
CS 240 – Data Structures and Data Management

Module 7: Dictionaries via Hashing

A. Hunt and O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe sequences

 cuckoo hashing

 Hash Function Strategies

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe sequences

 cuckoo hashing

 Hash Function Strategies

Direct Addressing
 Special situation: every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

 Direct addressing implementation (similar to Bucket Sort)
 store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘] ← 𝑣

dog

cat

0

1

2

3

4

5

6

7

8

 search(𝑘): check if 𝐴[𝑘] is empty

 insert(𝑘, 𝑣): 𝐴[𝑘] ← 𝑣

𝐷 = { 2, dog , 6, cat }

insert(8, pig)

pig

Direct Addressing
 Special situation: every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

 Direct addressing implementation (similar to Bucket Sort)
 store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘] ← 𝑣

dog

cat

0

1

2

3

4

5

6

7

8

 search(𝑘): check if 𝐴[𝑘] is empty

 insert(𝑘, 𝑣): 𝐴[𝑘] ← 𝑣

𝐷 = { 2, dog , 6, cat , (8,pig)}

 delete(𝑘): 𝐴[𝑘] ← empty

d𝑒𝑙𝑒𝑡𝑒(2)

pig

Direct Addressing
 Special situation: every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

 Direct addressing implementation (similar to Bucket Sort)
 store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘] ← 𝑣

cat

0

1

2

3

4

5

6

7

8

 search(𝑘): check if 𝐴[𝑘] is empty

 insert(𝑘, 𝑣): 𝐴[𝑘] ← 𝑣

 Drawbacks
1. space is wasteful if 𝑛 << 𝑀

2. keys must be integers

𝐷 = { 6, cat , (8,pig)}

 delete(𝑘): 𝐴[𝑘] ← empty

pig

 all operations are 𝑂(1)

 total storage is Θ(𝑀)

Hashing
 Idea: first map keys to small integer range and then use direct addressing

0

1

2

3

4

5

6

7

8

9

10

 Example

 𝑈 = 𝑁, 𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

 keys 7, 13, 43, 45, 49, 92

 Assumption: keys come from some universe 𝑈

 typically 𝑈 = {0,1, … }, sometimes 𝑈 is finite

 Design hash function ℎ ∶ 𝑈 → {0, 1, . . . , 𝑀 − 1}

 ℎ(𝑘) is called hash value of 𝑘

 example: ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑀

 will see other choices later

 Store dictionary in array 𝑇 of size 𝑀, called hash table

 Item with key 𝑘 usually stored in 𝑇 ℎ 𝑘

 ℎ 𝑘 is called a slot

Hashing

0

1

2

3

4

5

6

7

8

9

10

 Example

 𝑈 = 𝑁, 𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

 keys 7, 13, 43, 45, 49, 92

 as usual, store KVP, but show only keys

7

13

43

45

49

92

 Idea: first map keys to small integer range and then use direct addressing

 Assumption: keys come from some universe 𝑈

 typically 𝑈 = {0,1, … }, sometimes 𝑈 is finite

 Design hash function ℎ ∶ 𝑈 → {0, 1, . . . , 𝑀 − 1}

 ℎ(𝑘) is called hash value of 𝑘

 example: ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑀

 will see other choices later

 Store dictionary in array 𝑇 of size 𝑀, called hash table

 Item with key 𝑘 usually stored in 𝑇 ℎ 𝑘

 ℎ 𝑘 is called a slot

Hash Functions and Collisions

 Generally hash function ℎ is not injective

 many keys can map to the same integer, example

 ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11,

 ℎ(46) = 2 = ℎ(13)

