CS 240 – Data Structures and Data Management

Module 7: Dictionaries via Hashing

A. Hunt and O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe sequences
 - cuckoo hashing
 - Hash Function Strategies

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe sequences
 - cuckoo hashing
 - Hash Function Strategies

Direct Addressing

- Special situation: every key k is integer with $0 \le k < M$
- Direct addressing implementation (similar to Bucket Sort)
 - store (k, v) in array A of size M via $A[k] \leftarrow v$
 - search(k): check if A[k] is empty
 - $insert(k, v): A[k] \leftarrow v$

Direct Addressing

- Special situation: every key k is integer with $0 \le k < M$
- Direct addressing implementation (similar to Bucket Sort)
 - store (k, v) in array A of size M via $A[k] \leftarrow v$
 - search(k): check if A[k] is empty
 - $insert(k, v): A[k] \leftarrow v$
 - $delete(k): A[k] \leftarrow empty$

 $D = \{(2, dog), (6, cat), (8, pig)\}$ delete(2)

Direct Addressing

- Special situation: every key k is integer with $0 \le k < M$
- Direct addressing implementation (similar to Bucket Sort)
 - store (k, v) in array A of size M via $A[k] \leftarrow v$
 - search(k): check if A[k] is empty
 - $insert(k, v): A[k] \leftarrow v$
 - $delete(k): A[k] \leftarrow empty$
 - all operations are O(1)
 - total storage is $\Theta(M)$
 - Drawbacks
 - 1. space is wasteful if $n \ll M$
 - 2. keys must be integers

 $D = \{(6, cat), (8, pig)\}$

Hashing

- Idea: first map keys to small integer range and then use direct addressing
- Assumption: keys come from some universe U
 - typically $U = \{0, 1, ...\}$, sometimes U is finite
- Design hash function $h: U \rightarrow \{0, 1, \dots, M 1\}$
 - h(k) is called *hash value* of k
 - example: $h(k) = k \mod M$
 - will see other choices later
- Store dictionary in array *T* of size *M*, called *hash table*
- Item with key k usually stored in T[h(k)]
 - h(k) is called a *slot*
- Example
 - U = N, M = 11, $h(k) = k \mod 11$
 - keys 7, 13, 43, 45, 49, 92

Hashing

- Idea: first map keys to small integer range and then use direct addressing
- Assumption: keys come from some universe U
 - typically $U = \{0, 1, ...\}$, sometimes U is finite
- Design hash function $h: U \rightarrow \{0, 1, \dots, M 1\}$
 - h(k) is called *hash value* of k
 - example: $h(k) = k \mod M$
 - will see other choices later
- Store dictionary in array *T* of size *M*, called *hash table*
- Item with key k usually stored in T[h(k)]
 - h(k) is called a *slot*
- Example
 - U = N, M = 11, $h(k) = k \mod 11$
 - keys 7, 13, 43, 45, 49, 92
 - as usual, store KVP, but show only keys

Hash Functions and Collisions

- Hash function
 - should be fast, O(1), to compute
- Generally hash function h is not injective
 - many keys can map to the same integer, example
 - $h(k) = k \mod 11$,
 - h(46) = 2 = h(13)
- Collision: want to insert (k, v), but T[h(k)] is occupied
- Two main strategies to deal with collisions
 - 1. Chaining: allow multiple items at each table location
 - 2. Open addressing: alternative slots in array
 - probe sequence: many alternative locations
 - cuckoo hashing: just one alternative location

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe Sequences
 - cuckoo hashing
 - Hash Function Strategies

Hashing with Chaining

$$M = 11, h(k) = k \mod 11$$

- Each slot is a *bucket* containing 0 or more KVPs
 - bucket can be implemented by any dictionary
 - even another hash table
 - simplest approach is unsorted linked list in each bucket
 - this is called chaining

Hashing with Chaining

Operations

- search(k): look for key k in the list at T[h(k)]
 - apply MTF heuristic
- *insert*(k, v): add (k, v) to the list at T [h(k)]
 - add to the list front
- delete(k): search and delete from the list at T[h(k)]

