CS 240 - Data Structures and Data Management

Module 7: Dictionaries via Hashing

A. Hunt and O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

- Dictionaries via Hashing
- Hashing Introduction
- Hashing with Chaining
- Open Addressing
- probe sequences
- cuckoo hashing
- Hash Function Strategies

Outline

- Dictionaries via Hashing
- Hashing Introduction
- Hashing with Chaining
- Open Addressing
- probe sequences
- cuckoo hashing
- Hash Function Strategies

Direct Addressing

- Special situation: every key k is integer with $0 \leq k<M$
- Direct addressing implementation (similar to Bucket Sort)
- store (k, v) in array A of size M via $A[k] \leftarrow v$
- $\operatorname{search}(k)$: check if $A[k]$ is empty
- $\operatorname{insert}(k, v): A[k] \leftarrow v$

Direct Addressing

- Special situation: every key k is integer with $0 \leq k<M$
- Direct addressing implementation (similar to Bucket Sort)
- store (k, v) in array A of size M via $A[k] \leftarrow v$
- $\operatorname{search}(k)$: check if $A[k]$ is empty
- $\operatorname{insert}(k, v): A[k] \leftarrow v$
- delete $(k): A[k] \leftarrow e m p t y$

```
M0,

\section*{Direct Addressing}
- Special situation: every key \(k\) is integer with \(0 \leq k<M\)
- Direct addressing implementation (similar to Bucket Sort)
- store \((k, v)\) in array \(A\) of size \(M\) via \(A[k] \leftarrow v\)
- \(\operatorname{search}(k)\) : check if \(A[k]\) is empty
- \(\operatorname{insert}(k, v): A[k] \leftarrow v\)
- delete \((k): A[k] \leftarrow\) empty
- all operations are \(O(1)\)
- total storage is \(\Theta(M)\)
- Drawbacks
1. space is wasteful if \(n \ll M\)
2. keys must be integers
\begin{tabular}{|c|c|}
\hline 0 & \\
\hline 1 & \\
\hline 2 & \\
\hline 3 & \\
\hline 4 & \\
\hline 5 & \\
\hline 6 & cat \\
\hline 7 & \\
\hline 8 & pig \\
\hline & (8,pig)\} \\
\hline
\end{tabular}

\section*{Hashing}
- Idea: first map keys to small integer range and then use direct addressing
- Assumption: keys come from some universe \(U\)
- typically \(U=\{0,1, \ldots\}\), sometimes \(U\) is finite
- Design hash function \(h: U \rightarrow\{0,1, \ldots, M-1\}\)
- \(h(k)\) is called hash value of \(k\)
- example: \(h(k)=k \bmod M\)
- will see other choices later
- Store dictionary in array \(T\) of size \(M\), called hash table
- Item with key \(k\) usually stored in \(T[h(k)]\)
- \(h(k)\) is called a slot
- Example
- \(U=N, M=11, h(k)=k \bmod 11\)
- keys \(7,13,43,45,49,92\)


\section*{Hashing}
- Idea: first map keys to small integer range and then use direct addressing
- Assumption: keys come from some universe \(U\)
- typically \(U=\{0,1, \ldots\}\), sometimes \(U\) is finite
- Design hash function \(h: U \rightarrow\{0,1, \ldots, M-1\}\)
- \(h(k)\) is called hash value of \(k\)
- example: \(h(k)=k \bmod M\)
- will see other choices later
- Store dictionary in array \(T\) of size \(M\), called hash table
- Item with key \(k\) usually stored in \(T[h(k)]\)
- \(h(k)\) is called a slot
- Example
- \(U=N, M=11, h(k)=k \bmod 11\)
- keys \(7,13,43,45,49,92\)

- as usual, store KVP, but show only keys

\section*{Hash Functions and Collisions}
- Hash function
- should be fast, \(O(1)\), to compute
- Generally hash function \(h\) is not injective
- many keys can map to the same integer, example
- \(h(k)=k \bmod 11\),
- \(h(46)=2=h(13)\)
- Collision: want to insert \((k, v)\), but \(T[h(k)]\) is occupied
- Two main strategies to deal with collisions
1. Chaining: allow multiple items at each table location
2. Open addressing: alternative slots in array
- probe sequence: many alternative locations

- cuckoo hashing: just one alternative location

\section*{Outline}
- Dictionaries via Hashing
- Hashing Introduction
- Hashing with Chaining
- Open Addressing
- probe Sequences
- cuckoo hashing
- Hash Function Strategies

\section*{Hashing with Chaining}
\[
M=11, h(k)=k \bmod 11
\]
- Each slot is a bucket containing 0 or more KVPs
- bucket can be implemented by any dictionary
- even another hash table
- simplest approach is unsorted linked list in each bucket
- this is called chaining


\section*{Hashing with Chaining}
- Operations
- \(\operatorname{search}(k)\) : look for key \(k\) in the list at \(T[h(k)]\)
- apply MTF heuristic
- \(\operatorname{insert}(k, v):\) add \((k, v)\) to the list at \(T[h(k)]\)
- add to the list front
- delete \((k)\) : search and delete from the list at \(T[h(k)]\)


Hashing with Chaining Example
\[
M=11, h(k)=k \bmod 11
\]


Hashing with Chaining Example
\[
M=11, h(k)=k \bmod 11
\]


Hashing with Chaining Example
\[
M=11, h(k)=k \bmod 11
\]


Hashing with Chaining Example
\[
M=11, h(k)=k \bmod 11
\]


Hashing with Chaining Example
\[
M=11, h(k)=k \bmod 11
\]


Hashing with Chaining Example
\[
M=11, h(k)=k \bmod 11
\]


Hashing with Chaining Example
\[
M=11, h(k)=k \bmod 11
\]


\section*{Hashing with Chaining: Worst Case Running Time}


\section*{Hashing with Chaining: Worst Case Running Time}
- When can all \(n\) items hash to the same array index?
