑥), insert(𝑥) and delete(𝑥) are as for bitstring tries

▪ Run-time 𝑂(|𝑥| · (time to find the appropriate child))

▪ Each node now has up to |Σ| + 1 references to children

▪ How should they be stored? Assume compressed trie

▪ Solution 1: Array of size |Σ| + 1 for each node

▪ Complexity: 𝑂(1) to find child, 𝑂(|Σ|𝑛) space

▪ Solution 2: List of children for each node

▪ Complexity: 𝑂(|Σ|) to find
child, #𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 space per node,

▪ 𝑂(𝑛) total space assuming compressed trie

▪ one-one correspondence between each trie
node (except the root) and nodes of all linked
lists

‘a’ ‘b’ ‘c’ ‘$’

1 0 1 1

‘a’ ‘c’ ‘$’

2

be$

$

bear$

a

ben$

n

b

3

l

soul$

p

soup$

s

0

‘$’ ‘a’ ‘n’

‘b’ ‘s’

‘l’ ‘p’

Multiway Tries: Summary

▪ Operations search(𝑥), insert(𝑥) and delete(𝑥) are as for bitstring tries

▪ Run-time 𝑂(|𝑥| · (time to find the appropriate child))

▪ Each node now has up to |Σ| + 1 references to children

▪ How should they be stored? Assume compressed trie

▪ Solution 1: Array of size |Σ| + 1 for each node

▪ Complexity: 𝑂(1) to find child, 𝑂(|Σ|) space per node

▪ Solution 2: List of children for each node

▪ Complexity: 𝑂(|Σ|) to find child, #𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 space
per node

▪ 𝑂(𝑛) total space assuming compressed trie

▪ one-one correspondence between each trie node
(except the root) and nodes of all linked lists

‘a’ ‘b’ ‘c’ ‘$’

1 0 1 1

▪ Solution 3: AVL-tree of children for each node

▪ Complexity: 𝑂(log(Σ)) time to find a child, 𝑂(𝑛) space

▪ best in theory, not worth it in practice unless |Σ| is huge

‘a’ ‘c’ ‘$’

‘a’

‘c’

‘$’

▪ Solution 4: hashing, often used in practice

▪ keys are in typically small range Σ

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Lower bound for search
	Slide 5
	Slide 6: Binary Search on Ordered Array
	Slide 7: Interpolation Search: Motivation
	Slide 8: Interpolation Search Example
	Slide 9: Interpolation Search Example
	Slide 10: Interpolation Search Example
	Slide 11: Interpolation Search
	Slide 12: Interpolation Search
	Slide 13
	Slide 14: Tries: Introduction
	Slide 15: Tries: definition
	Slide 16: Tries: Relaxing Prefix-Free Requirement
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Tries: Search
	Slide 25: Tries: Insert Example
	Slide 26: Tries: Insert Example
	Slide 27: Tries: Insert Example
	Slide 28: Tries: Delete Example
	Slide 29: Tries: Delete Example
	Slide 30: Tries: Delete Example
	Slide 31: Tries: Delete Example
	Slide 32: Tries: Insert & Delete
	Slide 33
	Slide 34: Variation 1 of Tries: No leaf labels
	Slide 35: Variation 2 of Tries: Allow Proper Prefixes
	Slide 36: Variations 3 of Tries: Remove Chains to Leafs (Labels)
	Slide 37
	Slide 38: Variation 4: Compressed Tries (Patricia Tries)
	Slide 39: Compressed Tries
	Slide 40: Compressed Tries
	Slide 41: Compressed Tries
	Slide 42: Compressed Tries
	Slide 43: Compressed Tries
	Slide 44: Compressed Tries
	Slide 45: Compressed Tries (Patricia Tries)
	Slide 46: Compressed Tries (Patricia Tries)
	Slide 47: Compressed Tries: Search Example
	Slide 48: Compressed Tries: Search Example
	Slide 49: Compressed Tries: Search Example
	Slide 50: Compressed Tries: Search Example
	Slide 51: Compressed Tries: Search Example
	Slide 52: Compressed Tries: Search Example
	Slide 53: Compressed Tries: Search Example
	Slide 54: Compressed Tries: Search Example
	Slide 55: Compressed Tries: Search Example
	Slide 56: Compressed Tries: Search Example
	Slide 57: Compressed Tries: Search Example
	Slide 58: Compressed Tries: Search Example
	Slide 59: Compressed Tries: Search Example
	Slide 60: Compressed Tries: Search Example
	Slide 61: Compressed Tries: Search
	Slide 62: Compressed Tries: Insert & Delete
	Slide 63
	Slide 64: Multiway Tries: Larger Alphabet
	Slide 65: Compressed Multiway Tries
	Slide 66: Multiway Tries: Summary
	Slide 67: Multiway Tries: Summary
	Slide 68: Multiway Tries: Summary