Hashing with Chaining: Worst Case Running Time

Hashing with Chaining: Worst Case Running Time

- When can all n items hash to the same array index?
 - bad hash function, i.e. h(k) = 10
 - for any hash function, if universe is large enough, there are n keys that will hash to the same slot

• let
$$|U| \ge M(n-1) + 1$$

suppose less than n keys hash to each table slot

$$\begin{array}{c|c}
0 & M-1 \\
\hline
n-1 & n-1 & n-1 & n-1 & n-1 \\
\hline
M(n-1) & & \\
\end{array}$$

- then there at most M(n-1) elements in U, contradiction
- user may or may not decide to insert the items that all hash into the same slot

Hashing with Chaining: Average time?

- Define *load factor* $\alpha = \frac{n}{M}$
 - *n* is the number of items
 - *M* is the size of hash table
- *insert* has runtime $\Theta(1)$
- *search, delete* have runtime $\Theta(1 + \text{size of bucket } T[h(k)])$
 - note we do not say $\Theta(\text{size of bucket } T[h(k)])$, as bucket can have size 0
 - runtime when bucket size is 0 is $\Theta(1)$, not $\Theta(0)$

Hashing with Chaining: Average time?

- Define *load factor* $\alpha = \frac{n}{M}$
 - *n* is the number of items
 - *M* is the size of hash table
- *insert* has runtime $\Theta(1)$
- *search, delete* have runtime $\Theta(1 + \text{size of bucket } T[h(k)])$
- The average bucket size is α
- This does not imply that the average-case cost of search and delete is $\Theta(1 + \alpha)$
 - then all keys hash to the same slot, then the average bucket size is still α, but *search*, *delete* still take Θ(n) on average
- Need to make some assumptions on how keys are distributed
 - too hard to make assumptions close to realistic
- Easier to make assumptions if we switch to randomization and expected time

Hashing with Chaining: Randomization

- Switch to randomized hashing
- How can we randomize?
 - sequence of insert/search/delete is given
 - key must hash to the particular value given by the hash function
- Idea: assume hash-function is chosen randomly
- Uniform Hashing Assumption
 - any possible hash-function is equally likely to be chosen
 - not realistic, but this assumption makes analysis possible
- Can show that under uniform hashing assumption

•
$$P(h(k) = i) = \frac{1}{M}$$
 for any key k and slot i

- hash-values of any two keys are independent of each other
- Practical way to chose a random hash function from a certain family of hash functions
 - $h(k) = ((ak + b) \mod p) \mod M$
 - prime number p > M and random $a, b \in \{0, \dots p-1\}, a \neq 0$

Hashing with Chaining: Randomization

- $P(h(k) = i) = \frac{1}{M}$ for any key k and slot i
- hash-values of any two keys are independent of each other
- load factor $\alpha = \frac{n}{M}$

Claim: for any key k, the expected size of bucket T[h(k)] is at most $1 + \alpha$ **Proof**:

- Let h(k) = i
- Case 1: k is not in the dictionary
 - then each of *n* dictionary items hashes to *i* with probability $\frac{1}{M}$

•
$$E[T(i)] = \frac{n}{M} = \alpha \le 1 + \alpha$$

- Case 2: k is in the dictionary
 - T(i) definitely has key k
 - the remaining *n*-1 dictionary items hash to *i* with probability $\frac{1}{M}$

•
$$E[T(i)] = 1 + \frac{n-1}{M} \le 1 + \alpha$$

- *search, delete* have runtime $\Theta(1 + \text{size of bucket } T[h(k)])$
- Expected runtime of search and delete is $\Theta(1 + \alpha)$, insert is $\Theta(1)$