- bad hash function, i.e. \(h(k)=10\)
- for any hash function, if universe is large enough, there are \(n\) keys that will hash to the same slot
- let \(|U| \geq M(n-1)+1\)
- suppose less than \(n\) keys hash to each table slot
\[
\begin{aligned}
& \begin{array}{l}
\mathbf{0} \\
\end{array} \\
& M(n-1)
\end{aligned}
\]
- then there at most \(M(n-1)\) elements in \(U\), contradiction
- user may or may not decide to insert the items that all hash into the same slot

\section*{Hashing with Chaining: Average time?}
- Define load factor \(\alpha=\frac{n}{M}\)
- \(n\) is the number of items
- \(M\) is the size of hash table

- insert has runtime \(\Theta(1)\)
- search, delete have runtime \(\Theta(1+\) size of bucket \(T[h(k)])\)
- note we do not say \(\Theta\) (size of bucket \(T[h(k)])\), as bucket can have size 0
- runtime when bucket size is 0 is \(\Theta(1)\), not \(\Theta(0)\)

\section*{Hashing with Chaining: Average time?}
- Define load factor \(\alpha=\frac{n}{M}\)
- \(n\) is the number of items
- \(M\) is the size of hash table

- insert has runtime \(\Theta(1)\)
- search, delete have runtime \(\Theta(1+\) size of bucket \(T[h(k)])\)
- The average bucket size is \(\alpha\)
- This does not imply that the average-case cost of search and delete is \(\Theta(1+\alpha)\)
- then all keys hash to the same slot, then the average bucket size is still \(\alpha\), but search, delete still take \(\Theta(n)\) on average
- Need to make some assumptions on how keys are distributed
- too hard to make assumptions close to realistic
- Easier to make assumptions if we switch to randomization and expected time

\section*{Hashing with Chaining: Randomization}
- Switch to randomized hashing
- How can we randomize?
- sequence of insert/search/delete is given
- key must hash to the particular value given by the hash function
- Idea: assume hash-function is chosen randomly
- Uniform Hashing Assumption
- any possible hash-function is equally likely to be chosen
- not realistic, but this assumption makes analysis possible
- Can show that under uniform hashing assumption
- \(P(h(k)=i)=\frac{1}{M}\) for any key \(k\) and slot \(i\)
- hash-values of any two keys are independent of each other
- Practical way to chose a random hash function from a certain family of hash functions
- \(h(k)=((a k+b) \bmod p) \bmod M\)
- prime number \(p>M\) and random \(a, b \in\{0, \ldots p-1\}, a \neq 0\)

\section*{Hashing with Chaining: Randomization}
- \(P(h(k)=i)=\frac{1}{M}\) for any key \(k\) and slot \(i\)
- hash-values of any two keys are independent of each other
- load factor \(\alpha=\frac{n}{M}\)

Claim: for any key \(k\), the expected size of bucket \(T[h(k)]\) is at most \(1+\alpha\) Proof:
- Let \(h(k)=i\)
- Case 1: \(k\) is not in the dictionary
- then each of \(n\) dictionary items hashes to \(i\) with probability \(\frac{1}{M}\)
- \(E[T(i)]=\frac{n}{M}=\alpha \leq 1+\alpha\)
- Case 2: \(k\) is in the dictionary
- \(\quad T(i)\) definitely has key \(k\)
- the remaining \(n-1\) dictionary items hash to \(i\) with probability \(\frac{1}{M}\)
- \(E[T(i)]=1+\frac{n-1}{M} \leq 1+\alpha\)
- search, delete have runtime \(\Theta(1+\) size of bucket \(T[h(k)])\)
- Expected runtime of search and delete is \(\Theta(1+\alpha)\), insert is \(\Theta(1)\)

\section*{Load factor and re-hashing}
- Load factor \(\alpha=\frac{n}{M}\)
- Space is \(\Theta(M+n)=\Theta(n / \alpha+n)\), time is \(\Theta(1+\alpha)\)
- if we maintain \(\alpha \in \Theta(1)\), expected running time is \(O(1)\) and space is \(\Theta(n)\)
- Accomplished by rehashing whenever \(\frac{n}{M}<c_{1}\) or \(\frac{n}{M}>c_{2}\)
- where \(c_{1}, c_{2}\) are constants with \(0<c_{1}<c_{2}\)
- \(c_{1}\) is minimum allowed load factor, \(c_{2}\) is maximum allowed load factor
- Maintaining hash array of appropriate size
- start with small \(M\)
- during insert/delete, update \(n\)
- if load factor becomes too big, i.e. \(\alpha=\frac{n}{M}>c_{2}\), rehash
- chose new \(M^{\prime} \approx 2 M\)
- find a new random hash function \(h^{\prime}\) that maps \(U\) into \(\left\{0,1, \ldots M^{\prime}-1\right\}\)
- create new hash table \(T^{\prime}\) of size \(M^{\prime}\)
- reinsert each KVP from \(T\) into \(T^{\prime}\)
- update \(T \leftarrow T^{\prime}, h \leftarrow h^{\prime}\)
- If load factor becomes too small, i.e. \(\alpha=\frac{n}{M}<c_{1}\), rehash with smaller \(M^{\prime}\) - Rehashing costs \(\Theta(M+n)\) but happens rarely, cost amortized over all operations

\section*{Rehashing}
\(M=5, h(k)=k \bmod 5\)



\section*{Outline}
- Dictionaries via Hashing
- Hashing Introduction
- Hashing with Chaining
- Open Addressing
- probe sequences
- cuckoo hashing
- Hash Function Strategies

\section*{Open Addressing}
- Chaining wastes space on links
- Can we resolve collisions in the array \(H\) ?