 Collision: want to insert (𝑘, 𝑣), but 𝑇[ℎ(𝑘)] is occupied

 Two main strategies to deal with collisions

1. Chaining: allow multiple items at each table location

2. Open addressing: alternative slots in array

 probe sequence: many alternative locations

 cuckoo hashing: just one alternative location

 Hash function

 should be fast, 𝑂(1), to compute
45

13

92

49

7

43

0

1

2

3

4

5

6

7

8

9

10

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe Sequences

 cuckoo hashing

 Hash Function Strategies

Hashing with Chaining
𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

45

13

92

49

7

43

0

1

2

3

4

5

6

7

8

9

10

Bucket
array

 Each slot is a bucket containing 0 or more KVPs

 bucket can be implemented by
any dictionary

 even another hash table

 simplest approach is unsorted
linked list in each bucket

 this is called chaining

Hashing with Chaining

 Operations

 search(𝑘): look for key 𝑘 in the list at T [ℎ(𝑘)]

 apply MTF heuristic

 insert(𝑘, 𝑣): add (𝑘, 𝑣) to the list at 𝑇 [ℎ(𝑘)]

 add to the list front

 delete(𝑘): search and delete from the list at 𝑇[ℎ(𝑘)]

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(41)

ℎ(41) = 8

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(46)

ℎ(46) = 2

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

46

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(46)

ℎ(46) = 2

13

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

46

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

13

insert(16)

ℎ 16 = 5

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

46

92

16

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(16)

ℎ 16 = 5

13

49

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

46

92

16

7

0

1

2

3

4

5

6

7

8

9

10 43

41

13

49

insert(79)

ℎ(79) = 2

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

79

92

16

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(79)

ℎ(79) = 2

46

49

13

Hashing with Chaining Example

Hashing with Chaining: Worst Case Running Time

2

0

1

2

3

4

5

6

7

8

9

10

24 13 35 46

 In the worst case all 𝑛 items hash to same array index
 insert is 𝑂(1), unordered linked list insertion

 search is Θ(𝑛)

 delete is same as search

Hashing with Chaining: Worst Case Running Time

𝑛 − 1

𝟎 𝑴 − 𝟏

𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1

𝑀 𝑛 − 1

 then there at most 𝑀 𝑛 − 1 elements in 𝑈, contradiction

 user may or may not decide to insert the items that all hash into
the same slot

 When can all 𝑛 items hash to the same array index?
 bad hash function, i.e. ℎ 𝑘 = 10

 for any hash function, if universe is large enough, there are
𝑛 keys that will hash to the same slot

 let 𝑈 ≥ 𝑀 𝑛 − 1 + 1

 suppose less than 𝑛 keys hash to each table slot

Hashing with Chaining:
Average time?

 Define load factor 𝛼 =
𝑛

𝑀

 𝑛 is the number of items

 𝑀 is the size of hash table

load factor
𝟏𝟎

𝟏𝟏

 insert has runtime Θ(1)

 search, delete have runtime Θ(1 + size of bucket 𝑇[ℎ 𝑘])

 note we do not say Θ size of bucket 𝑇 ℎ 𝑘 , as bucket can have size 0

 runtime when bucket size is 0 is Θ 1 , not Θ 0

Hashing with Chaining:
Average time?

 Define load factor 𝛼 =
𝑛

𝑀

 𝑛 is the number of items

 𝑀 is the size of hash table

load factor
𝟏𝟎

𝟏𝟏

 insert has runtime Θ(1)

 search, delete have runtime Θ(1 + size of bucket 𝑇[ℎ 𝑘])

 The average bucket size is 𝛼

 This does not imply that the average-case cost of search and delete is Θ(1 + 𝛼)

 then all keys hash to the same slot, then the average bucket size is still 𝛼,
but search, delete still take Θ(𝑛) on average

 Need to make some assumptions on how keys are distributed

 too hard to make assumptions close to realistic

 Easier to make assumptions if we switch to randomization and expected time

Hashing with Chaining: Randomization
 Switch to randomized hashing

 How can we randomize?

 sequence of insert/search/delete is given

 key must hash to the particular value given by the hash function

 Idea: assume hash-function is chosen randomly

 Uniform Hashing Assumption

 any possible hash-function is equally likely to be chosen

 not realistic, but this assumption makes analysis possible

 Can show that under uniform hashing assumption

 𝑃(ℎ(𝑘) = 𝑖) =
1

𝑀
for any key 𝑘 and slot 𝑖

 hash-values of any two keys are independent of each other

 Practical way to chose a random hash function from a certain family of hash
functions