Load factor and re-hashing

- Load factor $\alpha = \frac{n}{M}$
- Space is $\Theta(M + n) = \Theta(n/\alpha + n)$, time is $\Theta(1 + \alpha)$
 - if we maintain $\alpha \in \Theta(1)$, expected running time is O(1) and space is $\Theta(n)$
- Accomplished by rehashing whenever $\frac{n}{M} < c_1$ or $\frac{n}{M} > c_2$
 - where c_1, c_2 are constants with $0 < c_1 < c_2$
 - c_1 is minimum allowed load factor, c_2 is maximum allowed load factor
- Maintaining hash array of appropriate size
 - start with small M
 - during insert/delete, update n
 - if load factor becomes too big, i.e. $\alpha = \frac{n}{M} > c_2$, rehash
 - chose new $M' \approx 2M$
 - find a new random hash function h' that maps U into $\{0, 1, \dots M' 1\}$
 - create new hash table T' of size M'
 - reinsert each KVP from T into T'
 - update $T \leftarrow T'$, $h \leftarrow h'$
 - If load factor becomes too small, i.e. $\alpha = \frac{n}{M} < c_1$, rehash with smaller M'
- Rehashing costs $\Theta(M + n)$ but happens rarely, cost amortized over all operations

Rehashing

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe sequences
 - cuckoo hashing
 - Hash Function Strategies

Open Addressing

- Chaining wastes space on links
- Can we resolve collisions in the array *H*?
- Idea: each hash table entry holds only one item, but key k can go in multiple locations
- Probe sequence
 - search and insert follow a probe sequence of possible locations for key k

 $h(k, 0), h(k, 1), h(k, 2), \dots$

until an empty spot is found

h(k,2)
h(k,0)
h(k, 1)

Open Addressing: Linear Probing

- Linear probing is the simplest method for probe sequence
 - If h(k) is occupied, place item in the next available location
 - probe sequence is
 - h(k,0) = h(k)
 - h(k, 1) = h(k) + 1

•
$$h(k,2) = h(k) + 2$$

- etc...
- Assume circular array, i.e. modular arithmetic

•
$$h(k,i) = (h(k) + i) \mod M$$

 $M = 11, h(k) = k \mod 11$

insert(41)

$$h(41) = 8$$

 $M = 11, h(k) = k \mod 11$

insert(41)

$$h(41) = 8$$

 $M = 11, h(k) = k \mod 11$

$$h(84) = 7$$

$$\begin{array}{c|ccccc} 0 & & & \\ 1 & 45 \\ 2 & 13 \\ 3 & & \\ 4 & 92 \\ 5 & 49 \\ 6 & & \\ 7 & 7 \\ 8 & 49 \\ 6 & & \\ 7 & 7 \\ 8 & 41 \\ 9 & & \\ 10 & 43 \end{array}$$

 $M = 11, h(k) = k \mod 11$

$$h(84) = 7$$

 $M = 11, h(k) = k \mod 11$

$$h(84) = 7$$

 $M = 11, h(k) = k \mod 11$

$$h(84) = 7$$

Linear Probing Formula

Linear probing explores positions

$$h(k,i) = (h(k) + i) \mod M$$

- for i = 0, 1, ... until an empty location is found
- where h(k) is some hash function

$$M = 11, h(k) = k \mod 11$$

 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$

insert(20) h(20) = 9 $h(20, 0) = (9 + 0) \mod 11 = 9$

$$M = 11, h(k) = k \mod 11$$

 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$

insert(20) h(20) = 9 $h(20, 0) = (9 + 0) \mod 11 = 9$

$$M = 11, h(k) = k \mod 11$$

 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$

insert(20)h(20) = 9 $h(20, 1) = (9 + 1) \mod 11 = 10$

occupied occupied

$$M = 11, h(k) = k \mod 11$$

 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$

insert(20) h(20) = 9 $h(20, 2) = (9 + 2) \mod 11 = 0$

occupied occupied

Linear probing example: Search

$$M = 11, h(k) = k \mod 11$$

 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$

Linear probing example: Search

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

Linear probing example: Search

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

delete(84)h(84) = 7 $h(84, 0) = (7 + 0) \mod 11 = 7$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	43

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

delete(84)h(84) = 7 $h(84, 0) = (7 + 0) \mod 11 = 7$

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

delete(84)h(84) = 7 $h(84, 2) = (7 + 2) \mod 11 = 9$

 $h(20,0) = (9+0) \mod 11 = 9$

search(20)

h(20) = 9

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

not found

Open Addressing

- delete becomes problematic
 - cannot leave an *empty* spot behind
 - next search might otherwise not go far enough
 - Idea: lazy deletion
 - mark spot as *deleted* (rather than *empty*)
 - continue searching past *deleted* spots
 - insert in empty or *deleted* spot