- Idea: each hash table entry holds only one item, but key \(k\) can go in multiple locations
- Probe sequence
- search and insert follow a probe sequence of possible locations for key \(k\)
\[
h(k, 0), h(k, 1), h(k, 2), \ldots
\]
- until an empty spot is found
\begin{tabular}{|l|}
\hline\(h(k, 2)\) \\
\hline\(h(k, 0)\) \\
\hline \\
\hline\(h(k, 1)\) \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{Open Addressing: Linear Probing}
- Linear probing is the simplest method for probe sequence
- If \(h(k)\) is occupied, place item in the next available location
- probe sequence is
- \(h(k, 0)=h(k)\)
- \(h(k, 1)=h(k)+1\)
- \(h(k, 2)=h(k)+2\)
- etc...
- Assume circular array, i.e. modular arithmetic
- \(h(k, i)=(h(k)+i) \bmod M\)

\section*{Linear Probing Example}
\(M=11, h(k)=k \bmod 11\)
\[
\begin{aligned}
& \text { insert(41) } \\
& h(41)=8
\end{aligned}
\]


\section*{Linear Probing Example}
\(M=11, h(k)=k \bmod 11\)
\[
\begin{aligned}
& \text { insert(41) } \\
& h(41)=8
\end{aligned}
\]


\section*{Linear Probing Example}
\(M=11, h(k)=k \bmod 11\)
\[
\begin{aligned}
& \text { insert(84) } \\
& h(84)=7
\end{aligned}
\]


\section*{Linear Probing Example}
\(M=11, h(k)=k \bmod 11\)
\[
\begin{aligned}
& \text { insert(84) } \\
& h(84)=7
\end{aligned}
\]


\section*{Linear Probing Example}
\(M=11, h(k)=k \bmod 11\)
\[
\begin{aligned}
& \text { insert(84) } \\
& h(84)=7
\end{aligned}
\]


\section*{Linear Probing Example}
\(M=11, h(k)=k \bmod 11\)
\[
\begin{aligned}
& \text { insert(84) } \\
& h(84)=7
\end{aligned}
\]


\section*{Linear Probing Formula}
- Linear probing explores positions
\[
h(k, i)=(h(k)+i) \bmod M
\]
- for \(i=0,1, \ldots\) until an empty location is found
- where \(h(k)\) is some hash function

\section*{Linear probing example Continued}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { insert(20) } \\
& h(20)=9 \\
& h(20,0)=(9+0) \bmod 11=9
\end{aligned}
\]


\section*{Linear probing example Continued}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { insert(20) } \\
& h(20)=9 \\
& h(20,0)=(9+0) \bmod 11=9
\end{aligned}
\]


\section*{Linear probing example Continued}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { insert(20) } \\
& h(20)=9 \\
& h(20,1)=(9+1) \bmod 11=10
\end{aligned}
\]


\section*{Linear probing example Continued}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { insert(20) } \\
& h(20)=9 \\
& h(20,2)=(9+2) \bmod 11=0
\end{aligned}
\]


\section*{Linear probing example: Search}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \operatorname{search}(23) \\
& h(23)=1 \\
& h(23,0)=(1+0) \bmod 11=1
\end{aligned}
\]


\section*{Linear probing example: Search}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \operatorname{search}(23) \\
& h(23)=1 \\
& h(23,1)=(1+1) \bmod 11=2
\end{aligned}
\]


\section*{Linear probing example: Search}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \operatorname{search}(23) \\
& h(23)=1 \\
& h(23,2)=(1+2) \bmod 11=3
\end{aligned}
\]


\section*{Linear probing: Delete}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { delete }(84) \\
& h(84)=7 \\
& h(84,0)=(7+0) \bmod 11=7
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline 0 & 20 \\
\hline 1 & 45 \\
\hline 2 & 13 \\
\hline 3 & \\
\hline 4 & 92 \\
\hline 5 & 49 \\
\hline 6 & \\
\hline 7 & 7 \\
\hline 8 & 41 \\
\hline 9 & 84 \\
\hline 10 & 43 \\
\hline
\end{tabular}

\section*{Linear probing: Delete}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { delete }(84) \\
& h(84)=7 \\
& h(84,0)=(7+0) \bmod 11=7
\end{aligned}
\]


\section*{Linear probing: Delete}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { delete }(84) \\
& h(84)=7 \\
& h(84,1)=(7+1) \bmod 11=8
\end{aligned}
\]


\section*{Linear probing: Delete}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { delete }(84) \\
& h(84)=7 \\
& h(84,2)=(7+2) \bmod 11=9
\end{aligned}
\]


\section*{Linear probing: Delete}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { delete }(84) \\
& h(84)=7 \\
& h(84,2)=(7+2) \bmod 11=9
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline 0 & 20 \\
