CS 240 — Data Structures and Data Management

Module 7: Dictionaries via Hashing

A. Hunt and O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

= Dictionaries via Hashing
= Hashing Introduction
= Hashing with Chaining
= Open Addressing
" probe sequences
" cuckoo hashing
= Hash Function Strategies

Outline

= Dictionaries via Hashing
= Hashing Introduction

Direct Addressing

= Special situation: every key k isinteger with0 <k < M

= Direct addressing implementation (similar to Bucket Sort)
= store (k,v)inarray A of size M via Alk] « v
= search(k): checkif A[k] is empty
= jnsert(k,v): Alk] < v

dog

pig
(2,dog), (6, cat)}
insert(8, pig)

0
1
2
3
4
5
6 cat
7
8
D ={

Direct Addressing

= Special situation: every key k isinteger with0 <k < M

= Direct addressing implementation (similar to Bucket Sort)
= store (k,v)inarray A of size M via Alk] « v

= search(k): check if A[k] is empty (1)
= jnsert(k,v): Alk] « v
= delete(k): Alk] < empty 2
4
5
6 cat
7
8 Pig

D = {(2,dog), (6, cat), (8,pig)}
delete(2)

Direct Addressing

= Special situation: every key k isinteger with0 <k < M
= Direct addressing implementation (similar to Bucket Sort)

store (k,v) in array A of size M via Alk] « v

search(k): check if A[k] is empty
insert(k,v): Alk] < v
delete(k): Alk] < empty

all operations are 0(1)

total storage is O(M)

Drawbacks

1. spaceis wasteful if n << M
2. keys must be integers

N oo o AW NN -~ O

8

cat

pig

D = {(6, cat), (8,pig)}

Hashing

= |dea: first map keys to small integer range and then use direct addressing

= Assumption: keys come from some universe U

= typically U = {0,1, ...}, sometimes U is finite 0
= Design hash functionh: U - {0,1,...,M — 1} 1
» h(k)is called hash value of k E
= example: h(k) = kmod M 3
= will see other choices later 4
= Store dictionary in array T of size M, called hash table >
= |tem with key k usually stored in T [h(k)] 6
= h(k)is called a slot 7
8
= Example 9
= U=N, M =11, h(k) = kmod 11 10

= keys 7,13,43,45,49,92

Hashing

= |dea: first map keys to small integer range and then use direct addressing

= Assumption: keys come from some universe U

= typically U = {0,1, ...}, sometimes U is finite 0
= Design hash functionh: U - {0,1,...,M — 1} 1 45

» h(k)is called hash value of k E 13

= example: h(k) = kmod M 3

= will see other choices later 4)2
= Store dictionary in array T of size M, called hash table > 49
= |tem with key k usually stored in T [h(k)] 6

= h(k)is called a slot 7 7
" Example 8

« U=N, M =11, h(k) = kmod 11 °

= keys 7,13,43,45,49,92 10 43

= as usual, store KVP, but show only keys

Hash Functions and Collisions

Hash function

= shou

|d be fast, 0(1), to compute

Generally hash function h is not injective

Collision: want to insert (k,v), but T[h(k)] is occupied

many keys can map to the same integer, example
» h(k) = kmod 11,
" h(46) = 2 = h(13)

Two main strategies to deal with collisions

1.
2.

Chaining: allow multiple items at each table location

Open addressing: alternative slots in array

probe sequence: many alternative locations
cuckoo hashing: just one alternative location

O 00 N o un Ao W N —, O

=
o

45

13

92

49

43

Outline

= Dictionaries via Hashing

= Hashing with Chaining

Hashing with Chaining

M = 11, h(k) = kmod 11

Each slot is a bucket containing O or more KVPs

= bucket can be implemented by
any dictionary

= even another hash table

" simplest approach is unsorted
linked list in each bucket

= this is called chaining

O 00 N o U W N = O

[EEY
o

0
1

45
2

13
3
92 Bucket 4

array

49 II: >
6
7 7
8
9
43 10

45

13

92

49

43

Hashing with Chaining

= (QOperations
= search(k): look for key k in the list at T [h(k)]
= apply MTF heuristic
= jnsert(k,v):add (k,v) tothelistat T [h(k)]
= add to the list front
= delete(k): search and delete from the list at T[h(k)]

O 00 N o0 U1 N W N

-_—
o

45

13

92

49

43

Hashing with Chaining Example
M = 11, h(k) = kmod11

0

1 45

2 13
insert(41) ’

4 92
h(41) = 8 5 49

6

7 7

8 41

9

Hashing with Chaining Example
M = 11, h(k) = kmod11

0

1 sl 45

2 -—> 13
insert(46) ?

