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Lower bound for search

Theorem: Ω(log 𝑛) comparisons required for search in comparison based model

Proof:

▪ Can we beat the lower bound if keys are special? Yes!
1. Interpolation search: keys have special distribution

2. Tries: keys are strings

▪ Search is Θ(log 𝑛) in fastest implementations of dictionary ADT
▪ 𝑛 is the number of items stored 

▪ Is this the best possible?

𝑥𝑖 < 𝑘?

𝑘 < 𝑥𝑗? 𝑥𝑙 < 𝑥𝑗?

no 𝑘𝑘 = 𝑥1

▪ consider binary decision tree 

yes no▪ leaves correspond to answers returned

▪ decision tree must have at least (𝑛 + 1) leaves

▪ +1 for “no key found”

▪ binary tree of height ℎ has at most 2ℎ leaves

▪ thus 2ℎ ≥ 𝑛 + 1

ℎ ≥ log(𝑛 + 1)

𝑘 = 𝑥2
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Binary Search on Ordered Array
▪ insert and delete: Θ(𝑛), search is Θ(log 𝑛)

Binary-search(𝐴, 𝑛, 𝑘)

𝐴: Array of size 𝑛, 𝑘: key

𝑙 ← 0

𝑟 ← 𝑛 − 1

while 𝑙 ≤ 𝑟

𝑚 ←
𝑙+𝑟

2

if (𝑘 == 𝐴 𝑚 ) return “found at 𝐴 𝑚 ”

else if 𝐴 𝑚 < 𝑘 // key cannot be in the left part of 𝐴

𝑙 ← 𝑚 + 1

els𝐞 𝑟 ← 𝑚 − 1 // key cannot be in the right part of 𝐴

else return 𝑚

return “not found but would be between 𝐴 𝑙 − 1 and 𝐴 𝑙 ”



Interpolation Search: Motivation

▪ binary search looks at index  
𝑙+𝑟

2

𝑙 𝑟

▪ If keys are close to uniformly distributed, where would key 𝑘 = 100 be? 

▪ 𝑘 = 100 is ¾ of the way between 𝐴 𝑙 = 40 and  𝐴 𝑟 = 120

40 120

middle

fractional distance

𝑙 +
3

4
(𝑟 − 𝑙)

▪ Interpolation search

▪ look at index 𝑙 +
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
(𝑟 − 𝑙)

= 𝑙 +
1

2
(𝑟 − 𝑙)

𝐴[𝑟] − 𝐴[𝑙] = 80

▪ so  look at index which is ¾ of the way between 𝑙 and  𝑟

𝑘 − 𝐴[𝑙] = 60



Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

▪ Search(449), iteration 1

𝑙 = 0, 𝑟 = 𝑛 − 1 = 10,

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑚 = 0 +
449 − 0

1500 − 0
(10 − 0) = 2

𝑙 𝑟



Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

▪ Search(449), iteration 2

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑙 = 3, 𝑟 = 10, 𝑚 = 3 +
449 − 3

1500 − 3
(10 − 3) = 5

𝑙 𝑟

▪ Deleted 6 out of 8 elements, better than possible with binary search



Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

▪ Search(449), iteration 3

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑙 = 3, 𝑟 = 4, 𝑚 = 3 +
449 − 3

499 − 3
(4 − 3) = 4

𝑙 𝑟

key found



Interpolation Search

▪ Works well if keys are uniformly distributed

▪ can show: the array in which we recurse into has expected size 𝑛

▪ recurrence relation is 𝑇𝑎𝑣𝑔(𝑛) = 𝑇𝑎𝑣𝑔( 𝑛) + Θ(1)

▪ this resolves to 𝑇𝑎𝑣𝑔(𝑛) ∈ Θ(log log 𝑛)

▪ Worst case performance Θ(𝑛)

▪ search(90)

CS240 – Module 6

0 1 2 3 4 5 6 7 8 9

0 11 23 30 44 51 64 73 85 92 105

10

▪ Clever trick

▪ use interpolation search for  log 𝑛 steps

▪ if key is still not found, switch to binary search

▪ guarantees 𝑂(log 𝑛) worst case, but could be Θ(log log 𝑛)