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

0	20
<i>delete</i> (84) 1	45
2	13
h(84) = 7 3	
$h(84,0) = (7+0) \mod 11 = 7$	92
5	49
$h(84, 1) = (7 + 1) \mod 11 = 8$ 6	
7	7
$h(84,2) = (7+2) \mod 11 = 9$ 8	41
9	84

occupied occupied found

43

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

delete(84)
h(84) = 7
$h(84,0) = (7+0) \mod 11 = 7$
$h(84, 1) = (7 + 1) \mod 11 = 8$
$h(84,2) = (7+2) \mod 11 = 9$

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

search(20)

h(20) = 9

 $h(20,0) = (9+0) \mod 11 = 9$

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

occupied occupied

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

search(20)

h(20) = 9

 $h(20,2) = (9+2) \mod 11 = 0$

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

insert(10)

h(10) = 10

 $h(10,0) = (10+0) \mod 11 = 10$

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

insert(10)

h(10) = 10

 $h(10,0) = (10+0) \mod 11 = 10$

Probe Sequence Operations

probe-sequence::insert(T, (k, v)) for (i = 0; i < M; i + +)if T [h(k, i)] is empty or deleted T [h(k, i)] = (k, v)return success return failure to insert

- Stop inserting after *M* tries
 - provided $\alpha < 1$, linear probing does not need this
 - some probing methods need this
- If insert fails, call rehash

probe-sequence::search(T,(k,v))
for (i = 0; i < M; i ++)
if T [h(k,i)] is empty
return item-not-found
if T [h(k,i)] is has key k
return T [h(k,i)]
// ignore T [h(k,i)] = deleted and keep searching
return item not found</pre>

Linear probing drawbacks

- Entries tend to cluster into contiguous regions
 - "snowball" effect
- Many probes for each search, insert, and delete
- How to avoid clustering?

Double Hashing Motivation

 Linear probing attempts inserting into sequence of probes which is far from random

 $h_1(k)$ $h_1(k) + 1$ $h_1(k) + 2$

- Want a more 'random' sequence of probes $h_1(k)$ $h_1(k) + 8$ $h_1(k) + 6$
- This will help to avoid the clustering side effect
- Note for each key k, the probe sequence must always be the same
 - for k = 14, probe sequence is always
 - 4, 3, 0, 2, 1, 5
 - for k = 24, probe sequence is always
 - **5**, 0, 2, 4, 1, 3

Double Hashing

Double hashing : open addressing with probe sequence

 $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for i = 0,1,...

- Where
 - *h*₁ is another (secondary) hash function
 - $h_1(k) \neq 0$
 - $h_1(k)$ is relative prime with M for all keys k
 - otherwise probe-sequence does not explore the entire hash table
 - easiest to choose *M* prime
- Double hashing with a good secondary hash function does not cause the bad clustering produced by linear probing
- search, insert, delete work as in linear probing, but with this different probe sequence
 - linear probing is a special case of double hashing with $h_1(k) = 1$

Independent Hash functions

- When two hash functions h_1 , h_2 are required, they should be independent $P(h_1(k) = i)$ and $P(h_2(k) = j)$ are independent
- Using two modular hash-functions may lead to dependencies
- Better idea: Use *multiplicative method* for second hash function
 - let 0 < *A* < 1

$$h(k) = \lfloor M(kA - \lfloor kA \rfloor) \rfloor$$

0 \le fractional part of $kA < 1$

 $0 \le M \cdot (\text{fractional part of } kA) < M$

- Example
 - M = 11, A = 0.2
 - $h(34) = [11 \cdot (34 \cdot 0.2 [34 \cdot 0.2])] = [11 \cdot (6.8 [6.8])] = [11 \cdot 0.8] = 8$
- $A = \varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749$ works well to scramble the keys
 - should use at least $\log |U| + \log |M|$ bits of A
- For secondary hash function, to avoid h(k) = 0, use $h_1(k) = \lfloor (M-1)(kA \lfloor kA \rfloor) \rfloor + 1$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