4 92
h(46) =2 5 49

6

7 7

8 41

9

10) 43

Hashing with Chaining Example
M = 11, h(k) = kmod11

0

1 » 45

2 -—> 46
insert(46) ?

4 92
h(46) =2 5 49

6

7 7

8 41

9

10 > 43

Hashing with Chaining Example
M = 11, h(k) = kmod11

0

1 45

2 46
insert(16) ?

4 92
h(16) =5 5 49

6

7 7/

8 41

9

10) 43

Hashing with Chaining Example
M = 11, h(k) = kmod11

insert(16)

h(16) =5

w N = O

O 00 N o U b

10

45

46

13

92

16

49

41

43

Hashing with Chaining Example
M = 11,h(k) = kmod11

insert(79)

h(79) = 2

w N = O

O 00 N o U b

10

>

45

46

13

92

16

49

41

43

Hashing with Chaining Example
M = 11, h(k) = kmod11

insert(79)

h(79) = 2

w N = O

O 00 N o U b

10

-

45

79

46

92

16

13

49

41

43

w N

O 00 N OO U b

10

2 s 24

13

Hashing with Chaining: Worst Case Running Time

= searchis O(n)

= delete is same as search

35

46

= |n the worst case all n items hash to same array index
= jnsert is O(1), unordered linked list insertion

Hashing with Chaining: Worst Case Running Time

= When can all n items hash to the same array index?

* bad hash function, i.e. h(k) = 10

= for any hash function, if universe is large enough, there are
n keys that will hash to the same slot
" let|U=>2Mn—-1)+1
= suppose less than n keys hash to each table slot

0 M-1
n—1n—-1Un—-1n—-1n—-1n—-1n-1
\ J

M(n - 1)

» then there at most M(n — 1) elements in U, contradiction

= user may or may not decide to insert the items that all hash into
the same slot

. : Nt . 1 —| 45
Hashing wlth Chaining: N
Average time? e
S| 16— 49]
. _n 6
" Define load factor a = — 7] 10
= nisthe number of items) T BT load factor 5
= M is the size of hash table 10 [a3

= jnsert has runtime 0(1)
= search, delete have runtime ©(1 + size of bucket T[h(k)])
* note we do not say O(size of bucket T[h(k)]), as bucket can have size 0
= runtime when bucket size is 0 is (1), not ©(0)

.) ° . o 1 —— 45
Hashing wlth Chaining: R
Average time? e
s| 16 —["a]
. _ 2 6
Define Joad factor a = — 7] 10
* nisthe number of items z —{a_| loadfactor
" M is the size of hash table 10 [@3]

insert has runtime 0(1)

search, delete have runtime O(1 + size of bucket T[h(k)])

The average bucket size is a

This does not imply that the average-case cost of search and delete is (1 + a)

= then all keys hash to the same slot, then the average bucket size is still «,
but search, delete still take ®(n) on average

Need to make some assumptions on how keys are distributed
= too hard to make assumptions close to realistic
Easier to make assumptions if we switch to randomization and expected time

Hashing with Chaining: Randomization

Switch to randomized hashing
How can we randomize?

= sequence of insert/search/delete is given
= key must hash to the particular value given by the hash function

Idea: assume hash-function is chosen randomly
Uniform Hashing Assumption
= any possible hash-function is equally likely to be chosen
" not realistic, but this assumption makes analysis possible
Can show that under uniform hashing assumption

= P(h(k) = i) = forany key k and slot i

= hash-values of any two keys are independent of each other

Practical way to chose a random hash function from a certain family of hash
functions

= h(k) = ((ak + b) mod p)mod M
= prime numberp > M and random a,b € {0,...p — 1}, a # 0

Hashing with Chaining: Randomization
= P(h(k) =1i) = % for any key k and slot i
= hash-values of any two keys are independent of each other

* Joad factor « =%

Claim: for any key k, the expected size of bucket T[h(k)]isat most1 + «

Proof:
= leth(k) =i
= Case 1: kis not in the dictionary

= then each of n dictionary items hashes to i with probability %
-Eﬂﬁﬂ=%=a31+a

= Case 2: kisin the dictionary
= T(i) definitely has key k

= the remaining n-1 dictionary items hash to i with probability %

= ET(M)]=1+""<1+a

= search, delete have runtime O(1 + size of bucket T[h(k)])
= Expected runtime of search and delete is (1 +), insertis ©(1)

Load factor and re-hashing

= Loadfactora = %
= Space is O(M + n) = O(n/a + n), timeis O(1 + «a)
= if we maintaina € 0O(1), expected running time is O(1) and space is ©(n)
= Accomplished by rehashing whenever% < c1 or % > C2
= where ¢y, c2 are constants with 0 < c1 < ¢2
= c1is minimum allowed load factor, ¢z is maximum allowed load factor
= Maintaining hash array of appropriate size
= start with small M
= during insert/delete, update n