 ℎ 𝑘 = 𝑎𝑘 + 𝑏 mod 𝑝 mod 𝑀

 prime number 𝑝 > 𝑀 and random 𝑎, 𝑏 ∈ 0, . . . 𝑝 − 1 , 𝑎 ≠ 0

Hashing with Chaining: Randomization
 𝑃(ℎ(𝑘) = 𝑖) =

1

𝑀
for any key 𝑘 and slot 𝑖

 hash-values of any two keys are independent of each other

 load factor 𝛼 =
𝑛

𝑀

Claim: for any key 𝑘, the expected size of bucket 𝑇[ℎ 𝑘] is at most 1 + 𝛼

Proof:

 Let ℎ 𝑘 = 𝑖

 Case 1: 𝑘 is not in the dictionary

 then each of 𝑛 dictionary items hashes to 𝑖 with probability
1

𝑀

 𝐸 𝑇 𝑖 =
𝑛

𝑀
= 𝛼 ≤ 1 + 𝛼

 Case 2: 𝑘 is in the dictionary

 𝑇 𝑖 definitely has key 𝑘

 the remaining 𝑛-1 dictionary items hash to 𝑖 with probability
1

𝑀

 𝐸 𝑇 𝑖 = 1 +
𝑛−1

𝑀
≤ 1 + 𝛼

 search, delete have runtime Θ(1 + size of bucket 𝑇[ℎ 𝑘])

 Expected runtime of search and delete is Θ(1 + 𝛼), insert is Θ(1)

Load factor and re-hashing

 Maintaining hash array of appropriate size

 start with small 𝑀

 during insert/delete, update 𝑛

 if load factor becomes too big, i.e. 𝛼 =
𝑛

𝑀
> 𝑐2, rehash

 chose new 𝑀’ ≈ 2𝑀

 find a new random hash function ℎ’ that maps 𝑈 into {0,1, …𝑀’ − 1}

 create new hash table 𝑇’ of size 𝑀’

 reinsert each KVP from 𝑇 into 𝑇’

 update 𝑇 ← 𝑇’, ℎ ← ℎ’

 If load factor becomes too small, i.e. 𝛼 =
𝑛

𝑀
< 𝑐1, rehash with smaller 𝑀’

 Rehashing costs Θ(𝑀 + 𝑛) but happens rarely, cost amortized over all operations

 Load factor 𝛼 =
𝑛

𝑀

 Space is Θ(𝑀 + 𝑛) = Θ(𝑛/𝛼 + 𝑛), time is Θ(1 + 𝛼)
 if we maintain 𝛼 ∈ Θ(1), expected running time is 𝑂(1) and space is Θ 𝑛

 Accomplished by rehashing whenever
𝑛

𝑀
< 𝑐1 or

𝑛

𝑀
> 𝑐2

 where 𝑐1, 𝑐2 are constants with 0 < 𝑐1 < 𝑐2
 𝑐1 is minimum allowed load factor, 𝑐2 is maximum allowed load factor

Rehashing

𝑀 = 5, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑5

6

12

0

1

2

3

4

2 17

0

1

2

3

4

5

6

7

8

9

10

2

𝑀′ = 11, ℎ′(𝑘) = 𝑘 𝑚𝑜𝑑11

6

12

17 6

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe sequences

 cuckoo hashing

 Hash Function Strategies

Open Addressing
 Chaining wastes space on links

 Can we resolve collisions in the array 𝐻?