\hline \multirow[b]{2}{*}{1} & 45 \\
\hline & 13 \\
\hline 3 & \\
\hline 4 & 92 \\
\hline 5 & 49 \\
\hline 6 & \\
\hline 7 & 7 \\
\hline 8 & 41 \\
\hline 9 & \\
\hline 10 & 43 \\
\hline
\end{tabular}

\section*{Linear probing: Delete}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \operatorname{search}(20) \\
& h(20)=9 \\
& h(20,0)=(9+0) \bmod 11=9
\end{aligned}
\]


\section*{Open Addressing}
- delete becomes problematic
- cannot leave an empty spot behind
- next search might otherwise not go far enough
- Idea: lazy deletion
- mark spot as deleted (rather than empty)
- continue searching past deleted spots
- insert in empty or deleted spot

\section*{Linear probing: Delete}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { delete }(84) \\
& h(84)=7 \\
& h(84,0)=(7+0) \bmod 11=7 \\
& h(84,1)=(7+1) \bmod 11=8 \\
& h(84,2)=(7+2) \bmod 11=9
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline 0 & 20 & \\
\hline 1 & 45 & \\
\hline 2 & 13 & \\
\hline 3 & & \\
\hline 4 & 92 & \\
\hline 5 & 49 & \\
\hline 6 & & \\
\hline 7 & 7 & occupied \\
\hline 8 & 41 & occupied \\
\hline 9 & 84 & found \\
\hline 10 & 43 & \\
\hline
\end{tabular}

\section*{Linear probing: Delete}
\(M=11, h(k)=k \bmod 11\)
\[
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\]
\[
\begin{aligned}
& \text { delete }(84) \\
& h(84)=7 \\
& h(84,0)=(7+0) \bmod 11=7 \\
& h(84,1)=(7+1) \bmod 11=8 \\
& h(84,2)=(7+2) \bmod 11=9
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline 0 & 20 & \\
\hline 1 & 45 & \\
\hline 2 & 13 & \\
\hline 3 & & \\
\hline 4 & 92 & \\
\hline 5 & 49 & \\
\hline 6 & & \\
\hline 7 & 7 & occupied \\
\hline 8 & 41 & occupied \\
\hline 9 & deleted & \\
\hline 10 & 43 & \\
\hline
\end{tabular}

\section*{Linear probing example}
\[

\]

\section*{Linear probing example}
\[
\begin{array}{rl}
M=11 & h(k)=k \bmod 11 \\
& h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\end{array}
\]
\[
\begin{aligned}
& \operatorname{search}(20) \\
& h(20)=9 \\
& h(20,1)=(9+1) \bmod 11=10
\end{aligned}
\]


\section*{Linear probing example}
\[
\left.\begin{array}{l}
M=11, h(k)=k \bmod 11 \\
h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots \\
\operatorname{search}(20) \\
\\
h(20)=9 \\
0
\end{array}\right)
\]

\section*{Linear probing example}
\[
\begin{aligned}
& M=11, \quad h(k)=k \bmod 11 \\
& \\
& h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\end{aligned}
\]
\[
\begin{aligned}
& \text { insert(10) } \\
& h(10)=10 \\
& h(10,0)=(10+0) \bmod 11=10
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline 0 & 20 \\
\hline 1 & 45 \\
\hline 2 & 13 \\
\hline 3 & \\
\hline 4 & 92 \\
\hline 5 & 49 \\
\hline 6 & \\
\hline 7 & 7 \\
\hline 8 & 41 \\
\hline 9 & 84 \\
\hline 10 & deleted \\
\hline
\end{tabular}

\section*{Linear probing example}
\[
\begin{aligned}
& M=11, \quad h(k)=k \bmod 11 \\
& h(k, i)=(h(k)+i) \bmod M \text { for sequence } i=0,1, \ldots
\end{aligned}
\]
\[
\begin{aligned}
& \text { insert(10) } \\
& h(10)=10 \\
& h(10,0)=(10+0) \bmod 11=10
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline 0 & 20 \\
\hline 1 & 45 \\
\hline 2 & 13 \\
\hline 3 & \\
\hline 4 & 92 \\
\hline 5 & 49 \\
\hline 6 & \\
\hline 7 & 7 \\
\hline 8 & 41 \\
\hline 9 & 84 \\
\hline 10 & 10 \\
\hline
\end{tabular}

\section*{Probe Sequence Operations}
```

probe-sequence::insert(T, (k,v))
for (i = 0;i<M;i++)
if T [h(k,i)] is empty or deleted
T[h(k,i)]=(k,v)
return success
return failure to insert

```
- Stop inserting after \(M\) tries
- provided \(\alpha<1\), linear probing does not need this
- some probing methods need this
- If insert fails, call rehash
probe-sequence::search \((T,(k, v))\)
    for \((i=0 ; i<M ; i++)\)
    if \(T[h(k, i)]\) is empty
        return item-not-found
        if \(T[h(k, i)]\) is has key \(k\)
        return \(T[h(k, i)]\)
    // ignore \(T[h(k, i)]=\) deleted and keep searching
    return item not found

\section*{Linear probing drawbacks}
- Entries tend to cluster into contiguous regions
- "snowball" effect
- Many probes for each search, insert, and delete
- How to avoid clustering?