= if load factor becomes too big, i.e. a = % > (3, rehash

» chose new M’ = 2M

= find a new random hash function h’ that maps U into {0,1, ... M’ — 1}
= create new hash table T’ of size M’

= reinsert each KVP from T into T’

" updateT « T’ ,h < h’

. n .
= |fload factor becomes too small, i.e. ¢ = o < c1, rehash with smaller M’

= Rehashing costs ©(M + n) but happens rarely, cost amortized over all operations

Rehashing

M =5,h(k) = kmod5 M'" =11,h'(k) = kmod11
0 0
1 6 1 > 12
2 > 12 2 | 17 2 2
3 3
4 4
5
6 —| 17 6
7
8
9
10

Outline

= Dictionaries via Hashing

= Open Addressing
" probe sequences

Open Addressing

Chaining wastes space on links
Can we resolve collisions in the array H?

|Idea: each hash table entry holds only one
item, but key k can go in multiple locations
Probe sequence

= search and insert follow a probe sequence of possible locations
for key k

h(k,0), h(k, 1), h(k,2),...

= until an empty spot is found

h(k,2)

h(k, 0)

h(k,1)

Open Addressing: Linear Probing

= Linear probing is the simplest method for probe sequence
* |f h(k) is occupied, place item in the next available location
= probe sequence is
= h(k,0) = h(k)
= h(k,1) =h(k)+1
= h(k,2) =h(k)+ 2
= etc...

= Assume circular array, i.e. modular arithmetic
= h(k,i) = (h(k)+i)mod M

Linear Probing Example

M = 11, h(k) = kmod 11

insert(41)

h(41) = 8

O 00 N o uil Ao W N P+~ O

[EEY
o

45

13

92

49

43

Linear Probing Example

M = 11, h(k) = kmod 11

insert(41)

h(41) = 8

O 00 N o uil Ao W N P+~ O

[EEY
o

45

13

92

49

41

43

Linear Probing Example

M = 11, h(k) = kmod 11

insert(84)

h(84) =7

O 00 N o uil Ao W N P+~ O

[EEY
o

45

13

92

49

41

43

Linear Probing Example

M = 11, h(k) = kmod 11

45
13

insert(84)

h(84) =7

92
49

41

O 00 N o uil Ao W N P+~ O

43

[EEY
o

Linear Probing Example

M = 11, h(k) = kmod 11

occupied
occupied

43

0
insert(84) 1 45

, 13
h(84) =7 ;

. 92

5 49

6

7

8

9

[EEY
o

Linear Probing Example

M = 11, h(k) = kmod 11

- occupied
occupied
84
43

0
insert(84) 1 45

, 13
h(84) =7 ;

. 92

5 49

6

7

8

9

[EEY
o

Linear Probing Formula
" Linear probing explores positions
h(k,i)= (h(k)+ i) mod M

= fori = 0,1, ...until an empty location is found
= where h(k) is some hash function

Linear probing example Continued

M = 11, h(k) = kmod 11
h(k,i) = (h(k) + i) mod M for sequencei = 0,1, ...

45
13

insert(20)

h(20) =9

92
49

h(20,0) = (9+4+ 0)mod 11 =9

41
384
43

O 00 N o ui Ao W N +—» O

=
o

Linear probing example Continued

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

45
13

insert(20)

h(20) =9

92
49

h(20,0) = (9+4+ 0)mod 11 =9

7
41

43

O 00 N o ui Ao W N +—» O

=
o

Linear probing example Continued

M = 11, h(k) = kmod 11

h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

insert(20)
h(20) =9

h(20,1) = (9 + 1)mod 11 = 10

O 00 N o ui Ao W N +—» O

=
o

45
13

92
49

7

41

occupied
occupied

Linear probing example Continued

M = 11, h(k) = kmod 11

h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

insert(20)
h(20) =9

h(20,2) =(9+4+2)mod11 =0

O 00 N o ui Ao W N +—» O

=
o

20
45
13

92
49

7

41

occupied
occupied

Linear probing example: Search

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

20

13

search(23)

h(23) =1

92
49

h(23,0) =(14+0)mod 11 =1

41
34
43

O 00 N o ui Ao W N +—» O

=
o

Linear probing example: Search

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

0 20
search(23) 1 occupied
2 occupied
h(23) =1 3
A 92
h(23,1) =1+ 1)mod 11 =2 : 49
6
5 7
g 41
9 84
10 43

Linear probing example: Search

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

0 20
search(23) 1 occupied
2 occupied
h(23) =1 3
4 92
h(23,2) =(1+2)mod11 =3 . 49
6
5 7/
g 41
9 84
10 43