 Idea: each hash table entry holds only one
item, but key 𝑘 can go in multiple locations

 Probe sequence
 search and insert follow a probe sequence of possible locations

for key 𝑘
ℎ(𝑘, 0), ℎ(𝑘, 1), ℎ(𝑘, 2), . . .

 until an empty spot is found

ℎ(𝑘, 0)

ℎ(𝑘, 1)

ℎ(𝑘, 2)

Open Addressing: Linear Probing

 Linear probing is the simplest method for probe sequence

 If ℎ(𝑘) is occupied, place item in the next available location

 probe sequence is

 ℎ 𝑘, 0 = ℎ 𝑘

 ℎ 𝑘, 1 = ℎ 𝑘 + 1

 ℎ 𝑘, 2 = ℎ 𝑘 + 2

 etc…

 Assume circular array, i.e. modular arithmetic

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 𝑚𝑜𝑑 𝑀

45

13

92

49

7

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑11

insert 41

ℎ(41) = 8

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑11

insert 41

ℎ(41) = 8

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑11

insert 84

ℎ(84) = 7

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑11

insert 84

ℎ(84) = 7

occupied

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑11

insert 84

ℎ(84) = 7

occupied

occupied

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑11

insert 84

ℎ(84) = 7

occupied

occupied

Linear Probing Formula

 Linear probing explores positions

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀

 for 𝑖 = 0, 1, … until an empty location is found

 where ℎ 𝑘 is some hash function

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0, 1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

insert 20

ℎ(20) = 9

ℎ 20, 0 = 9 + 0 mod 11 = 9

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

insert 20

ℎ(20) = 9

ℎ 20, 0 = 9 + 0 mod 11 = 9

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

45

13

92

49

7

41

84

43

insert 20

ℎ(20) = 9

ℎ 20, 1 = 9 + 1 mod 11 = 10

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

84

43

insert 20

ℎ(20) = 9

ℎ 20, 2 = 9 + 2 mod 11 = 0

Linear probing example: Search

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

search 23

ℎ(23) = 1

ℎ(23, 0) = 1 + 0 mod 11 = 1

occupied

20

45

13

92

49

7

41

84

43

Linear probing example: Search

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

84

43

search 23

ℎ(23) = 1

ℎ(23, 1) = 1 + 1 mod 11 = 2

Linear probing example: Search

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

not found

search 23

ℎ(23) = 1

ℎ(23, 2) = 1 + 2 mod 11 = 3

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

delete 84

ℎ(84) = 7

ℎ(84, 0) = 7 + 0 mod 11 = 7

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

delete 84

ℎ(84) = 7

ℎ(84, 0) = 7 + 0 mod 11 = 7

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

84

43

delete 84

ℎ(84) = 7

ℎ(84, 1) = 7 + 1 mod 11 = 8

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

8

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

found

20

45

13

92

49

7

41

84

43

delete 84

ℎ(84) = 7

ℎ(84, 2) = 7 + 2 mod 11 = 9

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

delete 84

ℎ(84) = 7

ℎ(84, 2) = 7 + 2 mod 11 = 9

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

not found

search 20

ℎ(20) = 9

ℎ(20, 0) = 9 + 0 mod 11 = 9

Open Addressing

 delete becomes problematic

 cannot leave an empty spot behind

 next search might otherwise not go far enough

 Idea: lazy deletion

 mark spot as deleted (rather than empty)