 $\sqrt{5}-1$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(41)

$$h_0(41) = 8$$

 $h_1(41) = 4$
 $h(41, 0) = (8 + 0 \cdot 4) \mod 11 = 8$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(41)

$$h_0(41) = 8$$

 $h_1(41) = 4$
 $h(41, 0) = (8 + 0 \cdot 4) \mod 11 = 8$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 0) = (7 + 0 \cdot 9) \mod 11 =$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 0) = (7 + 0 \cdot 9) \mod 11 =$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 1) = (7 + 1 \cdot 9) \mod 11 =$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 1) = (7 + 1 \cdot 9) \mod 11 =$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 2) = (7 + 2 \cdot 9) \mod 11 = 3$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 2) = (7 + 2 \cdot 9) \mod 11 = 3$

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe Sequences

cuckoo hashing

Hash Function Strategies

• Main idea: An item with key k can be only at $T_0[h_0(k)]$ or $T_1[h_1(k)]$

• Main idea: An item with key k can be only at $T_0[h_0(k)]$ or $T_1[h_1(k)]$

• *search* and *delete* take O(1) time

How to insert?

How to insert?

• How to insert k when $h_0(k)$ is already occupied?

• How to insert k when $h_0(k)$ is already occupied?

• How to insert k when $h_0(k)$ is already occupied?

• How to insert k when $h_0(k)$ is already occupied?

• How to insert k when $h_0(k)$ is already occupied?

• How to insert k when $h_0(k)$ is already occupied?

• How to insert k when $h_0(k)$ is already occupied?

- Continue until all items placed, or *failure*
 - rehash if failure

Cuckoo Hashing [Pagh & Rodler, 2001]

- Use independent hash functions h_0 , h_1 and two tables T_0 , T_1
- Key k can be only at $T_0[h_0(k)]$ or $T_1[h_1(k)]$
 - search and delete take constant time
 - *insert* starts with T_0 and alternates between T_0 and T_1 kicking out current occupant, if necessary, until no item is kicked out
 - may lead to a loop of "kicking out"
 - detect loops by aborting after too many attempts
 - signal failure
 - if failure, rehash with larger *M* and new hash functions
- insert may be slow, but expected constant time if the load factor is small
- Works well in practice

- Intuitively
 - each key has 2 locations (locations can coincide)
 - try to "match" keys to locations so that everyone is placed

- Sometimes no solution for the "matching" problem
 - would loop infinitely if not stopped by force

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(51) i = 0 k = 51 $h_0(k) = 7$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(51) i = 0 k = 51 $h_0(k) = 7$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(95) i = 0 k = 95 $h_0(k) = 7$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(95) i = 0 k = 95 $h_0(k) = 7$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(95) i = 0 k = 95 $h_0(k) = 7$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(95) i = 1 k = 51 $h_1(k) = 5$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(95) i = 1 k = 51 $h_1(k) = 5$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(95) i = 1 k = 51 $h_1(k) = 5$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)i = 0k = 26 $h_0(k) = 4$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)i = 0k = 26 $h_0(k) = 4$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26) i = 1 k = 59 $h_1(k) = 5$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26) i = 1 k = 59 $h_1(k) = 5$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26) i = 0 k = 51 $h_0(k) = 7$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)i = 1k = 95 $h_1(k) = 7$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26) i = 1 k = 95 $h_1(k) = 7$

Cuckoo Hashing: Insert Pseudocode

- After 2*n* iterations, there is definitely an infinite loop of 'kicking out'
- Practical tip
 - do not wait for 2*n* unsuccessful tries to declare failure
 - declare failure after, say, 10 unsuccessful iterations

Cuckoo hashing: Search

Cuckoo hashing: Delete

Cuckoo hashing: Delete

Cuckoo hashing discussion

- The two hash tables do not have to be of the same size
- Load factor $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$
- One can argue that if the load factor is small enough, then insertion has
 O(1) expected time
 - this requires $\alpha < 1/2$
- There are many variations of cuckoo hashing
 - two hash tables can be combined into one
 - more flexible when inserting: always consider both possible positions
 - Use k > 2 allowed locations
 - *k* tables or *k* hash functions