Linear probing: Delete

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

20
45
13

delete(84)

h(84) =7

92
49

h(84,0) = (74+ 0)mod 11 =7

41
384
43

O 00 N o ui Ao W N +—» O

=
o

Linear probing: Delete

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

20
45
13

delete(84)

h(84) =7

92
49

41
384
43

h(84,0) = (74+ 0)mod 11 =7

O 00 N o ui Ao W N +—» O

=
o

Linear probing: Delete

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

occupied
- occupied
84
43

0 20
delete(84) 1 4

, 13
h(84) =7 ;

4 92
h(84,1) =(7+ 1)mod 11 =8 : 49

6

7

8

9

=
o

Linear probing: Delete

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

20
45
13

delete(84)

h(84) =7

92
49

occupied
- occupied
84
43

h(84,2) = (74 2)mod 11 =9

O 00 N o ui Ao W N +—» O

=
o

Linear probing: Delete

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

0 20
delete(84) 1 45

, 13
h(84) =7 ;

. 92
h(84,2) = (74 2)mod 11 =9 . 49

6

- 7

3 141

9

10 43

Linear probing: Delete

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

0 20
search(20) 1 45

, 13
h(20) =9

3

. 92
h(20,0) = (9 + 0)mod 11 = 9

5 49

6

- 7

3 141

9

10 43

Open Addressing

= delete becomes problematic
= cannot leave an empty spot behind
= next search might otherwise not go far enough
" |dea: lazy deletion
"= mark spot as deleted (rather than empty)
" continue searching past deleted spots
" jnsert in empty or deleted spot

Linear probing: Delete

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

occupied
- occupied
84
43

h(84,2) =(7+2)mod 11 =9

0 20
delete(84) 1 45

2 13
h(84) =7 3

4 92
h(84,0) = (74+0)mod 11 =7

5 49
h(84,1) = (7 +1)mod 11 = 8 6

7

8

9

[N
o

Linear probing: Delete

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

0 20
delete(84) 1 45
2 13
h(84) =7 3
4 92
h(84,0) = (7+0)mod 11 =7
5 49
h(84,1) = (7 +1)mod 11 = 8 6
7 occupied
h(84,2) = (74 2)mod 11 =9 8 occupied
9 deleted

43

[N
o

Linear probing example

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

20
45
13

search(20)

h(20) =9

92
49

h(20,0) = (9 + 0)mod 11 =9

7
41

43

O 00 N o0 U1 AN W NN -~ O

-
o

Linear probing example

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

20
45
13

search(20)

h(20) =9

92
49

h(20,1) = (9+ 1)mod 11 =10

41

O 00 N o0 U1 AN W NN -~ O

-
o

occupied

occupied

Linear probing example

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

20
45
13

search(20)

h(20) =9

92
49

h(20,2) =(9+2)mod11 =0

41

O 00 N o0 U1 AN W NN -~ O

-
o

occupied

occupied

Linear probing example

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

20
45
13

insert(10)

h(10) = 10
92

49

h(10,0) = (10 + 0)mod 11 = 10

7
41
84

deleted

O 00 N o0 U1 AN W NN -~ O

-
o

Linear probing example

M = 11, h(k) = kmod 11
h(k,i) = (h(k) 4+ i) mod M for sequencei = 0,1, ...

20
45
13

insert(10)

h(10) = 10

92
49

h(10,0) = (10 + 0)mod 11 = 10

41
34
10

O 00 N o0 U1 AN W NN -~ O

-
o

Probe Sequence Operations

probe-sequence::insert(T, (k, v))
for(i = 0;i < M;i++4)
if T [h(k,i)]is empty or deleted
T [h(k,D)] = (k,v)
return success
return failure to insert

Stop inserting after M tries

= provided a < 1, linear probing
does not need this

= some probing methods need this
If insert fails, call rehash

probe-sequence::search(T , (k,v))
for(i = 0;i < M;i++)
if T [h(k,i)]is empty
return item-not-found
if T [h(k,1)]is has key k
return T [h(k,i)]

//ignore T [h(k,i)] = deleted and keep searching

return item not found

Linear probing drawbacks

Entries tend to cluster into contiguous regions

= “snowball” effect
Many probes for each search, insert, and delete
How to avoid clustering?