 continue searching past deleted spots

 insert in empty or deleted spot

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

found

20

45

13

92

49

7

41

84

43

delete 84

ℎ(84) = 7

20

45

13

92

49

7

41

84

43

20

45

13

92

49

7

41

84

43

ℎ(84, 0) = 7 + 0 mod 11 = 7

ℎ(84, 1) = 7 + 1 mod 11 = 8

ℎ(84, 2) = 7 + 2 mod 11 = 9

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

deleted

43

delete 84

ℎ(84) = 7

ℎ(84, 0) = 7 + 0 mod 11 = 7

ℎ(84, 1) = 7 + 1 mod 11 = 8

ℎ(84, 2) = 7 + 2 mod 11 = 9

20

45

13

92

49

7

41

deleted

43

Linear probing example

20

45

13

92

49

7

41

deleted

43

0

1

2

3

4

5

6

7

8

9

10

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

occupied

search 20

ℎ(20) = 9

ℎ(20, 0) = 9 + 0 mod 11 = 9

Linear probing example

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

occupied

occupied

20

45

13

92

49

7

41

84

43

search 20

ℎ(20) = 9

ℎ(20, 1) = 9 + 1 mod 11 = 10

Linear probing example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

found20

45

13

92

49

7

41

84

43

search 20

ℎ(20) = 9

ℎ(20, 2) = 9 + 2 mod 11 = 0

Linear probing example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

deleted

0

1

2

3

4

5

6

7

8

9

10

insert 10

ℎ(10) = 10

ℎ(10, 0) = 10 + 0 mod 11 = 10

Linear probing example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

10

0

1

2

3

4

5

6

7

8

9

10

insert 10

ℎ(10) = 10

ℎ(10, 0) = 10 + 0 mod 11 = 10

Probe Sequence Operations

probe-sequence::insert(𝑇, (𝑘, 𝑣))

for (𝑖 = 0; 𝑖 < 𝑀; 𝑖 ++)

if 𝑇 [ℎ(𝑘, 𝑖)] is empty or deleted

𝑇 [ℎ(𝑘, 𝑖)] = (𝑘, 𝑣)

return success

return failure to insert

probe-sequence::search(𝑇 , (𝑘, 𝑣))

for (𝑖 = 0; 𝑖 < 𝑀; 𝑖 ++)

if 𝑇 [ℎ(𝑘, 𝑖)] is empty

return item-not-found

if 𝑇 [ℎ(𝑘, 𝑖)] is has key 𝑘

return 𝑇 ℎ 𝑘, 𝑖

// ignore 𝑇 ℎ 𝑘, 𝑖 = deleted and keep searching

return item not found

 Stop inserting after 𝑀 tries

 provided 𝛼 < 1 , linear probing
does not need this

 some probing methods need this

 If insert fails, call rehash

Linear probing drawbacks

 Entries tend to cluster into contiguous regions

 “snowball” effect

 Many probes for each search, insert, and delete

 How to avoid clustering?

45

92

28

7

41

84

0

1

2

3

4

5

6

7

8

9

10

Double Hashing Motivation

𝒊 = 𝟎

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝟑

𝒊 = 𝟎

𝒊 = 𝟏

𝒊 = 𝟐

𝒊 = 𝟑

linear
probing

double
hashing

ℎ1 𝑘

 Linear probing attempts inserting into sequence
of probes which is far from random

ℎ1(𝑘) ℎ1(𝑘) + 1 ℎ1 (𝑘) + 2

 Want a more ‘random’ sequence of probes

ℎ1(𝑘) ℎ1(𝑘) + 8 ℎ1(𝑘) + 6

 This will help to avoid the clustering side effect

 Note for each key 𝑘, the probe sequence must
always be the same

 for 𝑘 = 14, probe sequence is always

 4, 3, 0, 2, 1, 5

 for 𝑘 = 24, probe sequence is always

 5, 0, 2, 4, 1, 3

Double Hashing

 Double hashing : open addressing with probe sequence

ℎ 𝑘, 𝑖 = ℎ0 (𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for 𝑖 = 0,1, …

 Where

 ℎ1 is another (secondary) hash function

𝒊 = 𝟎

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝟑

 Double hashing with a good secondary hash function does not cause
the bad clustering produced by linear probing

 search, insert, delete work as in linear probing, but with this different
probe sequence

 linear probing is a special case of double hashing with ℎ1(𝑘) = 1

 ℎ1(𝑘) ≠ 0

 ℎ1(𝑘) is relative prime with 𝑀 for all keys 𝑘

 otherwise probe-sequence does not explore the
entire hash table

 easiest to choose 𝑀 prime

double
hashing

ℎ 𝑘, 0

ℎ 𝑘, 1

ℎ 𝑘, 2

ℎ 𝑘, 3

Independent Hash functions
 When two hash functions ℎ1, ℎ2are required, they should be independent