0 1 2 3 4 5 6 7 8 9

0 90 91 92 93 94 95 96 97 98 99

10



Interpolation Search
▪ Code similar to binary search, but compare at interpolated index 

▪ Need extra test to avoid division by zero due to 𝐴[𝑙] = 𝐴[𝑟]

Interpolation-search(𝐴, 𝑛, 𝑘)

𝐴: Sorted array of size 𝑛, 𝑘: key

𝑙 ← 0

𝑟 ← 𝑛 − 1

while 𝑙 ≤ 𝑟

if (𝑘 < 𝐴 𝑙 or 𝑘 > 𝐴[𝑟]) return  “not found”

if (𝑘 = 𝐴[𝑟]) return “found at 𝐴[𝑟]”

𝑚 ← 𝑙 +
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
(𝑟 − 𝑙)

if 𝐴 𝑚 == 𝑘 return “found at 𝐴[𝑚]”
else if 𝐴 𝑚 < 𝑘

𝑙 ← 𝑚 + 1

elsif 𝑟 ← 𝑚 − 1

// we always return somewhere within while loop
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Tries: Introduction
▪ Trie (also known as radix tree): a dictionary for bit strings (words)

▪ should know: string, word, alphabet, prefix, suffix, comparing words

▪ Comparison with AVL trees

▪ let the number of strings in dictionary be 𝑛

▪ let 𝑥 be the length of a string 𝑥

▪ in tries, insert, find, delete strings is 𝑂( 𝑥 ) time

▪ independent of 𝑛

▪ AVL tree requires 𝑂( 𝑥 log(𝑛)) time

▪ 𝑂(log(𝑛)) to search, 𝑂( 𝑥 ) operations at each node

▪ Efficient for prefix search

▪ find all words in the dictionary that start with “abl”

▪ Applications

▪ auto-completion

▪ smart phones

▪ commands for operating systems

▪ spell checking

▪ DNA sequencing



Tries: definition

▪ Trie (Radix Tree): comes from word retrieval, but pronounced “try”

▪ tree based on bitwise comparisons: edges labeled with corresponding bit

▪ keys are stored only at leaves

▪ similar to radix sort: use individual bits, not the whole key

▪ string stored at a leaf 𝑣 is “read” from path from root to 𝑣

0011 0100

1

S = {000, 0011, 0100, 011, 11}

0

0

1

1

1

1
000

0

0
011

11
1

▪ So far, works only for prefix-free 𝑆

▪ no pair of binary strings where one is prefix of another

▪ prefix of a string 𝑆[0…𝑛 − 1] is 𝑆[0… 𝑖 ] for some  0 ≤ 𝑖 < 𝑛 − 1

▪ always satisfied if 𝑆 has strings of the same length

0

0001
???



Tries: Relaxing Prefix-Free Requirement

▪ Add a special character ‘$’ to signal string end

▪ Each node can have up to three children

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

▪ Trie structure is independent of the key insertion order

▪ Space requirements

▪ for each word 𝑥, have |𝑥| nodes

▪ total at most σ𝑤𝑜𝑟𝑑𝑠 𝑥 |𝑥|

▪ but usually need much less space as words share prefixes

▪ shared prefix means shared trie node



Tries: Search Example

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$)
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$
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Example: Search(011$) successful

$
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Tries: Search Example

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(0111$)

no 1-child

unsuccessful



Tries: Search

▪ Start from the root and the most significant bit of 𝑥

▪ Follow the link that corresponds to the current bit in 𝑥

▪ return failure if the link is missing

▪ Return success if we reach a leaf (it must store 𝑥)

▪ Else recurse on the new node and the next bit of 𝑥

Trie-search(𝑣 ← 𝑟𝑜𝑜𝑡, 𝑑 ← 0, 𝑥 )