O 00 N o0 U1 AN W N =~ O

-
o

45

92

28

41

84

Double Hashing Motivation

Linear probing attempts inserting into sequence double linear
of probes which is far from random hashing probing

hi(k) hi(k) +1 hi(k)+2

i=0| hidy [i=0

1=3 i=1
Want a more ‘random’ sequence of probes)
| —
hi(k) hi(k) +8 hi(k)+6 ,
L=
i=1

This will help to avoid the clustering side effect

Note for each key k, the probe sequence must
always be the same

= for k = 14, probe sequence is always

= 4,3,0,2,1,5 =2
» for k = 24, probe sequence is always

= 50241,3

double

Double Hashing hashing
= Double hashing : open addressing with probe sequence i=0| hk,0
i =3| h
h(k,i) = (ho (k) + i - hi(k)) mod Mfor i = 0,1, ... (=313
= Where
" hjis another (secondary) hash function
= hi(k) #0 i=1| hk, D
= hi(k) is relative prime with M for all keys k
= otherwise probe-sequence does not explore the
entire hash table
= easiest to choose M prime i~ 2| Rk, 2)

= Double hashing with a good secondary hash function does not cause
the bad clustering produced by linear probing
= search, insert, delete work as in linear probing, but with this different

probe sequence
= linear probing is a special case of double hashing with hi(k) =1

Independent Hash functions

= When two hash functions h1, h; are required, they should be independent
P(hi(k) = i) and P(hz(k) = j) are independent
= Using two modular hash-functions may lead to dependencies
= Better idea: Use multiplicative method for second hash function
= let0<AK<K1
= h(k) = |M(kA - [KA])

|
0 < fractional partof kA < 1

0 < M - (fractional part of kKA) < M
= Example
= M=11,A=0.2
= h(34)= [11-(34-02—|34-0.2])] = |11-(6.8—|6.8))] = [11-0.8/]=8

" A= = % ~ 0.618033988749 works well to scramble the keys

= should use at least log |U| + log |M| bits of A

= For secondary hash function, to avoid h(k) = 0, use
hi(k) = [(M —1)(kA - [kAD] +1

5-1

Double Hashing Example 2

N
M = 11, ho(k) = kmod 11, h1(k) = |10(pk — |@k])| + 1
h(k,i) = (ho(k) + i - hi(k))mod M for sequencei = 0,1, ...

0
1 45
2 13
3
4 92
5 49
6
7 7
8
9

10 43

Double Hashing Example

M = 11, ho(k) = kmod 11, hi (k) = |10(pk — |@k])] + 1
h(k,i) = (ho(k) + i - hi(k))mod M for sequencei = 0,1, ...

insert(41) 0 e
ho (41) = 8 1 e
hi(41) = 4 /

h(41,0) = (8 + 0 - 4) mod 11 = 8 j >

5 49
6
7 7
8
9
10 43

Double Hashing Example

M = 11, ho(k) = kmod 11, hi (k) = |10(pk — |@k])] + 1
h(k,i) = (ho(k) + i - hi(k))mod M for sequencei = 0,1, ...

insert(41) 0 e
ho (41) = 8 1 e
hi(41) = 4 /

h(41,0) = (8 + 0 - 4) mod 11 = 8 j >

5 49
6
7 7
8 41
9
10 43

Double Hashing Example

M = 11, ho(k) = kmod 11, hi (k) = |10(pk — |@k])] + 1
h(k,i) = (ho(k) + i - hi(k))mod M for sequencei = 0,1, ...

insert(194) 0 e
ho(194) = 7 1 -
h1(194) =9 /

R(194,0)= (7+0-9mod 11=7 >

5 49
6
7 7
8 41
9
10 43

Double Hashing Example

M = 11, ho(k) = kmod 11, hi (k) = |10(pk — |@k])] + 1
h(k,i) = (ho(k) + i - hi(k))mod M for sequencei = 0,1, ...

insert(194) 0 e
ho(194) = 7 1 -
h1(194) =9 /

R(194,0)= (7+0-9mod 11=7 >

5 49

6

7
8 41

9

10 43

Double Hashing Example

M = 11, ho(k) = kmod 11, hi (k) = |10(pk — |@k])] + 1
h(k,i) = (ho(k) + i - hi(k))mod M for sequencei = 0,1, ...

insert(194) 0 e
ho(194) = 7 1 -
h1(194) =9 /

R(194,1) = (7+1-9mod 11=5 >

5 49

6

7
8 41

9

10 43

Double Hashing Example

M = 11, ho(k) = kmod 11, hi (k) = |10(pk — |@k])] + 1
h(k,i) = (ho(k) + i - hi(k))mod M for sequencei = 0,1, ...

insert(194)
ho(194) = 7
hi(194) = 9
h(194,1) =(7+1:-9)mod 11 =5

45
13

92
N
7

41

O VOV 00O NOMNU N WDN-—-~O

43

—

Double Hashing Example

M = 11, ho(k) = kmod 11, hi (k) = |10(pk — |@k])] + 1
h(k,i) = (ho(k) + i - hi(k))mod M for sequencei = 0,1, ...