𝑃(ℎ1(𝑘) = 𝑖) and 𝑃(ℎ2(𝑘) = 𝑗) are independent

 Using two modular hash-functions may lead to dependencies

 Better idea: Use multiplicative method for second hash function

 let 0 < 𝐴 < 1

 ℎ 𝑘 = 𝑀 𝑘𝐴 − 𝑘𝐴

0 ≤ fractional part of 𝑘𝐴 < 1

0 ≤ 𝑀 ⋅ (fractional part of 𝑘𝐴) < 𝑀

 Example

 𝑀 = 11, 𝐴 = 0.2

 ℎ 34 = 11 ∙ 34 ∙ 0.2 − 34 ∙ 0.2 = 11 ∙ (6.8 − 6.8) = 11 ∙ 0.8 = 8

 𝐴 = 𝜑 =
5−1

2
≈ 0.618033988749 works well to scramble the keys

 should use at least log |𝑈| + log |𝑀| bits of 𝐴

 For secondary hash function, to avoid ℎ(𝑘) = 0, use
ℎ1(𝑘) = (𝑀 − 1) 𝑘𝐴 − 𝑘𝐴 + 1

Double Hashing Example

45

13

92

49

7

43

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

5−1

2

0

1

2

3

4

5

6

7

8

9

10

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

43

insert(41)
ℎ0 (41) = 8
ℎ1 (41) = 4

ℎ 41, 0 = 8 + 0 · 4 𝑚𝑜𝑑 11 = 8

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

insert(41)
ℎ0 (41) = 8
ℎ1 (41) = 4

ℎ 41, 0 = 8 + 0 · 4 𝑚𝑜𝑑 11 = 8

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 0 = 7 + 0 · 9 𝑚𝑜𝑑 11 = 7

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 0 = 7 + 0 · 9 𝑚𝑜𝑑 11 = 7

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 1 = 7 + 1 · 9 𝑚𝑜𝑑 11 = 5

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 1 = 7 + 1 · 9 𝑚𝑜𝑑 11 = 5

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 2 = 7 + 2 · 9 𝑚𝑜𝑑 11 = 3

Double Hashing Example

45

13

194

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 2 = 7 + 2 · 9 𝑚𝑜𝑑 11 = 3

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe Sequences

 cuckoo hashing

 Hash Function Strategies

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

 Main idea: An item with key 𝑘 can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

 Main idea: An item with key k can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]

𝑘 = 15

𝑻𝟎 𝑻𝟏

 search and delete take 𝑂(1) time

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

 How to insert?

insert(25)

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

25

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

 How to insert?

insert(25)

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

25

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

insert(15)

𝑻𝟎 𝑻𝟏

25

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

insert(15)

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

25

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

35

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

35

Cuckoo Hashing

35

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(25)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

25

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

 Continue until all items placed, or failure

 rehash if failure

𝑻𝟎 𝑻𝟏

insert(25)

Cuckoo Hashing [Pagh & Rodler, 2001]

 Use independent hash functions ℎ0, ℎ1 and two tables 𝑇0, 𝑇1

 Key 𝑘 can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]

 search and delete take constant time

 insert starts with 𝑇0 and alternates between 𝑇0 and 𝑇1 kicking out
current occupant, if necessary, until no item is kicked out

 may lead to a loop of “kicking out”

 detect loops by aborting after too many attempts

 signal failure

 if failure, rehash with larger 𝑀 and new hash functions

 insert may be slow, but expected constant time if the load factor is small

 Works well in practice

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

 Intuitively

 each key has 2 locations (locations can coincide)