Complexity of Open Addressing Strategies

- For any open addressing scheme, we *must* have $\alpha \leq 1$ (why?)
- For analysis, require $\alpha < 1$, for Cuckoo hashing require $\alpha < 1/2$

Expected # probes \leq	search(unsuccessful)	insert	search (successful)
Linear Probing	$\frac{1}{(1-\alpha)^2}$	$\frac{1}{(1-\alpha)^2}$	$\frac{1}{1-\alpha}$ (on avg. over keys)
Double Hashing	$\frac{1}{1-\alpha} + o(1)$	$\frac{1}{1-\alpha} + o(1)$	$\frac{1}{1-\alpha} + o(1)$
Cuckoo Hashing	1 (worst case)	$\frac{\alpha}{(1-2\alpha)^2}$	1 (worst case)

- All operations have O(1) expected run-time if hash-function chosen uniformly and α is kept sufficiently small
- But the worst case runtime is (usually) $\Theta(n)$

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe Sequences
 - cuckoo hashing
 - Hash Function Strategies

Choosing Good Hash Function

- Satisfying the uniform hashing assumption is impossible
 - too many hash functions and for most, computing h(k) is not cheap
- We need to compromise
 - choose hash function that is easy to compute
 - but aim for $P(h(k) = i) = \frac{1}{M}$
- If all keys are used equally often, this is easy
- In practice, keys are not used equally often
- Can get good performance by choosing hash-function that is
 - unrelated to any possible patterns in the data, and
 - depends on all parts of the key
- We saw two basic methods for integer keys
 - Modular method: $h(k) = k \mod M$
 - *M* should be prime
 - Multiplicative method: $h(k) = \lfloor M(kA \lfloor kA \rfloor) \rfloor$
 - 0 < *A* < 1

Carter-Wegman's Universal Hashing

- Even better: randomization that uses easy-to-compute hash functions
 - Requires: all keys are in $\{0, \dots p-1\}$ for some (big) prime p
 - choose number M < p
 - *M* equal to some power of 2 is ok
 - Choose two random numbers $a, b \in \{0, \dots, p-1\}, a \neq 0$
 - Use as hash function

 $h(k) = ((ak + b) \mod p) \mod M$

- can be computed in O(1) time
- Uniform hashing assumption is not satisfied, but
 - can prove that two keys collide with probability at most $\frac{1}{M}$
 - this is enough to prove the expected runtime bounds we had for chainging

Multi-dimensional Data

- May need multi-dimensional non integer keys
 - example: strings in Σ^*
- 1. Construct $f(w) \in N$ for converting string w to integer
 - ASCII representation of APPLE is (65, 80, 80, 76, 69)
 - simple addition: f(APPLE) = 65 + 80 + 80 + 76 + 69
 - many collisions, 'stop'='tops'='pots'
 - polynomial accumulation works better
 - choose radix R, e.g. R = 255
 - $f(APPLE) = 65R^4 + 80R^3 + 80R^2 + 76R^1 + 69R^0$
 - compute in O(|w|) time with Horner's rule
 - either ignoring overflow

$$f(APPLE) = \left(\left((65R + 80)R + 80 \right)R + 76 \right)R + 69$$

- or apply *mod M* after each addition
- 2. Now apply any hash function, such as $h(w) = f(w) \mod M$

Hashing vs. Balanced Search Trees

- Advantages of Balanced Search Trees
 - O(log n) worst-case operation cost
 - does not require any assumptions, special functions, or known properties of input distribution
 - predictable space usage (exactly n nodes)
 - never need to rebuild the entire structure
 - supports ordered dictionary operations (rank, select etc.)
- Advantages of Hash Tables
 - O(1) expected time operations (if hashes well-spread and load factor small)
 - can choose space-time tradeoff via load factor
 - cuckoo hashing achieves O(1) worst-case for search & delete