\begin{tabular}{|c|c|}
\hline 0 & \\
\hline 1 & 45 \\
\hline 2 & \\
\hline 3 & \\
\hline 4 & 92 \\
\hline 5 & \\
\hline 6 & 28 \\
\hline 7 & 7 \\
\hline 8 & 41 \\
\hline 9 & 84 \\
\hline 10 & \\
\hline
\end{tabular}

\section*{Double Hashing Motivation}
- Linear probing attempts inserting into sequence of probes which is far from random
\[
h_{1}(k) \quad h_{1}(k)+1 \quad h_{1}(k)+2
\]
- Want a more 'random' sequence of probes
\[
h_{1}(k) \quad h_{1}(k)+8 \quad h_{1}(k)+6
\]
- This will help to avoid the clustering side effect
- Note for each key \(k\), the probe sequence must always be the same
- for \(k=14\), probe sequence is always
- 4, 3, 0, 2, 1, 5
- for \(k=24\), probe sequence is always

- 5, 0, 2, 4, 1, 3

\section*{Double Hashing}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{double hashing} & \\
\hline & \\
\hline \(i=0\) & \(h(k, 0)\) \\
\hline \(i=3\) & \(h(k, 3)\) \\
\hline \multirow{6}{*}{\(i=1\)} & \\
\hline & \\
\hline & \(h(k, 1)\) \\
\hline & \\
\hline & \\
\hline & \\
\hline \multirow[t]{2}{*}{\(i=2\)} & \(h(k, 2)\) \\
\hline & \\
\hline
\end{tabular}
- Double hashing with a good secondary hash function does not cause the bad clustering produced by linear probing
- search, insert, delete work as in linear probing, but with this different probe sequence
- linear probing is a special case of double hashing with \(h_{1}(k)=1\)

\section*{Independent Hash functions}
- When two hash functions \(h_{1}, h_{2}\) are required, they should be independent
\[
P\left(h_{1}(k)=i\right) \text { and } P\left(h_{2}(k)=j\right) \text { are independent }
\]
- Using two modular hash-functions may lead to dependencies
- Better idea: Use multiplicative method for second hash function
- let \(0<A<1\)
- \(h(k)=\lfloor M(k A-\lfloor k A\rfloor)\rfloor\)
\[
\begin{gathered}
0 \leq \text { fractional part of } k A<1 \\
0 \leq M \cdot(\text { fractional part of } k A)<M
\end{gathered}
\]
- Example
- \(M=11, A=0.2\)
- \(h(34)=\lfloor 11 \cdot(34 \cdot 0.2-\lfloor 34 \cdot 0.2\rfloor)\rfloor=\lfloor 11 \cdot(6.8-\lfloor 6.8\rfloor)\rfloor=\lfloor 11 \cdot 0.8\rfloor=8\)
- \(A=\varphi=\frac{\sqrt{5}-1}{2} \approx 0.618033988749\) works well to scramble the keys
- should use at least \(\log |U|+\log |M|\) bits of \(A\)
- For secondary hash function, to avoid \(h(k)=0\), use
\[
h_{1}(k)=\lfloor(M-1)(k A-\lfloor k A\rfloor)\rfloor+1
\]

\section*{Double Hashing Example}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1\) \(h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M\) for sequence \(i=0,1, \ldots\)
\begin{tabular}{|c|c|}
\hline 0 & \\
\hline 1 & 45 \\
\hline 2 & 13 \\
\hline 3 & \\
\hline 4 & 92 \\
\hline 5 & 49 \\
\hline 6 & \\
\hline 7 & 7 \\
\hline 8 & \\
\hline 9 & \\
\hline 10 & 43 \\
\hline
\end{tabular}

\section*{Double Hashing Example}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1\) \(h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M\) for sequence \(i=0,1, \ldots\)
insert(41)
\[
\begin{gathered}
h_{0}(41)=8 \\
h_{1}(41)=4 \\
h(41,0)=(8+0 \cdot 4) \bmod 11=8
\end{gathered}
\]
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{0} & \\
\hline & 45 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\]} & 13 \\
\hline & \\
\hline 4 & 92 \\
\hline \multirow[t]{2}{*}{5} & 49 \\
\hline & \\
\hline 7 & 7 \\
\hline 8 & \\
\hline 9 & \\
\hline 10 & 43 \\
\hline
\end{tabular}

\section*{Double Hashing Example}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1\) \(h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M\) for sequence \(i=0,1, \ldots\)
insert(41)
\[
\begin{gathered}
h_{0}(41)=8 \\
h_{1}(41)=4 \\
h(41,0)=(8+0 \cdot 4) \bmod 11=8
\end{gathered}