insert(194)
ho(194) = 7
hi(194) = 9
h(194,2) =(7+2-9)mod 11 =3

45
13

92
N
7

41

O VOV 00O NOMNU N WDN-—-~O

43

—

Double Hashing Example

M = 11, ho(k) = kmod 11, hi (k) = |10(pk — |@k])] + 1
h(k,i) = (ho(k) + i - hi(k))mod M for sequencei = 0,1, ...

insert(194) 0 e
ho(194) = 7 1 -
h1(194) =9 / o
R(194,2) = (7+2-9mod 11=3 > [¢
s |
6
7
8 41
9
10 43

Outline

= Dictionaries via Hashing

" cuckoo hashing

Cuckoo Hashing

ho(k) h1(k)
0 0
1 1
2 2
3 ha(25) 3
4 k=25 |— 4
5 \@Q@ 5
6 6
7 7
8 8
9 9
10 10

T() Tl
= Main idea: An item with key k can be only at To[ho(k)] or T1[h1(k)]

Cuckoo Hashing

ho(k) hi(k)
0 0
1 1
2 2
3 hi(25) 3
4 k=25 4
’ w@@)
6 m&\c’ 6
; ‘\ﬁi51k=15 ;
9 9
10 10
T() Tl

= Main idea: An item with key k can be only at To[ho(k)] or T1[h1(k)]
= search and delete take O(1) time

Cuckoo Hashing

ho(k) ha(k)
0 0
1 1
2 2
3 3
4 insert(25) 4
)
5 \@@ 5
6 6
7 7
8 8
9 9
10 10

To T

= How toinsert?

Cuckoo Hashing

ho(k) ha(k)
0 0
1 1
2 2
3 3
4 insert(25) 4
)
5 \@@ 5
6 6
7 25 7
8 8
9 9
10 10

To T

= How toinsert?

Cuckoo Hashing

ho(k) ha(k)
0 0
1 1
2 2
3 3
4 insert(15) 4
)
5 “QQ 5
6 6
7 7
8 8
9 9
10 10

To T

= How toinsert k when ho(k) is already occupied?

Cuckoo Hashing

ho(k) ha(k)
0 0
1 1
2 2
3 3
4 insert(15) 4
)
5 “QQ 5
6 » 6
i 1 7
8 8
9 9
10 10

To T

= How toinsert k when ho(k) is already occupied?

Cuckoo Hashing

ho(k) ha(k)
0 0
1 1
2 2
3 3
4 insert(15) 4
)
5 o >
6 6
7 15 25 7
8 8
9 9
10 10

To T

= How toinsert k when ho(k) is already occupied?

Cuckoo Hashing

ho(k) ha(k)
0 0
1 1
2 2
3 3
4 insert(15) 4
)
5 o >
6 6
7 15 25 7
8 8
9 9
10 10

To T

= How toinsert k when ho(k) is already occupied?

Cuckoo Hashing

ho(k) ha(k)
0 0
1 1
2 2
3 3 25
4 insert(15) 4
)
5 “QQ 5
6 6
7 15 7
8 8
9 9
10 10

To T

= How toinsert k when ho(k) is already occupied?

Cuckoo Hashing

ho(k) ha(k)
0 0
1 1
2 2
3 3
4 insert(15) 4
)
5 \\QQ 5
6 6
N I e 7
8 8
9 9
10 10

To T

= How toinsert k when ho(k) is already occupied?

Cuckoo Hashing

ho(k)
0
1
2
3
4 insert(25)
)
5 G
\\,Q
6
7 15 N
8
9
10
To

How to insert k when ho(k) is already occupied?

hi(k)

O 00 N o0 U1 hAM\W N -~ O

-_—
o

Cuckoo Hashing

ho(k) ha(k)
0 0
1 1
2 2
3 3 25
4 insert(25) 4
)
5 \@Q/ 5
6 6
7 15 7
8 8
9 9
10 10

T() Tl
= Continue until all items placed, or failure
= rehash if failure

Cuckoo Hashing [Pagh & Rodler, 2001]

= Use independent hash functions ho, h1and two tables T, T1
= Key k can be only at To[ho(k)] or T1[h1(k)]
= search and delete take constant time
= jnsert starts with Ty and alternates between T and T'1 kicking out
current occupant, if necessary, until no item is kicked out
*" may lead to a loop of “kicking out”
= detect loops by aborting after too many attempts
= signal failure
= if failure, rehash with larger M and new hash functions

= jnsert may be slow, but expected constant time if the load factor is small
= Works well in practice

Cuckoo Hashing

ho(k) ha(k)
0 k=11 0
1 1
2 2
3 11 - 25
4 k =25 4
5
6 6
7 15 7
[k =15
8 8
9 — 9
10 k=5 —— 4o 5