𝑣 : node of trie; 𝑑 : level of 𝑣 , 𝑥 : word stored as array of chars

if 𝑣 is a leaf

return 𝑣

else

let 𝑣′ be child of 𝑣 labelled with 𝑥[𝑑]

if there is no such child

return “not found”

else Trie-search(𝑣′, 𝑑 + 1, 𝑥)



Tries: Insert Example

Example: Insert(0111$)

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1



Tries: Insert Example

Example: Insert(0111$)

▪ first search(0111$)

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

no 1-child



Tries: Insert Example

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$

0111$

1

Example: Insert(0111$)

▪ first search(0111$)

▪ now add ‘1’, ‘$’



Tries: Delete Example

Example: Delete(01001$)

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$

0111$

1
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Example: Delete(01001$)
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Tries: Delete Example

Example: Delete(01001$)
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Tries: Delete Example

Example: Delete(01001$)

root

$  

00$

$

0001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$

0111$

1



Tries: Insert & Delete

▪ Insert(𝑥)

▪ Search for 𝑥, this should be unsuccessful

▪ Suppose finish search at node 𝑣 that is missing a suitable child

▪ 𝑥 has extra bits left

▪ Expand the trie from node 𝑣 by adding necessary nodes corresponding to 
extra bits of 𝑥

▪ Delete(𝑥)

▪ search for 𝑥

▪ let 𝑣 be the leaf where 𝑥 is found

▪ delete 𝑣 and all ancestors of 𝑣 until reach ancestor with two  children

▪ Time Complexity of all operations: Θ(|𝑥|)

▪ |𝑥| is the length of binary string 𝑥

▪ number of bits in 𝑥
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Variation 1 of Tries: No leaf labels

▪ Do not store actual keys at the leaves

▪ The key is stored implicitly through characters along the path to  the leaf

▪ Halves the amount of space

root

$  
00$

$
0001$

011$
$

1

0

0

0 1

0 0 1

1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

root

0

0 1

$ 0 0 1 0 1

1 0 $ 0  $ 1 $

$ 1 1 $

$ $

1

1

$
01001$

$
01101$



Variation 2 of Tries: Allow Proper Prefixes

▪ Allow prefixes to be in dictionary

▪ internal nodes may now also represent keys 

▪ use a flag to indicate such nodes

▪ remove $-children, replace by flags

▪ now trie is a binary tree

▪ expresses 0-child and 1-child implicitly via left and right child

▪ more space-efficient

$

$

1

$

0

0

0 1

0 0 1

1 0

$ 1

$

$

0

$ 1 $

1

1

1
root

root



Variations 3 of Tries: Remove Chains to Leafs (Labels)

▪ Pruned trie: stop adding nodes to trie as soon as the key is unique

$  
00$

$
0001$

011$
$

1

0

0

0 1

0 0 1

1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

$
01001$

$
01101$

$ 0
00$ 0001$

0

0
01001$

$ 0
011$ 01101$

1

1

0

$ 1
110$ 1101$

0 1
111$

1

1

▪ node has a child only if it has at least two descendants

▪ saves space if there are only few bitstrings that are long

▪ can even store really long bitstrings more efficiently (real numbers)

▪ this variation cannot be combined with the previous one

▪ why?

▪ more  efficient version of tries, but operations get complicated
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Variation 4: Compressed Tries (Patricia Tries)

▪ Removing chains to labels helps, but can still have internal nodes with one child

$ 0
00$ 0001$

0

0
01001$

$ 0
011$ 01101$

1

1

0

$ 1
110$ 1101$

0 1
111$

1

1

$  
00$

$
0001$

011$
$

1

0

0

0 1

0 0 1

1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

$
01001$

$
01101$

▪ Such ‘chains’ in a trie waste space and reduce search/insert/delete efficiency

▪ If we insure each internal node has at least 2 children, no space wasted

▪ 𝑛 leaf nodes = 𝑛 keys stored

▪ at most 𝑛 − 1 internal nodes

▪ at most 2𝑛 − 1 total nodes



Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

▪ Visual proof

▪ put a stone on each leaf

▪ there are 𝑚 stones



Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

▪ Visual proof:

▪ put a stone on each leaf

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent



Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

▪ Visual proof:

▪ put a stone on each leaf

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent
▪ all  internal nodes at level ℎ − 1 have 

at least 2 stones, they leave one 
stone and pass one stone to the 
parent



Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

▪ Visual proof:

▪ put a stone on each leaf

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent
▪ all internal nodes at level ℎ − 1 have 

at least 2 stones, they leave one 
stone and pass one stone to the 
parent

▪ all internal nodes at level ℎ −2 have at 
least 2 stones, they leave one stone and 
pass one stone to the parent



Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

▪ Visual proof:

▪ continue until reach the root

▪ now each internal node has 1 stone 
and root has 2 or more stones



Compressed Tries

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

▪ Visual proof:

▪ continue until reach the root

▪ now each internal node has 1 stone 
and root has 2 or more stones

▪ root leaves 1 stone and throws the 
rest outside the tree

▪ now each internal node has 1 stone, 
and there is one or more stones 
outside the tree

▪ since number of stones is equal to 
the number of leaves, the number of 
internal nodes is strictly less than the 
number of leaves 



Compressed Tries (Patricia Tries)
▪ How to compress

1

0

0

1

1

trie above

trie below

trie above

trie below

bit 5

bit 6

bit 7

bit 8

bit 9

bit 10

bit 11

11

▪ But now we lost part of the binary string ‘10011’

after this node, search 
according to bit 11

bit 5

bit 11

compressing

‘******’

▪ Check the final answer (leaf) if it stores exact match to the search key 



Compressed Tries (Patricia Tries)

▪ Morrison (1968): Patricia-Tries

▪ Practical Algorithm to Retrieve Information Coded in Alphanumeric

▪ Idea: compress paths of nodes with only one child

▪ Each node stores an index : next bit to be tested during a search

▪ Compressed trie with 𝑛 keys has at most 𝑛 − 1 internal (non-leaf) nodes

0

1

2

00$

$ 1

0

2

011$ 01101$

0

0 1

0001$   01001$ 3

$

1

0

2

3

$ 1

110$ 1101$

0

111$

1

1

$  
00$

$
0001$

011$
$

1

0

0

0 1

0 0 1

1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

$
01001$

$
01101$



Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0  

00$ 0001$ 01001$

011$
$

01101$
0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1



Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0  

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$
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111$

1

1



Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0  

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

skip



Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0  

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1 no $-child

unsuccessful



Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0  

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1



Compressed Tries: Search Example
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Compressed Tries: Search Example

Example: Search(101$)
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Example: Search(111$)
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Example: Search(111$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search

▪ Start from the root and the bit indicated at that node 

▪ Follow the link that corresponds to the current bit in 𝑥

▪ return failure if the link is missing

▪ If reach a leaf, expicitly check whether word stored at leaf is 𝑥

▪ Else recurse on the new node and the next bit of 𝑥

Patricia-Trie-search 𝑣 ← 𝑟𝑜𝑜𝑡, 𝑥

𝑣: node of trie; 𝑥: word

if  𝑣 is a leaf

return strcmp 𝑥 , 𝑣. 𝑘𝑒𝑦

else

𝑑 ← index stored at 𝑣

𝑣′ ← child of 𝑣 labelled with 𝑥 𝑑

if there is no such child

return “not found”

else Patricia-Trie-search(𝑣′, 𝑥 )



Compressed Tries: Insert & Delete
▪ Delete(𝑥)

▪ perform search(𝑥)

▪ remove the node 𝑣 that stores 𝑥

▪ compress along path to 𝑣 whenever possible

▪ Insert(𝑥)

▪ perform search(𝑥)

▪ let 𝑣 be node where search ends

▪ conceptually simplest approach

▪ uncompress path from root to 𝑣

▪ insert 𝑥 as in an uncompressed trie

▪ compress paths from root to 𝑣 and from root to 𝑥

▪ can also be done by only adding those nodes that are needed

▪ see the textbook for details

▪ All operations take 𝑂(|𝑥|) time

▪ Compressed tries are much more complicated, but space savings 
are worth it if words are unevenly distributed



Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Tries

▪ Variations of Tries

▪ Compressed Tries

▪ Multiway Tries



Multiway Tries: Larger Alphabet

be$

$

$

bear$

r $

ben$

a n

e

$

soul$

l

$

soup$

p

o

u

▪ Represents Strings over any fixed alphabet Σ

▪ Any node has at most |Σ| + 1 children 

▪ one child for the  end-of-word character $

▪ Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

b s



Compressed Multiway Tries
▪ Compressed multi-way tries

▪ Example: A compressed trie holding strings {bear$, ben$, be$, soul$,  soup$}

2

be$

$

bear$

a

ben$

n

b

3

l

soul$

p

soup$

s

0



Multiway Tries: Summary

▪ Operations search(𝑥), insert(𝑥) and delete(𝑥) are as for bitstring tries

▪ Run-time 𝑂(|𝑥| · (time to find the appropriate child))

▪ Each node now has up to |Σ| + 1 references to children

▪ How should  they be stored? Assume compressed trie

▪ Solution 1: Array of size |Σ| + 1 for each node

▪ Complexity: 𝑂(1) to find child, 𝑂(|Σ|) space per node

▪ Solution 2: List of children for each node

▪ Complexity: 𝑂(|Σ|) to find 
child, #𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 space per node,

▪ 𝑂(𝑛) total space assuming compressed trie

▪ one-one correspondence between each trie
node (except the root) and nodes of all linked 
lists

‘a’ ‘b’ ‘c’ ‘$’

1 0 1 1

‘a’ ‘c’ ‘$’



Multiway Tries: Summary

▪ Operations search(𝑥), insert(𝑥) and delete(𝑥) are as for bitstring tries

▪ Run-time 𝑂(|𝑥| · (time to find the appropriate child))

▪ Each node now has up to |Σ| + 1 references to children

▪ How should  they be stored? Assume compressed trie

▪ Solution 1: Array of size |Σ| + 1 for each node

▪ Complexity: 𝑂(1) to find child, 𝑂(|Σ|𝑛) space

▪ Solution 2: List of children for each node

▪ Complexity: 𝑂(|Σ|) to find 
child, #𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 space per node,

▪ 𝑂(𝑛) total space assuming compressed trie

▪ one-one correspondence between each trie
node (except the root) and nodes of all linked 
lists

‘a’ ‘b’ ‘c’ ‘$’

1 0 1 1

‘a’ ‘c’ ‘$’
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$
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a
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n

b

3

l

soul$

p

soup$

s

0

‘$’ ‘a’ ‘n’

‘b’ ‘s’

‘l’ ‘p’



Multiway Tries: Summary

▪ Operations search(𝑥), insert(𝑥) and delete(𝑥) are as for bitstring tries

▪ Run-time 𝑂(|𝑥| · (time to find the appropriate child))

▪ Each node now has up to |Σ| + 1 references to children

▪ How should  they be stored? Assume compressed trie

▪ Solution 1: Array of size |Σ| + 1 for each node

▪ Complexity: 𝑂(1) to find child, 𝑂(|Σ|) space per node

▪ Solution 2: List of children for each node

▪ Complexity: 𝑂(|Σ|) to find child, #𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 space
per node

▪ 𝑂(𝑛) total space assuming compressed trie

▪ one-one correspondence between each trie node 
(except the root) and nodes of all linked lists

‘a’ ‘b’ ‘c’ ‘$’

1 0 1 1

▪ Solution 3: AVL-tree of children for each node

▪ Complexity: 𝑂(log( Σ )) time to find a child, 𝑂(𝑛) space

▪ best in theory, not worth it in practice unless |Σ| is huge

‘a’ ‘c’ ‘$’

‘a’

‘c’

‘$’

▪ Solution 4: hashing, often used in practice

▪ keys are in typically small range Σ
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