\]
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{0} & \\
\hline & 45 \\
\hline 2 & 13 \\
\hline 3 & \\
\hline 4 & 92 \\
\hline 5 & 49 \\
\hline 6 & \\
\hline 7 & 7 \\
\hline 8 & 41 \\
\hline 9 & \\
\hline 10 & 43 \\
\hline
\end{tabular}

\section*{Double Hashing Example}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1\) \(h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M\) for sequence \(i=0,1, \ldots\)
insert(194)


\section*{Double Hashing Example}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1\) \(h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M\) for sequence \(i=0,1, \ldots\)
insert(194)


\section*{Double Hashing Example}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1\) \(h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M\) for sequence \(i=0,1, \ldots\)
insert(194)


\section*{Double Hashing Example}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1\) \(h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M\) for sequence \(i=0,1, \ldots\)
insert(194)
\[
\begin{gathered}
h_{0}(194)=7 \\
h_{1}(194)=9 \\
h(194,1)=(7+1 \cdot 9) \bmod 11=5
\end{gathered}
\]
\begin{tabular}{|c|c|}
\hline 0 & \\
\hline 1 & 45 \\
\hline 2 & 13 \\
\hline 3 & \\
\hline 4 & 92 \\
\hline 5 & 49 \\
\hline 6 & \\
\hline 7 & 7 \\
\hline 8 & 41 \\
\hline 9 & \\
\hline 10 & 43 \\
\hline
\end{tabular}

\section*{Double Hashing Example}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1\) \(h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M\) for sequence \(i=0,1, \ldots\)
insert(194)
\[
\begin{gathered}
h_{0}(194)=7 \\
h_{1}(194)=9 \\
h(194,2)=(7+2 \cdot 9) \bmod 11=3
\end{gathered}
\]
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{0} & \\
\hline & 45 \\
\hline 2 & 13 \\
\hline 3 & \\
\hline 4 & 92 \\
\hline 5 & 49 \\
\hline 6 & \\
\hline 7 & 7 \\
\hline 8 & 41 \\
\hline 9 & \\
\hline 10 & 43 \\
\hline
\end{tabular}

\section*{Double Hashing Example}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 10(\varphi k-\lfloor\varphi k\rfloor)\rfloor+1\) \(h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M\) for sequence \(i=0,1, \ldots\)
insert(194)
\[
\begin{gathered}
h_{0}(194)=7 \\
h_{1}(194)=9 \\
h(194,2)=(7+2 \cdot 9) \bmod 11=3
\end{gathered}
\]
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{0} & \\
\hline & 45 \\
\hline 2 & 13 \\
\hline 3 & 194 \\
\hline 4 & 92 \\
\hline 5 & 49 \\
\hline 6 & \\
\hline 7 & 7 \\
\hline 8 & 41 \\
\hline 9 & \\
\hline 10 & 43 \\
\hline
\end{tabular}

\section*{Outline}
- Dictionaries via Hashing
- Hashing Introduction
- Hashing with Chaining
- Onen Addressing
- probe Sequences
- cuckoo hashing
- Hash Function Strategies

\section*{Cuckoo Hashing}

- Main idea: An item with key \(k\) can be only at \(T_{0}\left[h_{0}(k)\right]\) or \(T_{1}\left[h_{1}(k)\right]\)

\section*{Cuckoo Hashing}

- Main idea: An item with key \(k\) can be only at \(T_{0}\left[h_{0}(k)\right]\) or \(T_{1}\left[h_{1}(k)\right]\)
- search and delete take \(O(1)\) time

\section*{Cuckoo Hashing}


\(T_{1}\)
- How to insert?

\section*{Cuckoo Hashing}


\(T_{1}\)
- How to insert?

\section*{Cuckoo Hashing}


\(T_{1}\)
- How to insert \(k\) when \(h_{0}(k)\) is already occupied?

\section*{Cuckoo Hashing}


\(T_{1}\)
- How to insert \(k\) when \(h_{0}(k)\) is already occupied?

\section*{Cuckoo Hashing}

- How to insert \(k\) when \(h_{0}(k)\) is already occupied?

\section*{Cuckoo Hashing}

- How to insert \(k\) when \(h_{0}(k)\) is already occupied?

\section*{Cuckoo Hashing}

- How to insert \(k\) when \(h_{0}(k)\) is already occupied?

\section*{Cuckoo Hashing}

- How to insert \(k\) when \(h_{0}(k)\) is already occupied?