= Intuitively

= each key has 2 locations (locations can coincide)
= try to “match” keys to locations so that everyone is placed

Cuckoo Hashing

ho(k) ha(k)
0 k=11 0
1 1
2 2
3
4 k =25 4
5 5
6 6
7 — 7
k=15
8 8
9 9
10 10

= Sometimes no solution for the “matching” problem
= would loop infinitely if not stopped by force

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

0 44 0

insert(51)

) 1 1

i =20

k = 51 2 2

ho(k) = 7 3 3
4 59 4
5 5
6 6
7 7
8 8
9 92 9
10 10

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

0 44 0

insert(51)

) 1 1

i =20

k = 51 2 2

ho(k) = 7 3 3
4 59 4
5 5
6 6
7 51 7
8 8
9 92 9
10 10

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

0 44 0

insert(95)

) 1 1

i =20

k =95 2 2

ho(k) = 7 3 3
4 59 4
5 5
6 6
7 51 7
8 8
9 92 9
10 10

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

0 44 0

insert(95)

) 1 1

i =20

k =95 2 2

ho(k) = 7 3 3
4 59 4
5 5
6 6
7 7
8 8
9 9

92

—_
o
—_
o

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

0 44 0

insert(95)

) 1 1

i =20

k =95 2 2

ho(k) = 7 3 3
4 59 4
5 5
6 6
7 95 51 7
8 8
9 92 9
10 10

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

0 44 0

insert(95)

) 1 1

i =1

k =51 2 2

h(k) =5 3 3
4 59 4
5 5
6 6
7 95 51 7
8 8
9 92 9
10 10

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

0 44 0

insert(95)

) 1 1

i =1

k =51 2 2

hi(k) =5 3 3
4 59 4
5 5
6 6
7 95 51 7
8 8
9 92 9
10 10

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

0 44 0
insert(95)
) 1 1
i =1
k =51 2 2
hi(k) =5 3 3
4 59 4
5 5 51
6 6
7 95 7
8 8
9 92 9
10 10

Cuckoo hashing: Insert

M =11, hg (k) = kmod 11, hy(k) = [11(pk — |@k])]

insert(26)
i =0

k =26
ho(k) = 4

O 00 N O U1 AN W N =~ O

—_
o

44

95

92

O 00 N o0 U1 N W N =~ O

—_
o

51

Cuckoo hashing: Insert

M =11, hg (k) = kmod 11, hy(k) = [11(pk — |@k])]

insert(26)
i =0

k =26
ho(k) = 4

O 00 N O U1 AN W N =~ O

—_
o

44

26

95

92

59

O 00 N o0 U1 N W N =~ O

-
o

51

Cuckoo hashing: Insert

M =11, hg (k) = kmod 11, hy(k) = [11(pk — |@k])]

insert(26)
i =1

k =59
hi(k) =5

O 00 N O U1 AN W N =~ O

—_
o

44

26

95

92

59

O 00 N o0 U1 N W N =~ O

—_
o

-
9

Cuckoo hashing: Insert

M =11, hg (k) = kmod 11, hy(k) = [11(pk — |@k])]

insert(26)
i =1

k =59
hi(k) =5

O 00 N O U1 AN W N =~ O

—_
o

44

26

95

92

O 00 N o0 U1 N W N =~ O

-
o

59

51

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

insert(26)
i =0

k =51
ho(k) =7

0 44
1

2

3

4 26
5

6

7

8

9 92
10

O 00 N o0 U1 N W N =~ O

—_
o

59

51

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

insert(26)
i =20

k =51
ho(k) =7

O 00 N O U1 AN W N =~ O

—_
o

44

26

51

92

95

O 00 N o0 U1 N W N =~ O

-
o

59

Cuckoo hashing: Insert
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

insert(26)
i=1

k =95
hi(k) =7

O 00 N O U1 AN W N =~ O

—_
o

44

26

51

92

95

O 00 N o0 U1 N W N =~ O

-
o

59

Cuckoo hashing: Insert

M =11, hg (k) = kmod 11, hy(k) = [11(pk — |@k])]

insert(26)
i =1

k =95
hi(k) =7

O 00 N O U1 AN W N =~ O

—_
o

44

26

51

92

O 00 N o0 U1 N W N =~ O

—_
o

59

95

Cuckoo Hashing: Insert Pseudocode

cuckoo::insert(k,v)
I < 0
do at most 2n times
if T;[hi(k)] is empty
Tilhi(k)] < (k,v)
return “success”

swap((k,v), Ti[hi(k)])
[<« 1 —1

return failure

= After 2n iterations, there is definitely an infinite loop of ‘kicking out’

= Practical tip
= do not wait for 2n unsuccessful tries to declare failure
= declare failure after, say, 10 unsuccessful iterations