𝑘 = 15

𝑘 = 11

𝑘 = 5

11

15

25

5

 try to “match” keys to locations so that everyone is placed

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

 Sometimes no solution for the “matching” problem

 would loop infinitely if not stopped by force

𝑘 = 15

𝑘 = 11

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

44

59

92

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 51

𝑖 = 0

𝑘 = 51

ℎ0(𝑘) = 7

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 51

𝑖 = 0

𝑘 = 51

ℎ0(𝑘) = 7

44

59

92

44

59

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

44

59

51

92

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 0

𝑘 = 95

ℎ0(𝑘) = 7

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 0

𝑘 = 95

ℎ0(𝑘) = 7

44

59

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 0

𝑘 = 95

ℎ0(𝑘) = 7

51

44

59

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 1

𝑘 = 51

ℎ1(𝑘) = 5

44

59

95

92

51

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 1

𝑘 = 51

ℎ1(𝑘) = 5

44

59

95

92

51

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 1

𝑘 = 51

ℎ1(𝑘) = 5

51

44

59

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 0

𝑘 = 26

ℎ0 𝑘 = 4

44

59

95

92

44

59

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 0

𝑘 = 26

ℎ0 𝑘 = 4
59

44

26

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖 = 1

𝑘 = 59

ℎ1(𝑘) = 5

51

𝑖𝑛𝑠𝑒𝑟𝑡 26

59

44

26

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 1

𝑘 = 59

ℎ1(𝑘) = 5

59 51

44

26

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 0

𝑘 = 51

ℎ0 𝑘 = 7

44

26

95

92

44

26

95

92

51

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 0

𝑘 = 51

ℎ0(𝑘) = 7

95

44

26

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

59

𝑖 = 1

𝑘 = 95

ℎ1(𝑘) = 7

95

44

26

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

95

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 1

𝑘 = 95

ℎ1(𝑘) = 7

44

26

51

92

Cuckoo Hashing: Insert Pseudocode

cuckoo::insert(𝑘, 𝑣)

𝑖 ← 0

do at most 2𝑛 times

if 𝑇𝑖[ℎ𝑖(𝑘)] is empty

𝑇𝑖[ℎ𝑖(𝑘)] ← (𝑘, 𝑣)

return “success”

//insert 𝑇𝑖 [ℎ𝑖(𝑘)] into the other table

swap 𝑘, 𝑣 , 𝑇𝑖[ℎ𝑖(𝑘)] // kick out current occupant

𝑖 ← 1 − 𝑖 // alternate between 0 and 1

return failure // re-hash

 After 2𝑛 iterations, there is definitely an infinite loop of ‘kicking out’

 Practical tip

 do not wait for 2𝑛 unsuccessful tries to declare failure

 declare failure after, say, 10 unsuccessful iterations

Cuckoo hashing: Search
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

95

0

1

2

3

4

5

6

7

8

9

10

search 59

ℎ0 (59) = 4
ℎ1(59) = 5

59

95

found

44

26

51

92

44

26

51

92

Cuckoo hashing: Delete
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

delete 59

ℎ0 59 = 4
ℎ1(59) = 5

0

1

2

3

4

5

6

7

8

9

10

59

95

0

1

2

3

4

5

6

7

8

9

10

59

95

found

44

26

51

92

44

26

51

92

Cuckoo hashing: Delete
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

no need to mark
deleted spot

delete 59

ℎ0 59 = 4
ℎ1(59) = 5

95

44

26

51

92

Cuckoo hashing discussion
 The two hash tables do not have to be of the same size

 Load factor 𝛼 = 𝑛/(size of 𝑇0+ size of 𝑇1)

 One can argue that if the load factor is small enough, then insertion has
𝑂(1) expected time

 this requires 𝛼 < 1/2

 There are many variations of cuckoo hashing

 two hash tables can be combined into one

 more flexible when inserting: always consider both possible
positions

 Use 𝑘 > 2 allowed locations

 𝑘 tables or 𝑘 hash functions

Complexity of Open Addressing Strategies
 For any open addressing scheme, we must have 𝛼 ≤ 1 (why?)