\section*{Cuckoo Hashing}

- How to insert \(k\) when \(h_{0}(k)\) is already occupied?

\section*{Cuckoo Hashing}

- Continue until all items placed, or failure
- rehash if failure

\section*{Cuckoo Hashing [Pagh \& Rodler, 2001]}
- Use independent hash functions \(h_{0}, h_{1}\) and two tables \(T_{0}, T_{1}\)
- Key \(k\) can be only at \(T_{0}\left[h_{0}(k)\right]\) or \(T_{1}\left[h_{1}(k)\right]\)
- search and delete take constant time
- insert starts with \(T_{0}\) and alternates between \(T_{0}\) and \(T_{1}\) kicking out current occupant, if necessary, until no item is kicked out
- may lead to a loop of "kicking out"
- detect loops by aborting after too many attempts
- signal failure
- if failure, rehash with larger \(M\) and new hash functions
- insert may be slow, but expected constant time if the load factor is small
- Works well in practice

\section*{Cuckoo Hashing}

- Intuitively
- each key has 2 locations (locations can coincide)
- try to "match" keys to locations so that everyone is placed

\section*{Cuckoo Hashing}

- Sometimes no solution for the "matching" problem
- would loop infinitely if not stopped by force

\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(51) } \\
& i=0 \\
& k=51 \\
& h_{0}(k)=7
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(51) } \\
& \begin{array}{l}
i=0 \\
k=51 \\
h_{0}(k)=7
\end{array}
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(95) } \\
& \begin{array}{l}
i=0 \\
k=95 \\
h_{0}(k)=7
\end{array}
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(95) } \\
& \begin{array}{l}
i=0 \\
k=95 \\
h_{0}(k)=7
\end{array}
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(95) } \\
& \begin{array}{l}
i=0 \\
k=95 \\
h_{0}(k)=7
\end{array}
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(95) } \\
& \begin{array}{l}
i=1 \\
k=51 \\
h_{1}(k)=5
\end{array}
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(95) } \\
& i=1 \\
& k=51 \\
& h_{1}(k)=5
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(95) } \\
& i=1 \\
& k=51 \\
& h_{1}(k)=5
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(26) } \\
& i=0 \\
& k=26 \\
& h_{0}(k)=4
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(26) } \\
& i=0 \\
& k=26 \\
& h_{0}(k)=4
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(26) } \\
& i=1 \\
& k=59 \\
& h_{1}(k)=5
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(26) } \\
& i=1 \\
& k=59 \\
& h_{1}(k)=5
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(26) } \\
& \begin{array}{l}
i=0 \\
k=51 \\
h_{0}(k)=7
\end{array}
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(26) } \\
& i=0 \\
& k=51 \\
& h_{0}(k)=7
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(26) } \\
& i=1 \\
& k=95 \\
& h_{1}(k)=7
\end{aligned}
\]


\section*{Cuckoo hashing: Insert}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
\[
\begin{aligned}
& \text { insert(26) } \\
& i=1 \\
& k=95 \\
& h_{1}(k)=7
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline 0 & 44 \\
\hline 1 & \\
\hline 2 & \\
\hline 3 & \\
\hline 4 & 26 \\
\hline 5 & \\
\hline 6 & \\
\hline 7 & 51 \\
\hline 8 & \\
\hline 9 & 92 \\
\hline 10 & \\
\hline
\end{tabular}
\begin{tabular}{r|r|}
\hline 0 & \\
1 & \\
1 & \\
2 & \\
3 & \\
4 & \\
5 & 59 \\
6 & \\
7 & 95 \\
8 & \\
9 & \\
10 & \\
\hline
\end{tabular}

\section*{Cuckoo Hashing: Insert Pseudocode}
\[
\begin{aligned}
& \text { cuckoo::insert }(k, v) \\
& \qquad \begin{array}{l}
i \leftarrow 0 \\
\text { do at most } 2 n \text { times } \\
\text { if } T_{i}\left[h_{i}(k)\right] \text { is empty } \\
T_{i}\left[h_{i}(k)\right] \leftarrow(k, v) \\
\text { return "success" } \\
/ / \text { insert } T_{i}\left[h_{i}(k)\right] \text { into the other table } \\
\operatorname{swap}\left((k, v), T_{i}\left[h_{i}(k)\right]\right) / / \text { kick out current occupant } \\
i \leftarrow 1-i \quad / / \text { alternate between } 0 \text { and } 1 \\
\text { return failure } \quad / / \text { re-hash }
\end{array}
\end{aligned}
\]
- After \(2 n\) iterations, there is definitely an infinite loop of 'kicking out'
- Practical tip
- do not wait for \(2 n\) unsuccessful tries to declare failure
- declare failure after, say, 10 unsuccessful iterations

\section*{Cuckoo hashing: Search}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
search(59)
\[
\begin{aligned}
& h_{0}(59)=4 \\
& h_{1}(59)=5
\end{aligned}
\]


\section*{Cuckoo hashing: Delete}
\(M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor\)
delete(59)
\[
\begin{gathered}
h_{0}(59)=4 \\
h_{1}(59)=5
\end{gathered}
\]


\section*{Cuckoo hashing: Delete}
\[
M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor
\]
delete(59)
\[
\begin{gathered}
h_{0}(59)=4 \\
h_{1}(59)=5
\end{gathered}
\]


\section*{Cuckoo hashing discussion}
- The two hash tables do not have to be of the same size
- Load factor \(\alpha=n /\left(\right.\) size of \(T_{0}+\operatorname{size}\) of \(\left.T_{1}\right)\)
- One can argue that if the load factor is small enough, then insertion has \(O\) (1) expected time
- this requires \(\alpha<1 / 2\)
- There are many variations of cuckoo hashing
- two hash tables can be combined into one
- more flexible when inserting: always consider both possible positions
- Use \(k>2\) allowed locations
- \(k\) tables or \(k\) hash functions

\section*{Complexity of Open Addressing Strategies}
- For any open addressing scheme, we must have \(\alpha \leq 1\) (why?)