Cuckoo hashing: Search

M =11, hg (k) = kmod 11, hy(k) = [11(pk — |@k])]

search(59)
ho(59) = 4
h1(59) =5

O 00 N O U1 AN W N =~ O

—_
o

44

51

92

O 00 N o0 U1 N W N =~ O

-
o

59

95

found

Cuckoo hashing: Delete

M =11, hg (k) = kmod 11, hy(k) = [11(pk — |@k])]

delete(59) (1)
ho(59) = 4 2
h1(59) =5 3

4
5
6
7
8
9
10

44

51

92

O 00 N o0 U1 N W N =~ O

-
o

59

95

found

Cuckoo hashing: Delete
M =11, hy(k) = kmod 11, h (k) = [11(pk — |@k])]

delete(59) (1)
ho(59) = 4 2
h1(59) =5 3

4
5
6
7
8
9
10

44

26

51

92

O 00 N o0 U1 N W N =~ O

—_
o

95

no need to mark
deleted spot

Cuckoo hashing discussion
"= The two hash tables do not have to be of the same size
" Load factor « = n/(size of Ty + size of T1)

= One can argue that if the load factor is small enough, then insertion has
0 (1) expected time

= this requiresa < 1/2
= There are many variations of cuckoo hashing
= two hash tables can be combined into one

= more flexible when inserting: always consider both possible
positions

= Use k > 2 allowed locations
= [k tables or k hash functions

Complexity of Open Addressing Strategies

= For any open addressing scheme, we must have @ < 1 (why?)

* For analysis, require a < 1, for Cuckoo hashing require a < 1/2

Expected #

search(unsuccessful) insert search (successful)
probes <
1 1
_ . 1 1l —«a
Linear Probing (1 — a)? (1 — a)? (on avg. over keys)
+0(1) + o(1 +o(1)
Double Hashing 1 -« 1 -« o(1) l1-«a
1 a !
Cuckoo Hashin _ 2 worst case
® (worst case) (1 =2a) ()

All operations have 0(1) expected run-time if hash-function chosen uniformly and « is

kept sufficiently small
But the worst case runtime is (usually) ©(n)

Outline

= Dictionaries via Hashing

= Hash Function Strategies

Choosing Good Hash Function

Satisfying the uniform hashing assumption is impossible
" too many hash functions and for most, computing h(k) is not cheap
We need to compromise

= choose hash function that is easy to compute

* butaimfor P(h(k) = i) =%

If all keys are used equally often, this is easy
In practice, keys are not used equally often
Can get good performance by choosing hash-function that is
= unrelated to any possible patterns in the data, and
= depends on all parts of the key
We saw two basic methods for integer keys
= Modular method: h(k) = k mod M
= M should be prime
= Multiplicative method: h(k) = |[M (kA — |kA])]
m 0<A4AK<1

Carter-Wegman'’s Universal Hashing

= Even better: randomization that uses easy-to-compute hash functions
= Requires: all keys are in {0,...p — 1} for some (big) prime p
" choose number M <p
= M equal to some power of 2 is ok

Choose two random numbersa,b € {0,...p — 1}, a # 0

Use as hash function
h(k) = ((ak + b) mod p) mod M
* can be computedin 0(1) time

Uniform hashing assumption is not satisfied, but
: : . 1
= can prove that two keys collide with probability at most v

= this is enough to prove the expected runtime bounds we had
for chainging

Multi-dimensional Data

May need multi-dimensional non integer keys
= example: stringsin X’

1. Construct f(w) € N for converting string w to integer
= ASCII representation of ~PPLE is (©5, 80, 80,76, 69)
= simple addition: f(APPLE) =©>+80+ 80+ 76 + 69
= many collisions, ‘stop’=‘tops’="pots’
= polynomial accumulation works better

= chooseradixR,e.g. R = 255

= f(APPLE) = ©5R* + 80R3 + 80R? + 76R! + 69RC

= compute in O(|w|) time with Horner’s rule
= either ignoring overflow

F(APPLE) = (((R + 80)R + 80)R + 76) R + 69

= orapply mod M after each addition
2. Now apply any hash function, such as h(w) = f(w) mod M

Hashing vs. Balanced Search Trees

= Advantages of Balanced Search Trees

O (logn) worst-case operation cost

does not require any assumptions, special functions, or
known properties of input distribution

predictable space usage (exactly n nodes)
never need to rebuild the entire structure

supports ordered dictionary operations (rank, select etc.)

= Advantages of Hash Tables

0 (1) expected time operations (if hashes well-spread and load
factor small)

can choose space-time tradeoff via load factor

cuckoo hashing achieves 0 (1) worst-case for search & delete