 For analysis, require 𝛼 < 1 , for Cuckoo hashing require 𝛼 < 1/2

Expected #
probes ≤

search(unsuccessful) insert search (successful)

Linear Probing
1

1 − 𝛼 2

1

1 − 𝛼 2

1

1 − 𝛼
(on avg. over keys)

Double Hashing

1

1 − 𝛼
+ 𝑜(1)

1

1 − 𝛼
+ 𝑜(1)

1

1 − 𝛼
+ 𝑜(1)

Cuckoo Hashing
1

(worst case)

𝛼

1 − 2𝛼 2

1

(worst case)

 All operations have 𝑂(1) expected run-time if hash-function chosen uniformly and 𝛼 is
kept sufficiently small

 But the worst case runtime is (usually) Θ(𝑛)

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe Sequences

 cuckoo hashing

 Hash Function Strategies

Choosing Good Hash Function
 Satisfying the uniform hashing assumption is impossible

 too many hash functions and for most, computing ℎ(𝑘) is not cheap

 We need to compromise

 choose hash function that is easy to compute

 but aim for 𝑃(ℎ(𝑘) = 𝑖) =
1

𝑀

 If all keys are used equally often, this is easy

 In practice, keys are not used equally often

 Can get good performance by choosing hash-function that is

 unrelated to any possible patterns in the data, and

 depends on all parts of the key

 We saw two basic methods for integer keys

 Modular method: ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑀

 𝑀 should be prime

 Multiplicative method: ℎ(𝑘) = 𝑀 𝑘𝐴 − 𝑘𝐴

 0 < 𝐴 < 1

Carter-Wegman’s Universal Hashing

 Even better: randomization that uses easy-to-compute hash functions

 Requires: all keys are in 0, . . . 𝑝 − 1 for some (big) prime 𝑝

 choose number 𝑀 < 𝑝

 𝑀 equal to some power of 2 is ok

 Choose two random numbers 𝑎, 𝑏 ∈ 0, . . . 𝑝 − 1 , 𝑎 ≠ 0

 Use as hash function
ℎ(𝑘) = (𝑎𝑘 + 𝑏 mod 𝑝)mod 𝑀

• can be computed in 𝑂(1) time

 Uniform hashing assumption is not satisfied, but

 can prove that two keys collide with probability at most
1

𝑀

 this is enough to prove the expected runtime bounds we had
for chainging

Multi-dimensional Data

 May need multi-dimensional non integer keys
 example: strings in Σ

∗

1. Construct 𝑓 𝑤 ∈ 𝑁 for converting string 𝑤 to integer

 ASCII representation of APPLE is 65, 80, 80, 76, 69

 simple addition: 𝑓 𝐴𝑃𝑃𝐿𝐸 = 65 + 80 + 80 + 76 + 69

 many collisions, ‘stop’=‘tops’=‘pots’

 polynomial accumulation works better

 choose radix 𝑅, e.g. 𝑅 = 255

 𝑓 𝐴𝑃𝑃𝐿𝐸 = 65𝑅4 + 80𝑅3 + 80𝑅2 + 76𝑅1 + 69𝑅0

 compute in 𝑂(|𝑤|) time with Horner’s rule

 either ignoring overflow

2. Now apply any hash function, such as ℎ(𝑤) = 𝑓(𝑤) 𝑚𝑜𝑑 𝑀

 or apply 𝑚𝑜𝑑 𝑀 after each addition

𝑓 𝐴𝑃𝑃𝐿𝐸 = 65𝑅 + 80 𝑅 + 80 𝑅 + 76 𝑅 + 69

Hashing vs. Balanced Search Trees

 Advantages of Balanced Search Trees

 𝑂(log𝑛) worst-case operation cost

 does not require any assumptions, special functions, or
known properties of input distribution

 predictable space usage (exactly 𝑛 nodes)

 never need to rebuild the entire structure

 supports ordered dictionary operations (rank, select etc.)

 Advantages of Hash Tables

 𝑂(1) expected time operations (if hashes well-spread and load

factor small)

 can choose space-time tradeoff via load factor

 cuckoo hashing achieves 𝑂(1) worst-case for search & delete