- For analysis, require \(\alpha<1\), for Cuckoo hashing require \(\alpha<1 / 2\)
\begin{tabular}{l|c|c|c}
\begin{tabular}{l} 
Expected \# \\
probes \(\leq\)
\end{tabular} & search(unsuccessful) & insert & search (successful) \\
\hline Linear Probing & \(\frac{1}{(1-\alpha)^{2}}\) & \(\frac{1}{(1-\alpha)^{2}}\) & \begin{tabular}{c}
\(\frac{1}{1-\alpha}\) \\
(on avg. over keys)
\end{tabular} \\
\hline Double Hashing & \(\frac{1}{1-\alpha}+o(1)\) & \(\frac{1}{1-\alpha}+o(1)\) & \(\frac{1}{1-\alpha}+o(1)\) \\
\hline Cuckoo Hashing & (worst case) & \(\frac{\alpha}{(1-2 \alpha)^{2}}\) & (worst case)
\end{tabular}
- All operations have \(O(1)\) expected run-time if hash-function chosen uniformly and \(\alpha\) is kept sufficiently small
- But the worst case runtime is (usually) \(\Theta(n)\)

\section*{Outline}
- Dictionaries via Hashing
- Hashing Introduction
- Hashing with Chaining
- Open Addressing
- probe Sequences
- cuckoo hashing
- Hash Function Strategies

\section*{Choosing Good Hash Function}
- Satisfying the uniform hashing assumption is impossible
- too many hash functions and for most, computing \(h(k)\) is not cheap
- We need to compromise
- choose hash function that is easy to compute
- but aim for \(P(h(k)=i)=\frac{1}{M}\)
- If all keys are used equally often, this is easy
- In practice, keys are not used equally often
- Can get good performance by choosing hash-function that is
- unrelated to any possible patterns in the data, and
- depends on all parts of the key
- We saw two basic methods for integer keys
- Modular method: \(h(k)=k \bmod M\)
- \(M\) should be prime
- Multiplicative method: \(h(k)=\lfloor M(k A-\lfloor k A\rfloor)\rfloor\)
- \(0<A<1\)

\section*{Carter-Wegman's Universal Hashing}
- Even better: randomization that uses easy-to-compute hash functions
- Requires: all keys are in \(\{0, \ldots p-1\}\) for some (big) prime \(p\)
- choose number \(M<p\)
- \(M\) equal to some power of 2 is ok
- Choose two random numbers \(a, b \in\{0, \ldots p-1\}, a \neq 0\)
- Use as hash function
\[
h(k)=((a k+b) \bmod p) \bmod M
\]
- can be computed in \(O(1)\) time
- Uniform hashing assumption is not satisfied, but
- can prove that two keys collide with probability at most \(\frac{1}{M}\)
- this is enough to prove the expected runtime bounds we had for chainging

\section*{Multi-dimensional Data}
- May need multi-dimensional non integer keys
- example: strings in \(\Sigma^{*}\)
1. Construct \(f(w) \in N\) for converting string \(w\) to integer
- ASCII representation of APPLE is \((65,80,80,76,69)\)
- simple addition: \(f(\) APPLE \()=65+80+80+76+69\)
- many collisions, 'stop'='tops'='pots'
- polynomial accumulation works better
- choose radix \(R\), e.g. \(R=255\)
- \(f(A P P L E)=65 R^{4}+80 R^{3}+80 R^{2}+76 R^{1}+69 R^{0}\)
- compute in \(O(|w|)\) time with Horner's rule
- either ignoring overflow
\[
f(A P P L E)=(((65 R+80) R+80) R+76) R+69
\]
- or apply mod \(M\) after each addition
2. Now apply any hash function, such as \(h(w)=f(w) \bmod M\)

\section*{Hashing vs. Balanced Search Trees}
- Advantages of Balanced Search Trees
- \(O(\log n)\) worst-case operation cost
- does not require any assumptions, special functions, or known properties of input distribution
- predictable space usage (exactly \(n\) nodes)
- never need to rebuild the entire structure
- supports ordered dictionary operations (rank, select etc.)
- Advantages of Hash Tables
- \(O(1)\) expected time operations (if hashes well-spread and load factor small)
- can choose space-time tradeoff via load factor
- cuckoo hashing achieves \(O\) (1) worst-case for search \& delete```

